Math 261C: Randomized Algorithms

Lecture topic: \(\#SAT \in IP \)

Lecturer: Sam Buss
Scribe notes by: James Aisenberg
Date: May 28, 2014

1

Theorem 1. \(\#SAT \in IP \)

To prove the theorem, we start by encoding a CNF, \(\phi \), with a polynomial, \(\phi^*(x_1, \ldots, x_n) \) over \(\mathbb{N} \). The number 1 encodes \(\top \), the number 0 encodes \(\bot \). The formula \(\phi^* \) is defined inductively. For the base cases, \(x_i^* = x_i \), and \(\bar{x}_i^* = 1 - x_i \). Inductively, we have \((a \land b \land c)^* = a^* \cdot b^* \cdot c^* \), and \((a \lor b \lor c)^* = 1 - (1 - a^*) \cdot (1 - b^*) \cdot (1 - c^*) \). It suffices to consider 3-SAT, but it is easy to generalize these notions. Observe that \(\deg(\phi) \leq |\phi| \).

Next, notice that

\[
\#SAT(\phi) = \sum_{a_1, \ldots, a_n \in \{0,1\}} \phi(a_1, \ldots, a_n) =: S.
\]

Observe that \(S \leq 2^n \), so it suffices to verify the value of \(S \mod p \) for \(p > 2^n \). The prover will supply \(p > 2^n \) along with a Pratt certificate for \(p \). We think of \(S \) as being part of the input. If we are being careful, we remark that the thing we are actually proving is that the graph of \(\#SAT \) is in IP. However, it is not a big deal either way, because the (all powerful) prover could simply pass along the value of \(S \), but it is customary to define IP as a decision procedure, and not a function class.

Definition 2.

\[
f_i(x_1, \ldots, x_i) := \sum_{a_{i+1} \in \{0,1\}} \cdots \sum_{a_n \in \{0,1\}} \phi^*(x_1, \ldots, x_i, a_{i+1}, \ldots, a_n)
\]

In the following protocol, we will fix values \(a_1, \ldots, a_{i-1} \), and then define

\[
g_i(x_i) := f_i(a_1, \ldots, a_{i-1}, x_i)
\]

a univariate polynomial of degree less than or equal to \(|\phi| \). The polynomial \(g_i \) is specified indirectly as a polynomial size. Let \(h_i(x_i) \) be an explicit representation of \(g_i \), in other words, its coefficients are given explicitly.
1.1. Protocol. The IP protocol for \#SAT is as follows:

Input: \(\phi, S \).
Output:
- Accept if \(\# \text{SAT}(\phi) = S \) (with probability 1 for the honest prover).
- Reject if \(\# \text{SAT}(\phi) \neq S \) (with probability close to 1 for all provers).

Round 1: Prover supplies \(p > 2^n \) and a Pratt certificate for \(p \), and an explicit description of \(h_1(x_1) \).

Verifier rejects if Pratt certificate is invalid, or if \(S \neq h_1(0) + h_1(1) \).

Subsequent rounds check that \(h_i(x) \) is correct.

Round \(i \): The verifier picks \(a_i \in \mathbb{Z}_p \) at random and sends \(a_i \) to the prover. Notice that this is an IP protocol, so in principle we could use private coins, but that we only need public coins.

Prover sends \(h_{i+1}(a_{i+1}) \) to verifier (as an explicitly specified polynomial.)

Verifier checks that \(h_i(a_i) = h_{i+1}(0) + h_{i+1}(1) \), and rejects if not.

At round \(n + 1 \): Verifier checks that \(h_{n+1} \) is the constant polynomial.

\(\phi^*(a_1, \ldots, a_n) \).

\(V \) accepts if so, and rejects if not.

1.2. Analysis. If \(S = \# \text{SAT}(\phi) \) then the honest prover causes the verifier to accept with probability 1.

Now suppose \(S \neq \# \text{SAT}(\phi) \). Fix a prover \(P \), possibly malicious.

Claim I: \(\text{Prob}[V \text{ accepts}] \leq \frac{|\phi|}{2^n} \cdot n \leq \frac{|\phi|}{2^n} \cdot O(1) \)

Claim II: \(\text{Prob}[V \text{ accepts}|h_i(x_i) \text{ is incorrect}] \leq \frac{|\phi|}{2^n} \cdot (n - i + 1) \).

Recall that \(|\phi| \) bounds the degrees of the \(h_i \)'s. Observe that Claim II implies Claim I.

\textit{Proof of Claim II}. Induct on \(i = n + 1, \ldots, 1 \). For the base case, \(i = n + 1 \), we have \(\text{Prob}[V \text{ accepts}] = 0 \).

For the induction step, \(\text{Prob}[V \text{ accepts}|h_i \text{ is incorrect}] \) is less than or equal to

\[\text{Prob}[V \text{ accepts}|h_i \text{ is incorrect and } h_{i+1} \text{ is correct}] + \text{Prob}[V \text{ accepts}|h_{i+1} \text{ is incorrect}] \]

This is less than or equal to

\[\frac{|\phi|}{p} \cdot \frac{|\phi|}{p} (n - (i + 1) - 1) \leq \frac{|\phi|}{p} (n - i + 1) \]

by the Schwartz-Zippel Lemma and the induction hypothesis, respectively. \(\square \)
References
