1 Robinson resolution refutation

Let Γ be a set of clauses of first order literals — the terms have the form $P(t_1, \ldots, t_k)$ or $\neg P(t_1, \ldots, t_k)$ for terms t_1, \ldots, t_k and k-ary function P. Without loss of generality, we will assume the clauses in Γ use distinct variables (though terms within a clause cannot be assumed distinct).

Throughout these notes, we will assume the language L contains at least one constant symbol.

Definition A ground resolution refutation of Γ is a sequence of clauses $C_1, C_2, \ldots, C_k = \emptyset$ where each C_i is either a ground instance of a clause in Γ, or is inferred by a resolution inference from two previous clauses C_j and C_{ℓ}.

Definition A Robinson resolution refutation of Γ is a sequence of clauses $C_1, C_2, \ldots, C_k = \emptyset$ where each C_i is either a relabeling\(^1\) of a clause in Γ, or is obtained by a Robinson resolution inference from two previous clauses C_j and C_{ℓ}.

To define a Robinson resolution inference, take two sets of clauses A and B, and nonempty subsets $A' \subset A$, $B' \subset B$, where A' contains only positive clauses, and B' has only negative clauses. Let

$$F = \{ \varphi \mid \varphi \in A' \} \cup \{ \neg \varphi \mid \varphi \in B' \}.$$

Choose an mgu σ unifying F, so that $\varphi\sigma = P(t_1, \ldots, t_k)$ for every $\varphi \in F$. If such a σ exists, then we make this resolution inference:

$$\frac{A\sigma}{C} \frac{B\sigma}{C} \text{ Resolution}$$

where $C = (A \setminus A')\sigma \cup (B \setminus B')\sigma$.

\(^1\)Traditionally a Robinson resolution does not allow for relabeling the variables in a clause. We allow it here as it does not add any power, but removes some technical concerns from the upcoming proof.
For C determined from A and B by such an inference, we have

$$\frac{A}{C} \frac{B}{C}$$

Robinson resolution

The selection of A' and B' is called factoring.

Note At first glance, this inference rule may seem needlessly complex. Why not do resolution on individual terms of the clause? There’s a good reason: such inferences are not complete. Here is a simple example where things go wrong.

$$\Gamma = \{ \{P(x),P(y)\},\{\neg P(u),\neg P(v)\}\}.$$
Γ corresponds to the sentence

$$(\forall x \forall y P(x) \lor P(y)) \land (\forall x \forall y \neg P(u) \lor \neg P(v)).$$

This is clearly unsatisfiable,

However, the only inference possible from these clauses (up to variable names) is to resolve $P(x)$ against $\neg P(u)$ (after appropriate unification), which leaves us with the resolvent $\{P(y),\neg P(v)\}$, which corresponds to the sentence

$$\forall y \forall v P(x) \lor \neg P(y),$$

which is a tautology, and thus not any help.

1.1 Relation to ground resolution refutation

Theorem If Γ has a ground resolution refutation, then Γ has a Robinson resolution refutation.

Note This theorem saves us from choosing terms for the ground instances, instead requiring a good factoring strategy.

Proof Let $C_1,\ldots,C_k = \emptyset$ be a ground resolution refutation. Without loss of generality, we assume that $C_i \neq C_j$

We will find a Robinson resolution refutation D_1,\ldots,D_k on distinct variables, and substitutions σ_1,\ldots,σ_k such that $C_i = D_i \sigma_i$. In particular, $D_k = \emptyset$.

We will show that, if the above property holds for the initial sequence C_1,\ldots,C_{i-1}, then it also holds for C_1,\ldots,C_i.

Case 1 C_i is a ground instance of $C \in \Gamma$. Let D_i be an instance of C with new variables (not yet seen), so C_i is a substitution instance of D_i. Pick such a substitution σ_i.

2
Case 2 \(C_i \) is the resolvent of \(C_j = D_j \sigma_j \) and \(C_\ell = D_\ell \sigma_\ell \), with respect to \(P(t) \). Select \(D'_j = \{ \varphi \in D_j \mid \varphi \sigma = P(t) \} \), and \(D'_\ell = \{ \varphi \in D_\ell \mid \varphi \sigma = \neg P(t) \} \). Let

\[F = \{ \varphi \mid \varphi \in D'_j \} \cup \{ \varphi \mid \neg \varphi \in D'_\ell \}. \]

Since the \(D \)'s are chosen to have distinct variables, the domains of \(\sigma_j, \sigma_\ell \) are disjoint.

By construction, \(\sigma_j \cup \sigma_\ell \) unifies \(F \), so \(F \) must have an mgu — call it \(\tau \) — so that \(\exists \pi, \tau \pi = \sigma_j \cup \sigma_\ell \). Choose such a \(\tau \) which sends all variables in \(C_j \) and \(C_\ell \) to a new set of unused variables.

Let \(D_i = \text{Robinson resolvent} = (D_j \setminus D'_j) \tau \cup (D_\ell \setminus D'_\ell) \tau \).

Claim \(C_i = D_i \pi \).

Proof

\[\psi \in C_i \iff \psi \in (C_j \setminus \{ P(t) \}) \cup (C_\ell \setminus \{ \neg P(t) \}) \]

\[\iff \exists \psi' \in D_j \setminus D'_j, \psi = \psi' \sigma_j, \text{ or } \exists \psi' \in D_\ell \setminus D'_\ell, \psi = \psi' \sigma_\ell \]

\[\iff \exists \psi' \in (D_j \setminus D'_j) \cup (D_\ell \setminus D'_\ell), \psi = \psi'(\sigma_j \cup \sigma_\ell) = \psi' \tau \pi \]

\[\iff \exists \psi' \in D_i, \psi = \psi' \pi \]

which was the goal. Take \(\sigma_i = \pi \), so \(C_i = D_i \sigma_i \), completing the proof.