1. INTRODUCTION AND SETUP

This lecture, we will focus on a Moser-Tardos proof of Lovász Local Lemma. Recall the setup. Let E_1, E_2, \ldots, E_n be random events. Let P_1, P_2, \ldots, P_m be mutually independent random variables that event E_i are determined by the values of P_j’s. For each E_i, let $vbl(E_i)$ be a set of P_j that determine E_i.

Let G be the dependency graph of events $\{E_i\}$. That is G is a graph which $V = [n]$, and (i, j) is an edge if $vbl(E_i) \cap vbl(E_j) \neq \emptyset$. We define Γ_i by

$$\Gamma_i = \{ j \mid vbl(E_i) \cap vbl(E_j) \neq \emptyset \}$$

Also, we define $\Gamma_i^+ = \Gamma_i \cup \{i\}$. Finally, we assume that there are positive numbers x_1, x_2, \ldots, x_n satisfying:

$$P(E_i) \leq x_i \prod_{j \in \Gamma_i} (1 - x_j)$$

We will define an algorithm that find values of P_j that make all E_i to be false.

2. ALGORITHM

1. Initialize random values for P_1, \ldots, P_m

2. If there are E_i such that E_i is true, pick such E_i at random, and resample $P_j \in vbl(E_i)$, and recursively do (2). Otherwise, halt.

First, we prove a theorem:

Theorem 1. For $i \in \{1, 2, \ldots, n\}$, the expected number of time E_i is resampled is $\leq \frac{x_i}{1 - x_i}$

The intuitive reason why the theorem above is true can be seen as follows: Consider a geometric distribution with probability of success p. The number of times we expect to run until we see the first unsuccess is equal to $\frac{1}{1 - p}$. However, the theorem above counts
only number of times resampled, so expected run time should be \(\frac{1}{1-p} - 1 = \frac{1}{1-p} \). Therefore, as in the usual version of the Lovasz Local Lemma, the values \(x_i \) can be viewed as acting like probabilities for the events \(E_i \) as if the events were independent.

3. Execution Logs and Witness Tree

Consider an execution of the algorithm. Define the log of the execution to be a sequence

\[C = E_{i_1}E_{i_2} \ldots E_{i_t} \ldots \]

where we resampled \(E_{i_1} \) then \(E_{i_2} \) and so on.

A witness tree is a finite tree \(T \) such that each vertex \(u \) is labeled by some event \(E_{i_u} \) in such a way that, if \(v \) is a child of \(u \), then \(vbl(E_{i_u}) \cap vbl(E_{i_v}) \neq \emptyset \). The witness tree is proper if any two children of the same vertex have distinct labels.

Here, we will associate an execution of the algorithm to a witness tree. Given any execution log \(C = E_{i_1} \ldots E_{i_t} \ldots \), construct \(T^l_C \) inductively by

1. \(T^1_C(t) = \) a tree with one vertex, labeled by \(E_{i_t} \)
2. \(T^l_C(l-1) \) is defined by adding a child to a vertex \(u \) in \(T^l_C(l) \), such that \(u \) is a vertex with maximum depth (distance from the root) with the property that \(E_{i_u} \cap E_{i_{t-1}} \neq \emptyset \). If \(E_{i_{t-1}} \) is independent from all \(E_{i_v} \) in \(T \), then disregard \(E_{i_{t-1}} \), and let \(T^l_C(l-1) = T^l_C(l) \).

and set \(T^l_C = T_C(1) \). For given any log \(C \) of an execution, \(T^l_C \) has a following properties

Claim 1.

1. \(T^l_C \) is a proper witness tree
2. If \(u, v \) are siblings, then \(vbl(E_{i_u}) \cap vbl(E_{i_v}) = \emptyset \)
3. If \(u, v \) have the same depth, then \(vbl(E_{i_u}) \cap vbl(E_{i_v}) = \emptyset \)
4. If \(u \) has label \(E_{i_x} \), \(v \) has label \(E_{i_y} \), \(vbl(E_{i_x}) \cap vbl(E_{i_y}) \neq \emptyset \), and \(1 \leq x < y \), then depth of \(u > \) depth of \(v \).

Here, we define another way to sampling each \(P_i \).

Definition 1. Fix a proper witness tree \(T \). A tree sampling of \(T \) is a sequence of sampling variables in \(E_{i_u} \) according to the depth of \(u \), from largest to smallest.

The next lemma states an equivalence between oszer-Tardós resampling and the evaluation of events in a tree sampling. Both algorithms run by repeatedly choosing an event \(E \) and choosing new random values for the variables \(vbl(E) \) which determine \(E \). For this, we assume that the algorithms obtain their randomness as follows: the algorithm is initialized with infinite sequences of (random) values for each random variable \(P_i \). That is, each
A random variable is given an infinite sequence of random values, and when the algorithm needs a new value for P_i, it uses the next value in the sequence of values for P_i.

The purpose of introducing tree sampling is that the randomness in either algorithm, the Moser-Tardós algorithm or tree sampling, provide an equivalent order of variable resampling for the random variables of each event. In the Moser-Tardós, we resampled first E_{i_1} then E_{i_2} and so on, while the order of t treesampling is determined by depth of u. At first glance, it might not be obvious that the sequence of sampling is the same in Moser-Tardós and the tree sampling. For instance, there are no reasons why E_{i_1} has the largest depth in T. However, two resampling sequences are “equivalent” in their effects on each event, since even if E_{i_1} is not resampled first in the tree sampling, E_{i_1} is independent from any E_{i_u}, where u has a larger depth than the vertex of E_{i_1}. This is true by the property of a witness tree. Since they are independent, it does not really matter whether we resample E_{i_1} first or not.

Tree sampling yields another way to look at the problem, as shown in Lemma 1.

Lemma 1. For T a proper witness tree, C the (random) log produced by the Moser-Tardós algorithm, the probability that $\exists t$ such that $T_C^t = T$ is $\leq \prod_{u \in T} Pr[E_{i_u}]$.

Proof. Assume that $T_C^t = T$. We claim that it is equivalent whether we resample variables using Moser-Tardós or tree sampling. Namely, each event E_i which is chosen for the resampling in the Moser-Tardós algorithm, is evaluated using the same random values as is used for evaluating the event in the tree sampling algorithm. More precisely, the j-th time the event E_i is chosen for resampling by the Moser-Tardós algorithm, the event E_i's value has been computed using the same random values as are used by the tree sampling algorithm when it evaluates E_i the j-th time.

This claim is proved by noting that the depth in the tree of event E respects the orders in which random variables are used.

In the Moser-Tardós’s algorithm, each E_{i_u} chosen for resampling has value, therefore, each time we resample variables in E_{i_u} the tree sampling, it must evaluate as true, which happens with probability $Pr[E_{i_u}]$. Thus, the probability that there exists t such that $T_C^t = T$ is at most the probability that all E_{i_u} evaluated true, which is equal to $Pr[E_{i_u}]$.

Definition 2. $T_{E_i} = \{ T \mid T$ is a proper witness tree with a root labeled by $E_i \}$

Lemma 2. For any E_i

$$\sum_{T \in T_{E_i}} \prod_{u \in T} P[E_{i_u}] \leq \frac{x_i}{1 - x_i}$$

Then, we can conclude that the number of times E_i resampled \leq the expected number of $T \in T_{E_i}$ such that there exist t, $T_C^t = T$. Theorem 1 is an immediate consequence of Lemma 1 and 2.
To prove the Lemma 2, it suffices to prove that

$$\sum_{T \in T_{E_i}} \prod_{u \in T} \left(x_{i_u} \prod_{j \in \Gamma_{i_u}} (1 - x_j) \right) \leq \frac{x_i}{1 - x_i}$$

To simplify notation, we let $x'_i = x_i \prod_{j \in \Gamma_i} (1 - x_j)$. Thus, we want to show that

$$\sum_{T \in T_{E_i}} \prod_{u \in T} x'_{i_u} \leq \frac{x_i}{1 - x_i}$$

This will be shown in the next lecture.