1 The Kleene T Predicate

We have already defined $\text{Init}_M(x)$ and $\text{Next}_M(w)$, where

\[
w = \langle \text{state}, \langle \text{symbols to the right} \rangle, \langle \text{symbols to the left} \rangle \rangle .
\]

And furthermore, we have defined the predicate $\text{Comp}_M(x,v)$. Recall that

\[
\text{Comp}_M(x,v) \iff v \text{ is a sequence } \langle v_0, \ldots, v_{l-1} \rangle,
\]

where

\[
v_0 = \text{Init}_M(x),
\]

\[
v_{i+1} = \text{Next}_M(v_i),
\]

\[
v_{l-1} = \text{halting configuration}
\]

We now define the Kleene T predicate. This predicate says something like $\text{Comp}_M(x,v)$, but without fixing the Turing machine M. $T(e,x,w)$ means “w codes a complete computation of the Turing machine M with G"odel number $\uparrow M \uparrow = e$ on input x.” We claim that this is primitive recursive. (Note that the reason why this might be dubious is that $\uparrow M \uparrow$ might not be primitive recursive.)

One way to prove this would be to create a new Next function which takes in $\uparrow M \uparrow$ and x and gives the next configuration.

We show that T is primitive recursive another way. Define

\[
f(e,x) = \text{output}(\mu w T(e,x,w)) ,
\]

where

\[
\text{output}(w) = \begin{cases}
\text{value output by TM in configuration } w \text{ if it's in state } q_H \\
0 \text{ otherwise}
\end{cases}
\]

and $\mu w \ldots$ means “the least w such that \ldots”. Notice that the output function is primitive recursive.

Theorem 1. For any partial recursive function $g(x)$ there is an $e \in \mathbb{N}$ such that $\forall x \in \mathbb{N}, \ g(x) = f(e,x) \text{ and } g(x) = \text{output}(\mu w T(e,x,w))$.

Proof. Let \(g \) be computed by some Turing machine \(M \). Let \(e = \langle M \rangle \). Now the result follows from applying the appropriate definitions.

Now since the output function is primitive recursive, \(\mu \) is primitive recursive, and \(g \) is primitive recursive, we have the desired result: \(T \) is primitive recursive as well.

2 Some Remarks on Unbounded Minimization

Let \(h_2(x\bar{y}) = (\mu z)(R(z, \bar{y})) := \begin{cases} \text{least } y \text{ s.t. } R(z, y) \text{ if it exists} \\ \text{undefined otherwise} \end{cases} \). We define an algorithm for (partially) computing \(h_2(\bar{y}) \):

1. Input \(\bar{y} \).
2. Loop: \(z = 0, 1, 2, \ldots \)
 - Evaluate \(R(z, \bar{y}) \).
 - If accepts, then output \(z \)
 - End loop.

This algorithm proves the following theorem.

Theorem 2. If \(R(z, y) \) is recursive, then \(h_2(\bar{y}) \) is partial recursive.

Now we present another kind of unbounded minimization. Let \(h_3 \) be a partial recursive function. Then define \(h_4(y) = (\mu z)(h_3(z, \bar{y}) = 0) \). Here’s an algorithm for \(h_4 \):

1. Take input \(y \).
2. Loop \(z = 0, 1, 2, 3, \ldots \)
 - Evaluate \(h_3(z, \bar{y}) \).
 - If this halts and outputs 0, then output \(z \)
 - End loop.

So we have:

\[
 h_4(y) = (\mu z)(h_3(z, \bar{y}) = 0) := \begin{cases} z \text{ s.t. } h_3(z, \bar{y}) = 0 \text{ and } \forall z' < z, h_3(z', \bar{y}) \downarrow \neq 0 \text{ if there is such a } z \\ \text{undefined otherwise} \end{cases}
\]

And we have the following theorem and corollary.

Theorem 3. \(h_4 \) is partial recursive.
Corollary 1. For \(e \in \mathbb{N} \), \(g(x) = \text{output}(\mu w \ T(e, x, w)) \) is partial recursive.

Note that unbounded minimization takes us out of the realm of primitive recursive.

3 Runtime and Primitive Recursive Runtime

We begin with some definitions.

Definition 1. A Turing machine \(M \) has runtime \(s(n) \) for \(s : \mathbb{N} \to \mathbb{N} \) if for all \(x \in \mathbb{N} \) (or \(x \in \Sigma^* \)), if \(n = |x| \) (where \(|x| \) is the length of \(x \), or number of symbols in \(x \)) then \(M(x) \) runs for \(\leq s(n) \) steps.

Definition 2. Furthermore, if \(s(n) \) is primitive recursive then \(M \) is said to have primitive recursive runtime.

To conclude, we prove one little theorem about Turing machines with primitive recursive runtime.

Theorem 4. If \(f \) is a function computed by a Turing machine with primitive recursive runtime, then \(f \) is primitive recursive.

Proof. Let \(M \) compute \(f \). Then we know

\[
 f(x) = \text{output}(\mu w \leq \text{Bd}(s(|x|)) \text{ s.t. } T(\uparrow M \downarrow, x, w)),
\]

where \(\text{Bd}(s(|x|)) \) upper bounds the \(w \)'s that code \(s(|x|) \) steps of a Turing machine.

Now note that the \(\text{Bd} \) function is primitive recursive. So everything on the right hand side is primitive recursive, and hence \(f \) is as well. \(\square \)