1. Give an example of a consistent theory $T \supseteq I\Sigma_1$ such that T proves $\neg \text{Con}_T$. [To be done in class.]

2. Let $A = \{ \varphi : I\Sigma_1 \vdash \varphi \}$ and $B = \{ \varphi : I\Sigma_1 \vdash \neg \varphi \}$. Prove that A and B are recursively inseparable, i.e., that there is no recursive set C such that $A \subseteq C$ and $B \subseteq (\mathbb{N} \setminus C)$.

3. Suppose that $\mathcal{F} = (S, R)$ is a Kripke frame such that R is transitive and such that there is no infinite descending R-chain (i.e., no sequence s_0, s_1, s_2, \ldots such that $s_i Rs_{i+1}$ for all i). Prove that

$$\Box(\Box \varphi \rightarrow \varphi) \rightarrow \Box \varphi$$

is valid in \mathcal{F} for all formulas φ.
