Open question: Does randomization help substantially? For instance, is randomized polynomial time (BPP) equal to polynomial time?

First example: Finding medians, or more generally, finding the k^{th} smallest element of an unsorted array.

Our first approach will be a randomized QuickSort algorithm. Given an array A of length n, we can sort the array then pick out the k^{th} element. (Use $k = \frac{n}{2}$ for median). The number of pairwise comparisons needed is $O(n \log n)$.

Algorithm: QuickSort(A, n)
1. If $n = 1$, return.
2. Otherwise, choose a pivot $p \in \{0, 1, 2, \ldots, n - 1\} = [n]$ uniformly at random.
4. Linearly scan A and put elements less than x in the first part, and greater than or equal to x in the second part.
5. Run QuickSort on each of these parts.

Thus, the algorithm runs recursively until the array is sorted.

Let a_i^* denote the i^{th} sorted element of A in sorted order. Suppose $i < j$. Consider the question of when does QuickSort compare a_i^* to a_j^*? This happens exactly when a_i^* or a_j^* is the first pivot value picked in $\{a_i^*, a_{i+1}^*, \ldots, a_j^*\}$. Thus,

$$\text{Prob}(a_i^* \text{ and } a_j^* \text{ are compared}) = \frac{2}{j - i + 1}.$$
By linearity of expectation we have

\[\mathbb{E}[\text{# of comparisons}] = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} \frac{2}{j - i + 1} \]

\[\leq \sum_{i=0}^{n-2} H_n \]

\[= n(\log(n) + O(1)) \]

\[= n \log(n) + O(n) \]

where \(H_n \) is the \(n \)th harmonic number. \(H_n = \sum_{k=1}^{n} \frac{1}{k} = \log(n) + \gamma + o(1) \) where \(\gamma \approx 0.577 \) is the Euler-Mascheroni constant.

Thus, the expected runtime is approximately \(n \log n \), which is good. However, the worst-case performance is \(O(n^2) \). This occurs, for instance, if the pivot is chosen to be the next smallest element every time.

Now we return to the problem of finding the \(k \)-th element of in the input array \(A \). As already mentioned, one possibility to first sort the array; this is wasteful, however, since it sorts parts of the array that do not contain the \(k \)-th element.

Instead, we use QuickSelect is a smarter algorithm. QuickSelect acts like QuickSort, but doesn’t call the recursion on the “halves” of the array that aren’t needed.

What is the probability that \(a_i^* \) is compared to \(a_j^* \) by QuickSelect? If \(i < j < k \) and a pivot is chosen from the interval \((i, j) \) or \((j, k) \) then \(a_i^* \) and \(a_j^* \) will never be compared. To see this, observe that if the pivot is in \((i, j) \) then QuickSelect will put \(a_i^* \) and \(a_j^* \) in different halves of the array, and will never consider \(a_i^* \) again. If the pivot is in \((j, k) \) then both \(a_i^* \) and \(a_j^* \) will go into the half of the array that is never again considered, so they will never be compared. The other cases of \(i < k < j \) and \(k < i < j \) are handled similarly. Therefore

\[\text{Prob}(a_i^* \text{ and } a_j^* \text{ are compared}) \leq \frac{2}{\max\{k - i, j - k, j - i\} + 1}. \]

By linearity of expectation,

\[\mathbb{E}[\text{# of comparisons}] \leq \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} \frac{2}{\max\{k - i, j - k, j - i\} + 1} \]

\[= 2n(1 + \ln(2)) + O(n) \]

so the expected time is linear. The final equality is left as a homework assignment, and involves arguing separately the cases of \(k < i \), of \(i < k < j \), and of \(j < k \).

The next lecture will take up the topic of how to do better than QuickSelect. As a preview, how could we do better? It is suggested that we could skew the distribution by randomly
choosing 2 elements. If k is small, we choose the smaller pivot. In general, if we pick \sqrt{n} elements, we can get a good idea of where the k^{th} element might lie. This idea is used in the Floyd-Rivest algorithm which has expected runtime of $n + \min\{k, n - k\} + O(n)$. The Floyd-Rivest algorithm will be discussed in the next lecture.