1 (Failed) Proof: Completeness for Uncountable Languages

Let \(L \) be a language of cardinality \(\kappa \)
Let \(\Gamma \) be a set of \(L \)-sentences.

Either there is a model \(M \) of \(\Gamma \) or there exists a finite \(\Gamma_0 \subseteq \Gamma \) such that
\[\Gamma_0 \rightarrow \]
has a proof.

—
Cardinality of \(\Gamma \) is \(\leq \kappa \) (since the set of \(L \)-sentences has cardinality \(=\kappa \))

Enumerate \(\Gamma \) as a well-ordered sequence \(\gamma_0, \gamma_1, \gamma_2, \ldots, \gamma_\kappa \)
Assume there is an inexhaustible supply of variables (need \(\kappa \) many)

—
Form \(\Lambda, \Xi \) as before
\(\Lambda \subseteq \Gamma \)
\(\Lambda, \Xi \) satisfy closure properties (1)-(6)

—
Do it in steps:
Definition:
\[\Lambda_\alpha, \Xi_\alpha \leq \kappa \]
\[\Lambda_{-1} = \Xi_{-1} = \emptyset \]
Assume \(\Lambda_\beta, \Xi_\beta \) have been defined for all \(\beta < \alpha \)

Construct \(\Lambda_\alpha, \Xi_\alpha \) such that there is no finite \(\Gamma_0 \subseteq \Lambda_\alpha \cup \Gamma, \Delta_0 \subseteq \Xi_\alpha \) such that \(\Gamma_0 \rightarrow \Delta_0 \) has a proof, and such that \(\Lambda_\alpha, \Xi_\alpha \) satisfy conditions (1)-(6), and \(\gamma_\beta \in \Lambda_\alpha \) for \(\beta \leq \alpha \).

To define \(\Lambda_\alpha, \Xi_\alpha \) work backwards from the sequent
\[\gamma_\alpha \rightarrow \]
and try to give a proof.

Define "active":
\[\Gamma' \rightarrow \Delta' \] is active if there is no finite \(\Gamma_0 \subseteq \bigcup_{\beta<\alpha} \Lambda_\beta \cup \Gamma, \Delta_0 \subseteq \bigcup_{\beta<\alpha} \Xi_\beta, \]
such that \(\Gamma_0, \Gamma' \rightarrow \Delta_0 \Delta' \) has a proof.

—
Form an "unproof" of \(\gamma_\alpha \rightarrow \) as before, which has an infinite branch of nonactive sequents. Let:
\[\Lambda_\alpha = (\bigcup_{\beta<\alpha} \Lambda_\beta) \cup \{ \text{formulas in antecedents of this finite branch} \}, \]
\[\Xi_\alpha = (\bigcup_{\beta<\alpha} \Xi_\beta) \cup \{ \text{formulas in succedents of this finite branch} \}. \]
Modifications:
Omit step 1.
Enumerate formulas that appear in the active sequent.
-Say, pick the last to have been worked with and it has \(\exists x \varphi(x) \).

Problem: The following condition should hold, but does not:
If \(\forall x \varphi(x) \) is in \(\Lambda \), then \(\varphi(t) \) is in \(\Xi \) for all terms \(t \).

2 Traditional Proof of Completeness for Uncountable Languages

We'll define sets \(\Lambda_{\alpha}, \Xi_{\alpha} \).

1. There is no finite \(\Gamma_0 \subseteq \Lambda_{\alpha} \) and finite \(\Delta_0 \subseteq \Xi_{\alpha} \) such that \(\Gamma_0 \rightarrow \Delta_0 \) has a proof.
2. \(\Gamma \subseteq \Lambda_{\alpha} \)

Set \(\kappa = \{0, 1, 2, \ldots, \alpha, \ldots \} \)

Where \(A \) is an L-sentence and \(t \) an L-term, enumerate all pairs \(\langle A, t \rangle \):

\[\langle A_0, t_0 \rangle, \langle A_0, t_1 \rangle, \ldots, \langle A_1, t_0 \rangle, \ldots, \langle A_\alpha, t_\alpha \rangle, \ldots \]

such that for all pairs \(\langle A, t \rangle \) and all \(\beta \in \kappa \) there exists \(\alpha > \beta \) such that \(\langle A, t \rangle = \langle A_\alpha, t_\alpha \rangle \).

For this it is sufficient to assume that each \(\langle A, t \rangle \) appears \(\kappa \)-many times.

Define \(\Lambda, \Xi \) satisfying (1) and (2)
Initially \(\Lambda_{-1} = \Gamma \) and \(\Xi_{-1} = \emptyset \)
Suppose \(\Lambda_\beta, \Xi_\beta \) are defined for all \(\beta < \alpha \)
Let

\[\Lambda^-_{\alpha} = \bigcup_{\beta < \alpha} \Lambda_{\beta} \]
\[\Xi^-_{\alpha} = \bigcup_{\beta < \alpha} \Xi_{\beta} \]

Skip step (1). Do step (2) and (3)

Step (2)
If \(A_\alpha \in \Lambda^-_{\alpha} \), and \(A_\alpha \) is \(\varphi \land \psi \),
put \(\Lambda_\alpha = \Lambda^-_{\alpha} \cup \{ \varphi, \psi \} \) and \(\Xi_\alpha = \Xi^-_{\alpha} \)

If \(\exists \ \Gamma_0 \subseteq \Lambda_\alpha, \Delta_0 \subseteq \Xi_\alpha \) such that \(\Gamma_0 \rightarrow \Delta_0 \) has a proof,
then \(\Gamma_0 = \Gamma^-_0 \cup \{ \varphi, \psi \} \)

\[
\frac{\Gamma^-_0, \varphi, \psi \rightarrow \Delta_0}{\Gamma_0, \varphi \land \psi \rightarrow \Delta_0}
\]

Where \(\Gamma^-_0, \varphi \land \psi \subseteq \Lambda_{\beta_0} \) for some \(\alpha \beta_0 \) and \(\Delta_0 \subseteq \Xi_{\beta_0} \) for some \(\beta_0 \)

Step (3)
If \(A_\alpha \in \Lambda^-_{\alpha} \), and \(A_\alpha \) is \(\varphi \lor \psi \),
put either

\[\Lambda_\alpha = \Lambda^-_{\alpha} \cup \{ \varphi \} \) and \(\Xi_\alpha = \Xi^-_{\alpha} \)
or
\[\Lambda_\alpha = \Lambda^-_\alpha \cup \{\psi\} \] and \[\Xi_\alpha = \Xi^-_\alpha \]
...Whichever satisfies condition (1)

Finally, set \[\Lambda = \bigcup_{\beta < \kappa} \Lambda_\beta \] and \[\Xi = \bigcup_{\beta < \kappa} \Xi_\beta \]

So \(\exists \) a model \(M \) such that

1. let \(\sigma(c) = c \)
2. or \(\sigma(c) = [c] \)

Then \(M \models \lambda[c] \) for all \(\lambda \in \Lambda \) and \(M \not\models \{[c] \text{ for all } \} \in \Xi \)

So \(M \) shows \(\Gamma \) is satisfiable.