We will present two randomized algorithms for detecting prime numbers, which have good probability of success. We use the decision problems:

Definition 1. \(\text{COMPOSITE} \) = the set of composite numbers

and

Definition 2. \(\text{PRIME} \) = the set of prime numbers.

We describe our algorithms in terms of deciding \(\text{COMPOSITE} \), because they have one-sided error: if on input \(n \) the algorithm answers “yes, \(n \in \text{COMPOSITE} \)” we will prove that this answer is always correct. If on the other hand the algorithm cannot be sure that \(n \in \text{COMPOSITE} \) we will prove that there is a reasonable probability that \(n \) is actually prime.

2. The “Fermat” Test

Our first algorithm relies on Fermat’s little theorem:

Theorem 3. If \(n \in \text{PRIME} \) and \(a \in (\mathbb{Z}_n - \{0\}) \), then \(a^{n-1} \equiv 1 \mod n \)

Input: \(n \)

Output: is \(n \in \text{COMPOSITE} \)?

Algorithm 1: “Fermat” primality test

```plaintext
begin
  for t trials do
    Choose \( a \in (\mathbb{Z}_n - \{0\}) \) uniformly at random;
    if \( \gcd(a, n) \neq 1 \) then
      \( n \in \text{COMPOSITE}; \)
    else if \( a^{n-1} \neq 1 \mod n \) then
      \( n \in \text{COMPOSITE}; \)
    end
    Output “not sure”; /* We made it through all \( t \) tests, \( n \) may be prime */
  end
end
```
First note that, as promised, the output “composite” is always correct. If the algorithm is not sure, then we will show that \(n \) is prime with probability \((1 - 2^{-t})\) or \(n \) is a “Carmichael number”.

Definition 4 (Carmichael number). A composite number \(n \) is a **Carmichael number** if

\[\forall a \in \mathbb{Z}_n^* \quad a^{(n-1)} \equiv 1 \mod n \]

Unfortunately for the Fermat test, infinitely many Carmichael numbers exist, and from the definition above it is clear that they are exactly the composite numbers that will always fool this test. So for now we will ignore them and prove:

Theorem 5. For \(n \) composite and not a Carmichael number, the Fermat test outputs “composite” with probability \((1 - 2^{-t})\)

Proof. Suppose \(\exists a \in \mathbb{Z}_n^* \) such that \(a^{(n-1)} \not\equiv 1 \mod n \). All we need to show is the \(> \frac{1}{2} \) of the members of \(\mathbb{Z}_n^* \) have this property. Define:

\[G_n := \{ a \in \mathbb{Z}_n^* | a^{(n-1)} \equiv 1 \mod n \} \]

\(G_n \) is a subgroup. If \(G_n \neq \mathbb{Z}_n^* \) (as is the case for composite non-Carmichael \(n \)), then \(|G_n| \leq \frac{1}{2} |\mathbb{Z}_n^*| \).

3. **The Jacobi Symbol**

Recall the Legendre symbol, \(\left[\frac{a}{p} \right] = a^{(p-1)/2} \) for \(p \) an odd prime. The Jacobi symbol generalizes the Legendre symbol to odd composite “denominators”, and has many useful properties.

Definition 6 (Jacobi Symbol). Let \(n > 2 \) be an odd number, with prime factorization \(p_1^{k_1}, \ldots, p_t^{k_t} \). Then the Jacobi symbol of \(a \) and \(n \) is:

\[\left[\frac{a}{n} \right] := \prod_{p_i} \left[\frac{a}{p_i} \right]^{k_i} \]

Theorem 7. The Jacobi symbol has the following properties:

1. For \(n \) prime, the Jacobi symbol \(\left[\frac{a}{n} \right] \) is equal to the Legendre symbol \(\left[\frac{a}{n} \right] \)
2. The Jacobi symbol always takes values in \(\{0, 1, -1\} \), and takes value 0 iff \(\gcd(a, n) \neq 1 \)
3. \(\left[\frac{ab}{n} \right] = \left[\frac{a}{n} \right] \cdot \left[\frac{b}{n} \right] \)
4. \(\left[\frac{a}{nm} \right] = \left[\frac{a}{n} \right] \cdot \left[\frac{a}{m} \right] \)
(5) if \(a \equiv b \mod n \), then \(\left[\frac{a}{n} \right] = \left[\frac{b}{n} \right] \)

(6) \(\left[\frac{1}{n} \right] = 1 \)

(7) \[
\left[\frac{2}{n} \right] = \begin{cases}
-1 & \text{if } n \equiv 3 \text{ or } 5 \mod 8, \\
1 & \text{if } n \equiv 1 \text{ or } 7 \mod 8.
\end{cases}
\]

(8) For \(a \) odd,
\[
\left[\frac{a}{n} \right] = (-1)^{\left(\frac{a-1}{2}\right) \cdot \left(\frac{n-1}{2}\right)} \left[\frac{n}{a} \right]
\]

The proofs of parts (1)-(6) of Theorem 7 are simple, and left as an exercise. The proofs of parts (7) and (8) are postponed until the next lecture.

Theorem 8. The Jacobi symbol can be computed in polynomial time.

Proof. The proof is a recursive algorithm similar to Euclid’s. If \(a \) is even, repeatedly use properties (7) and (3):

\[
\left[\frac{a}{n} \right] = \left[\frac{2}{n} \right] \left[\frac{\frac{a}{2}}{n} \right]
\]

until \(a \) is odd.

If \(a \) is odd and \(a < n \), use properties (5) and (8), with \(n' = n \mod a \):

\[
\left[\frac{a}{n} \right] = (-1)^{\left\lfloor \frac{n'}{a} \right\rfloor} \left[\frac{n'}{a} \right]
\]

If \(a \) is odd and \(a > n \), use (5):

\[
\left[\frac{a}{n} \right] = \left[\frac{a \mod n}{n} \right]
\]

We are always reducing the value of \(|a| + |n| \), and finally when \(a = 1 \) or 2, we use (6) or (7).

\[\square\]

4. **Solovay-Strassen Primality Test**

Due to Solovay-Strassen, SIAM J. on Computing, 6 (1977) pp 84-85, erratum in SICOMP 7 (1978) 118. This algorithm uses properties of the Jacobi symbol to avoid failure on Carmicheal numbers.
Theorem 9. There exists a randomized polynomial time algorithm which on input \(n > 2 \) and composite will output “composite” with probability \(> \frac{1}{2} \), and on input \(n > 2 \) and prime will output “not sure”.

This algorithm also has the “one-sided error” property discussed earlier, and can be iterated \(t \) times to reduce the probability that it makes an error, giving a success probability of \((1 - \frac{1}{2^t}) \).

Input: odd \(n > 2 \)

Output: is \(n \in \text{COMPOSITE?} \)

begin

Choose \(a \in (\mathbb{Z}_n \setminus \{0\}) \) uniformly at random;

if \(\gcd(a, n) \neq 1 \) then

| \(n \in \text{COMPOSITE}; \)
| \(\text{Compute } a^{(n-1)/2} \mod n \) and \(\left[\frac{a}{n}\right] \);

else if \(a^{(n-1)/2} \mod n \neq \left[\frac{a}{n}\right] \) then

| \(n \in \text{COMPOSITE}; \)

end

Output “not sure” ; /* \(n \) may be prime! */
end

Algorithm 2: Solovay-Strassen primality test

The key idea here is that the two methods of computing \(\left[\frac{a}{n}\right] \) must agree if \(n \) is prime. Clearly, if the algorithm outputs “composite”, \(n \in \text{COMPOSITE} \). What remains is to show that, enough of the time, these two methods of computing the Jacobi symbol with disagree for composite \(n \).

Claim 10. If \(n \in \text{COMPOSITE} \), then the algorithm outputs “composite” with probability \(\geq \frac{1}{2} \)

Proof. Define:

\[
J_n := \{ a \in (\mathbb{Z}_n \setminus \{0\}) : a^{(n-1)/2} = \left[\frac{a}{n}\right] \mod n \}
\]

This is exactly the set of numbers that will confuse Solovay-Strassen. Observe that \(J_n \) is a subgroup of \(\mathbb{Z}_n^* \), and so to bound our probability of error it will suffice to show that \(|J_n| \leq \frac{1}{2}|\mathbb{Z}_n^*| \).

If we suppose towards a contradiction that \(J_n = \mathbb{Z}_n^* \), we can split into two cases based on the prime factorization of \(n \). Write \(n = p_1^{k_1} \ldots p_\ell^{k_\ell} \).

The first case is when \(k_1 = 1, \ell \geq 2 \) Let \(g \in \text{GEN}[Z_{p_1}^*] \), that is, \(g \) is a generator of \(Z_{p_1}^* \). Then by the Chinese Remainder Theorem, there is a \(a \) (unique) \(a \in \mathbb{Z}_n^* \) such that \(a \equiv g \mod p_1 \) and \(a \equiv 1 \mod p_2^{k_2} \ldots p_\ell^{k_\ell} \). Then by (4) we have:
\[
\left[\frac{a}{n} \right] = \left[\frac{a}{p_1} \right] \left[\frac{a}{p_2^{k_2} \ldots p_{\ell}^{k_{\ell}}} \right]
= g^{(p_1-1)/2} \cdot 1
= (-1) \cdot (1)
= -1
\]

So by \(J_n = \mathbb{Z}_n^* \left[\frac{a}{n} \right] = -1 \), contradicting our choice of \(a \), since \(a = 1 \mod p_2^{k_2} \ldots p_{\ell}^{k_{\ell}} \) implies that \(a^{(p-1)/2} \not\equiv -1 \mod p_2^{k_2} \ldots p_{\ell}^{k_{\ell}} \) and hence that \(a^{(p-1)/2} \not\equiv -1 \mod n \).

The second case is when \(k_1 \geq 2, \ell \geq 1 \). We take \(a \) as in case 1. Then by \(J_n = \mathbb{Z}_n^* \),

\[
a^{(n-1)/2} \equiv \left[\frac{a}{n} \right] = \pm 1
\]

We know that \(a^{(n-1)} \equiv 1 \mod n \), therefore \(a^{(n-1)} \equiv 1 \mod p_1^{k_1} \).

Thus \(\phi(p_1^{k_1}) | (n - 1) \), because \(\phi(p_1^{k_1}) \) is equal to the order of \(a \). So \(p_1^{(k_1 - 1)(p - 1)} | (n - 1) \), thus \(p_1 | (n - 1) \) (since \(k_1 > 1 \)). This contradicts that \(p_1 | n \), as \(p_1 \) was one of our factors of \(n \), concluding the proof.

\[\square\]