1. Moser-Tardos Construction for Lovasz Local Lemma (final part)

Recall from previous lectures that E_1, E_2, \ldots, E_n is the set of random events and T_{E_i} is the set of proper witness trees with root labeled E_i.

From the previous lecture, we will be done once we prove the following lemma.

Lemma 1. For any E_i

$$\sum_{T \in T_{E_i}} \prod_{u \in T} P[E_{i_u}] \leq \frac{x_i}{1 - x_i}$$

Proof. Consider the following random Galton-Watson process of generating proper witness trees with root labeled E_i.

Initially let the only vertex be the root labeled by E_i

loop while there is a variable to add

- Consider each vertex u at depth $t - 1$. u is labeled by E_{i_u}.
- Consider each $j \in \Gamma_{i_u}^+$
 - Add a child to E_{i_u} labeled E_j with probability x_j.
 - Don’t add it with probability $(1 - x_j)$.

end loop

Fix a proper witness tree $T \in T_{E_i}$. We calculate the probability that the above Galton-Watson process generates the tree T.

Let u be a vertex in T. Let $W_u = \{j \in \Gamma_{i_u}^+ \mid E_j \text{ does not label any child of } u\}$.

If u has already been correctly generated in T by the process, then the probability of adding the “correct” children to generate T is

$$\left(\prod_{j \in W_u} (1 - x_j) \right) \left(\prod_{j \in \Gamma_{i_u} \setminus W_u} x_j \right)$$
Taking product of this over all u and regrouping gives the probability of the Galton-Watson process generating T.

$$P_T = \frac{1}{x_i} \prod_{u \in T} \left(x_i \prod_{j \in W_u} (1 - x_j) \right)$$

$$= \frac{1 - x_i}{x_i} \prod_{u \in T} \left(\frac{x_{i_u}}{1 - x_{i_u}} \prod_{j \in \Gamma_{i_u}^+} (1 - x_j) \right)$$

$$= \frac{1 - x_i}{x_i} \prod_{u \in T} \left(x_{i_u} \prod_{j \in \Gamma_{i_u}} (1 - x_j) \right)$$

$$= \frac{1 - x_i}{x_i} \prod_{u \in T} x'_{i_u}$$

We have

$$\sum_{T \in T_{E_i}} P_T \leq 1$$

Recalling that $P[E_{i_u}] \leq x'_i = x_i \cdot \prod_{j \in \Gamma_i} (1 - x_j)$, this implies

$$\sum_{T \in T_{E_i}} \prod_{u \in T} P[E_{i_u}] \leq \sum_{T \in T_{E_i}} \prod_{u \in T} x'_{i_u} \leq \frac{x_i}{1 - x_i}$$

2. PPSZ algorithm for Satisfiability (Part I)

We covered the WalkSat algorithm for finding a truth assignment for an instance of k-SAT. We present another algorithm due to Paturi, Pudlák, Saks and Zane [2] that improves on the running time.

An improvement was given by Hertli [1] in 2011. The following theorem states the existence of such an algorithm.

Theorem 1. Let $S_k = \int_0^1 \frac{t^{i/k} - t}{1-t}.dt$ and $s_k = 2^{S_k}$. Then there is a randomized algorithm that, given a satisfiable instance of k-SAT, finds a satisfying assignment in expected time “close to” $(s_k)^n = 2^{S_k n}$.

The following table gives a comparison of the exponent in the running time of PPSZ with WalkSat.
We first define some preliminaries and then proceed with the description of the algorithm.

Definition 1. For a set of clauses Γ and a literal x, we write $\Gamma \models x$, (read Γ implies x), if all truth assignments that satisfy Γ also set x to True.

Definition 2. Let $D \geq 1$, then $\Gamma \models D \cdot x$, if and only if for some $\Gamma_0 \subseteq \Gamma$, $|\Gamma_0| \leq D$, $\Gamma_0 \models x$.

Observation: For constants k, D and Γ an instance of k-SAT, there is a polynomial time algorithm to check if $\Gamma \models D \cdot x$.

The observation is true because we can use a brute force algorithm to check for all $\Gamma_0 \subseteq \Gamma$ with $|\Gamma_0| \leq D$ whether $\Gamma_0 \models x$. Since Γ_0 has at most $D \cdot k$ many distinct variables, there are only $2^{D \cdot k}$ many truth assignments, which is constantly many.

Let Γ be a set of clauses over the variables x_1, \ldots, x_n. Let α be a partial truth assignment; i.e., domain(α) $\subseteq \{x_1, \ldots, x_n\}$ and range(α) $= \{T, F\}$.

Definition 3. Γ^α or $\Gamma|_\alpha$ is the set of clauses obtained by

1. Removing all clauses in Γ that contain an x s.t. $\alpha(x) = T$.
2. Erasing from Γ any literal x s.t. $\alpha(x) = F$.

We now present the PPSZ algorithm

Input: Γ, D
Output: A truth assignment α

Initialize α = empty partial truth assignment

while True do
 if α satisfies Γ then
 return α
 if domain(α) $\subseteq \{x_1, \ldots, x_n\}$ then
 return FAILURE
 if $\exists x \mid \Gamma|_\alpha \models \Gamma \models_D \cdot x, x \notin \text{domain}(\alpha)$ then
 set $\alpha(x) = T$
 else
 pick $x \in \{x_1, \ldots, x_n\}$ at random and set $\alpha(x) = \{T, F\}$ at random.
end

Algorithm 1: The PPSZ algorithm
The following theorem will be proved in the next two lectures.

Theorem 2. For any $s'_k > s_k = 2^{S_k}$, $\exists D$, sufficiently large such that $PPSZ(\Gamma, D)$ finds a satisfying assignment with probability greater than $(s'_k)^{-n}$.

Iterating $PPSZ(\Gamma, D)$ gives the algorithm for the PPSZ/Hertli Theorem, with expected number of iteration to find a satisfying assignment $\leq (s'_k)^n$, assuming Γ is satisfiable.

References
