1 Quantifier Complexity and Bounded Quantifiers

So far we have used ordinary quantifiers \forall and \exists. In order to study quantifier complexity, we now introduce bounded versions, defined here:

$$(\forall y \leq t)A(y) \leftrightarrow (\forall y)(y \leq t \rightarrow A(y))$$

$$(\exists y \leq t)A(y) \leftrightarrow (\exists y)(y \leq t \land A(y))$$

where t is a term not involving y.

Define a formula to be Δ_0 if all of its quantifiers are bounded.

We further define a sequence of classes of formulas.

- A Σ_1 formula has the form $(\exists y_1)\ldots(\exists y_k)\varphi(x, \vec{y})$, where φ is Δ_0.
- A Π_1 formula has the form $(\forall y_1)\ldots(\forall y_k)\varphi(x, \vec{y})$, where φ is Δ_0.
- A Σ_2 formula has the form $(\exists y)(\forall z)\varphi(x, \vec{y}, z)$, where φ is Δ_0. Equivalently, it has the form $(\exists y)\psi(x, \vec{y})$, where ψ is Π_1.
- Inductively, a formula is Σ_n if it has the form $\exists y\varphi(x, \vec{y})$, where φ is Π_{n-1}.
- Π_n is defined dually.

Note In each of the above, we may take any of the quantifier blocks to be empty so that, for example, $\Sigma_n \subseteq \Sigma_{n+1}$.

We now consider restricted induction axioms. If Φ is a class of formulas (such as Δ_0 or Σ_3), the Φ induction axioms are

$$\{A(0) \rightarrow (\forall x)(A(x) \rightarrow A(Sx)) \rightarrow (\forall x)A(x) : A \in \Phi\}.$$

Denote by $I\Phi$ the axiom system $Q_{\leq} + \Phi$-induction axioms\(^1\) For example, $I\Delta_0$ allows induction on all Δ_0 formulas. Last time we showed that $I\Delta_0$ proves $x + y = y + x$.

\(^1\)It is possible to redefine the axioms of Q_{\leq} to use only bounded quantifiers.
We define Peano Arithmetic = \(PA = \bigcup I \Sigma_n = \bigcup I \Pi_n \).

More generally, we define classes \(\Sigma_n^+ \) and \(\Pi_n^+ \). \(\Sigma_2 \), for example, includes formulas of the form \((\forall u \leq t)\exists y \forall v \varphi(u, x, y, z) \), where \(\varphi \) is \(\Delta_0 \). Simply put, you get a \(\Sigma_n^+ \) formula by taking any \(\Sigma_n \) formula and inserting bounded quantifiers wherever you like — including inside of a quantifier block.

Collection property / replacement property

The following is valid in \(\mathbb{N} \):

\[
(\forall y \leq t)(\exists z)\varphi(y, z) \Rightarrow (\exists u)(\forall y \leq t)(\exists z \leq u)\varphi(y, z).
\]

(1)

This serves to put a uniform bound on the \(z \)-values, which is possible since there are only finitely many \(y \) values being considered.

If \(\varphi \) is in \(\Sigma_n \) (for example), then 1 is called a \(\Sigma_n \)-replacement axiom.

Theorem Any \(\Sigma_n^+ \) formula is equivalent to a \(\Sigma_n \) formula, and any \(\Pi_n^+ \) formula is equivalent to a \(\Pi_n \) formula.

We prove the statement for \(\Sigma_n^+ \), and \(\Pi_n^+ \) follows dually.

Since the converse to 1 is trivial, we will instead show both directions.

We work by induction on \(n \).

We take the inverse of the axiom, so we’ll instead show:

\[
(\exists y \leq t)\forall z \varphi(y, z) \Leftrightarrow \forall u \exists y \leq u \forall z \leq u \varphi(y, z),
\]

where \(\psi = \neg \phi \).

Thus it is enough to show that, if \(\chi \in \Sigma_n \), then so are \((\forall y \leq t)\chi \) and \((\exists y \leq t)\chi \).

Since \(\chi \in \Sigma_n \), it has the form \(\exists z_1 \ldots \exists z_k \varphi(y, z) \). Thus we have

\[
(\forall y \leq t) \quad \Leftrightarrow \quad (\forall y \leq t)\exists z_1 \ldots \exists z_k \varphi(y, z) \\
\Leftrightarrow \quad (\exists u)(\forall y \leq t)(\exists z_1 \leq u)\exists z_2 \ldots \exists z_k \varphi(y, z) \\
\Leftrightarrow \quad (\exists u)(\forall y \leq t)\exists z_2 \ldots \exists z_k (\exists z_1 \leq u)\varphi(y, z) \\
\Leftrightarrow [\text{repeat-1 times}] \\
\Leftrightarrow \quad (\exists u')(\forall y \leq t)(\exists z_1 \leq u') \ldots (\exists z_k \leq u') \varphi(y, z).
\]

Note that the last portion of this formula, \((\exists z_1 \leq u') \ldots (\exists z_k \leq u') \varphi(y, z) \), is a \(\Pi_{n-1}^+ \) formula, so the induction hypothesis gives us an equivalent \(\Pi_{n-1} \) formula \(\psi'(y, u) \). This formula can now absorb the \((\forall y \leq t) \). Adding on the \((\exists u') \) on the front leaves us with a \(\Sigma_n \) formula, as desired.

\(^2 \)You may find yourself asking: “Are we allowed to do induction here?” Remember: we are doing induction ourselves, not in a restricted proof system.
Extending languages

We often use $I\Delta_0$ as our base theory. This can prove statements like $x + y = y + x$, which we proved earlier using quantifier-free induction.

Our language is only $\{0, S, +, \cdot, \leq\}$, but we will also want function symbols. We extend by conservative definitions, for example

$$z|x \leftrightarrow \exists u(z \cdot u = x)$$

and

$$Prime(x) \leftrightarrow x \neq 1 \land (\forall z)(z|x \rightarrow z = 1 \lor z = x).$$

These definitions are fine, but we should be mindful of unbounded quantifiers. In both cases, we can (and should) replace them with bounded quantifiers — both u and z may be bounded by x without changing the meaning.

Definition A predicate $R(x_1, \ldots, x_k) \subseteq \mathbb{N}^k$ is Δ_0 if there is a Δ_0 formula $\phi(x)$ so that

$$\mathbb{N} \models \forall x(R(x) \leftrightarrow \phi(x)).$$

Definition Let T be a theory. Let R be as above. Then $T(R)$ is the theory T in the language of T plus symbol R, whose axioms are the axioms of T, along with the axiom $Defn_R := \forall \bar{x}(R(\bar{x}) \leftrightarrow \phi(\bar{x}))$.

Theorem

(a) $T(R)$ is a conservative extension of T.

(b) Let T be a theory from $I\Delta_0, I\Sigma_m, I\Pi_n$. Any bounded (ie Δ_0) formula ψ of $T(R)$ is $T(R)$-provably equivalent to a bounded formula χ in the language of T.

Proof

We showed (a) last quarter.

For (b), find χ by replacing each instance of $R(\bar{t})$ in ψ by $\phi(\bar{t})$. This maintains the quantifier complexity, since ϕ is Δ_0.

Note: if ψ is Σ_n, so is χ, independent of the theory we’re working in.

3