General instructions for all homeworks: Proofs are not required unless the problem asks for a proof.

Definition H is the halting problem. \overline{H} is the complement of H.

1. Prove that \overline{H} is many-one complete for the co-r.e. sets.

2. Prove that if R is r.e. and $Q \leq_m R$, then Q is r.e.

3. Prove that there is no many-one reduction from \overline{H} to H. How would you modify your proof to show there is no many-one reduction from H to \overline{H}?

4. Suppose $R, Q \subseteq \Sigma^*$ and that $R \cap Q = \emptyset$. We say that R and Q are *recursively inseparable* if there is no recursive set S such that $R \subseteq S$ and $Q \subseteq \overline{S}$. Let

 $$ R = \{ \gamma M^\gamma : M \text{ accepts } \epsilon \} , $$

 $$ Q = \{ \gamma M^\gamma : M \text{ rejects } \epsilon \} . $$

 (“ϵ” means the empty string, i.e., the blank tape.)

 Prove that R and S are recursively inseparable.