Math 20F - Homeworks 9 & 10 - Selected answers

Samuel R. Buss - Winter 2003 - UC San Diego

Revision 1.0. – March 13, 2003

Section 6.1, Problem 19. We did almost exactly this problem as a theorem proved in class.

Section 6.1, Problem 22. Since \(u_j^T u_i = \delta_{i,j} \), we have

\[
Au_i = \sum_{j=1}^{n} c_j u_j^T u_i = \sum_{j=1}^{n} \delta_{i,j} c_j u_j = c_i u_i.
\]

Hence \(u_i \) is an eigenvector for the eigenvalue \(c_i \).

Section 6.3, Problem 1(a). We did this as an example in class on Wednesday.

Section 6.3, Problem 1(c). \(\det(A - \lambda I) = (2 - \lambda)(-4 - \lambda) + 8 = 2\lambda + \lambda^2 = (2 + \lambda)(\lambda) \). The roots of the characteristic polynomial are \(\lambda_1 = 1 \) and \(\lambda_2 = -2 \): these are the eigenvalues of \(A \). Solving \(Ax = 0 \) for a nontrivial \(x \), we find that \(x_1 = (4, 1)^T \) is an eigenvector corresponding to the eigenvalue \(\lambda_1 = 0 \). Solving \((A + 2I)x = 0 \), we find that \(x_2 = (2, 1)^T \) is an eigenvector corresponding to the eigenvalue \(\lambda_2 = -2 \).

The eigenvalues are distinct, hence \(x_1 \) and \(x_2 \) are linearly independent. Therefore, \(A \) is diagonalizable in the following form:

\[
A = \begin{pmatrix}
4 & 2 \\
1 & 1 \\
\end{pmatrix} \cdot \begin{pmatrix}
0 & 0 \\
0 & -2 \\
\end{pmatrix} \cdot \begin{pmatrix}
4 & 2 \\
1 & 1 \\
\end{pmatrix}^{-1}
\]

\[
= \begin{pmatrix}
4 & 2 \\
1 & 1 \\
\end{pmatrix} \cdot \begin{pmatrix}
0 & 0 \\
0 & -2 \\
\end{pmatrix} \cdot \begin{pmatrix}
1/2 & -1 \\
-1/2 & 2 \\
\end{pmatrix}
\]

Section 6.3, Problem 3(c). The sixth power of \(A \) is equal to

\[
A^6 = \begin{pmatrix}
4 & 2 \\
1 & 1 \\
\end{pmatrix} \cdot \begin{pmatrix}
0 & 0 \\
0 & -2 \\
\end{pmatrix}^6 \cdot \begin{pmatrix}
1/2 & -1 \\
-1/2 & 2 \\
\end{pmatrix}
\]

This can be multiplied out by hand if desired – start by computing the sixth power of the diagonal matrix. This particular case is rather easy since there is only one non-zero eigenvariable. You will find that

\[
A^6 = \begin{pmatrix}
-64 & 256 \\
-32 & 128 \\
\end{pmatrix}.
\]
Section 6.3, Problem 4. The idea behind these problems is as follows. First diagonalize the matrix A as $A = SDS^{-1}$. If the eigenvalues are non-negative, the diagonal matrix D has non-negative entries along the diagonal. A matrix E such that $E^2 = D$ can be formed by letting E be the diagonal matrix whose entries are the square roots of the entries of D. Then, letting $B = SES^{-1}$, we have $B^2 = A$.

Section 6.3, Problem 8(a), 9. I neglected to define “defective” in class Wednesday (although I intended to). Therefore, as I promised, this term will not appear on the final exam. An $n \times n$ matrix that does not have n linearly independent eigenvectors is called defective. That is to say, a matrix is diagonalizable if and only if it is not defective.

Section 6.3, Problem 9. If A has one eigenvalue (call it λ_1) of multiplicity 3, then the other eigenvalue (call it λ_2) has multiplicity 1. Now, there is an eigenvector x_2 for λ_2 of course. Furthermore, since $\text{rank}(A - \lambda_1 I)$ is equal to 1, then the null space of $A - \lambda_1 I$ has dimension 3; therefore, there are three linearly independent eigenvectors for λ_1. Further, since $\lambda_1 \neq \lambda_2$ (they are unequal, since otherwise, the eigenvalue would have multiplicity four!), x_2 is not in the eigenspace of λ_1. Thus, the four eigenvectors are linearly independent, so A is diagonalizable and A is not defective.