1 The theory of dense linear order without endpoints

Examples of this theory include \((\mathbb{Q}, <)\) and \((\mathbb{R}, <)\). The language is the set \(\{<, =\}\), and the axioms are as follows:

Axiom 1 (Linear order). \(\forall x \forall y (x < y \lor y < x \lor y = x)\)

Axiom 2 (Linear order). \(\forall x (\neg x < x)\)

Axiom 3 (Transitivity). \(\forall x \forall y \forall z (x < y \land y < z \rightarrow x < z)\)

Axiom 4 (Without endpoints). \(\forall x (\exists y)(y < x)\)

Axiom 5 (Without endpoints). \(\forall x (\exists y)(x < y)\)

Axiom 6 (Dense). \(\forall x \forall y (x < y \rightarrow (\exists z)(x < z \land z < y))\)

We have the following theorem about dense linear order without endpoints:

Theorem 1. The theory of dense linear order without endpoints is \(\aleph_0\)-categorical.

Theorem 1 implies the following corollary:

Corollary 1. \((\mathbb{Q}, <)\) is the only countable model up to isomorphism.

Proof of theorem 1. Let \((M, <^M)\) and \((N, <^N)\) be countable models of \(T\), the theory of dense linear order without endpoints. We’ll use a ”back and forth” argument to construct an isomorphism.

First, enumerate \(|M|\) as \(m_1, m_2, m_3, \ldots\) and enumerate \(|N|\) as \(n_1, n_2, n_3, \ldots\). We want an isomorphism \(f : M \rightarrow N\). We can construct \(f\) in stages \(f_0, f_1, f_2, \ldots\). We want \(f_i\) to have the following properties:

- \(\text{domain}(f_i) \supseteq \{m_1, \ldots, m_i\}\)
- \(\text{range}(f_i) \supseteq \{n_1, \ldots, n_i\}\)
• $f_i \subseteq f_{i+1}$
• f_i is a partial isomorphism.
• f_i is injective.
• $\forall m, m' \in \text{domain}(f_i)$,

$$f_i(m) <^N f_i(m') \iff m <^M m'$$

First, let $f_0 = \emptyset$. Now, to define f_{i+1},

1. If $m \in \text{domain}(f_i)$, then $f_{i+1}(m) = f_i(m)$. Else, find $m, m' \in \text{domain}(f_i)$ such that

$$m <^M m_i <^M m'$$

and not $m'' \in \text{domain}(f_i)$ such that

$$m <^M m'' <^M m'$$

Now consider $f(m) = n$ and $f(m') = n'$. We have $n <^N n'$, so by density, $\exists n^* \text{ such that } n <^N n^* <^N n'$. Set $f_{i+1}(m_i) = n^*$.

Note that $n^* \notin \text{range}(f_i)$ since $f_i^{-1}(n^*)$ would satisfy $m <^M f_i^{-1}(n^*) <^M m'$.

Also note that $\forall m \in \text{domain}(f_i), m'' < m_i \leftrightarrow f_i(m'') < n^*$. Furthermore, if there is no $m <^M m_i$ or $m_i <^M m$, then $m \in \text{domain}(f_i)$.

2. Now assume $n_i \notin \text{range}(f_i)$. Choose $m^* \in |M|$ analogously and set $f_{i+1}(m^*) = n + i$.

Otherwise, $f_i^{-1}(n_i) = f_i^{-1}(n_i)$.

Now let $f = \bigcup_i f_i$. Then we have that

• f: 1 − 1 because f is total.
• f: onto because f is an isomorphism.

This completes the proof. \qed

Now as a reminder,

Theorem 2 (Los-Vaught Test). If T has no finite model, and T is κ-categorical for some κ that is greater than the cardinality of the language of T, then T is complete.
Corollary 2. The theory of dense linear order without end points is complete.

Corollary 3. \(Th(\text{dense linear order without end points}) \)

\[= Th(\mathbb{Q}, <) \]
\[= Th(\mathbb{R}, <) \]

Proof of corollary 3. Let \(\phi \in Th(\mathbb{Q}, <) \), i.e. \(\phi \) is a sentence and \((\mathbb{Q}, <) \models \phi \)

Let \(T \) be the theory of dense linear order without end points. Either \(T \models \phi \) or \(T \models \neg \phi \) by completion. But if \(T \models \neg \phi \), then \(Th(\mathbb{Q}, <) \models \neg \phi \).

2 Definitions by extension

Let \(T_1 \) be a set of sentences in a language \(L \). Let \(\phi(x_1, ..., x_k) \) be a formula with only \(x_1, ..., x_k \) free in \(\phi \). Augment \(L \) to a bigger language \(L' = L \cup \{p\} \) where \(p \) is a \(k \)-ary predicate symbol.

Form \(T_2 = T_1 \cup \{\forall x_1...\forall x_k(P(x_1, ..., x_k) \leftrightarrow \phi(x_1, ..., x_k))\} \)

Definition 1. Let \(T_1, T_2 \) be a set of sentences in a language \(L_1 \subseteq L_2 \). \(T_2 \) is conservative over \(T_1 \) provided that \(\forall L_1\)-sentences \(A, T_2 \models A \iff T_1 \models A \).

Theorem 3. For \(T_1, T_2 \) as defined above, \(T_2 \) is conservative over \(T_1 \).

Proof of theorem 3. Suppose \(T_2 \models A \). It suffices to show that \(T_1 \models A \). Suppose that this is not the case, and that there exists a model \(M \models T_1 \cup \{\neg A\} \).

Form a new \(M' = T_2 \cup \{\neg A\} \) by creating \(M' \) as the expansion of \(M \) to language \(L' \) with

\[< m_1, ..., m_k > \in P^{M'} \iff M \models \phi[m_1, ..., m_k] \]

Notation: \(M \models \phi[m_1, ..., m_k] \) iff \(\forall \sigma \) such that \(\sigma(x_i) = m_i \), \(M \models \phi[\sigma] \).

Now it remains to show that

Claim 1. \(M' \models \forall x_1...\forall x_k(P(x_1, ..., x_k) \leftrightarrow \phi(x_1, ..., x_k)) \)

\[\forall m_1, ..., m_k \in |M'|, < m_1, ..., m_k > \in P^{M'} \]
\[\iff M' \models \phi[m_1, ..., m_k] \]
\[M \models \phi[m + 1, ..., m_k] \]

Therefore, \(M' \models T_2 \) and \(M' \models \neg A \).