
MATH 262A LECTURE 11: LOWER BOUNDS FOR CONSTANT

DEPTH CIRCUITS FOR PARITY

SCRIBE: CHRISTIAN WOODS

1. Depth Bounds for Decision Trees

Definition. A decision tree is a tree that queries variable values, possibly based on previous

queries. A decision tree of depth d is a decision tree whose maximum number of queries

on any branch is d.

Theorem. Let f be an n-ary Boolean function computed by a depth d decision tree T .

Then f can be expressed as a d-CNF and as a d-DNF.

Proof. To form the d-DNF computing f , identify the paths π in T that terminate in the
result 1. For each such π, consider the conjunction

tπ =
∧

{x : π asserts x is true}.

Then

f =
∨

π: output is 1

tπ.

Since the decision tree for f has depth d, each tπ contains at most d conjuncts, and therefore
the above is a d-DNF.

To form the d-CNF for f , consider the decision tree for ¬f , obtained by flipping any
resulting 0’s in T to 1’s and any resulting 1’s in T to 0’s. By the above proof, we can form
a d-DNF for ¬f . By using DeMorgan’s Law, this will result in a d-CNF for f . �

Theorem. If f is expressible as a k1-CNF and as a k2-DNF, then f is expressible as a

depth k1k2 decision tree.

Proof. Let C1 be a k1-CNF for f , and let C2 be a k2-DNF for f . So C1 ≡ C2.

Claim. Any conjunct y1 ∨ y2 ∨ . . . ∨ yl1 , l1 ≤ k1 in C1 and any disjunct z1 ∧ z2 ∧ . . . ∧ zl2 ,

l2 ≤ k2 in C2 share some literal in common.

Date: November 1, 2013.

1

2 SCRIBE: CHRISTIAN WOODS

Proof. Suppose not. Then we may set each literal in z1 ∧ . . . ∧ zl2 to 1 and set each literal
in y1 ∨ . . . ∨ yl1 to 0 with the same variable assignment. But this one assignment would
make C2 true and C1 false, despite the fact that they represent the same Boolean function.
This is a contradiction. �

We now proceed with the proof of the theorem by induction on the value of k1 + k2.

For the only nontrivial base case, suppose k1 = k2 = 1. Then C1 = xi1 ∧ xi2 ∧ . . . xik and
C2 = xj1 ∨ xj2 ∨ . . . ∨ xjl . Since C1 ≡ C2, it must be the case that C1 and C2 are identical
formulas with k = l = 1 and xi1 = xj1 . So the decision tree is simply the querying of this
literal, and hence has depth 1 = k1k2.

Now suppose k1 > 1. Take some clause y1∨ . . .∨yl in C1. Form a decision tree by querying
y1, y2, . . . , yl in order. There is only one branch where y1, y2, . . . , yl are set to 0 (and hence
C1 is 0, and no other querying is necessary), and the rest have at least one of these yi set
to 1.

On the branches where C1 is yet unknown, each term (conjunction) in C2 as had at least
one literal set true or false (by the claim). Thus C2 has been simplified to a (k2 − 1)-DNF.
So, for these branches, the result is expressible as a k1-CNF and as a (k2 − 1)-DNF. By
the inductive hypothesis, we may add to each such branch a new decision tree computing
this simplified function. This decision tree has depth

k1(k2 − 1) = k1k2 − k1.

Therefore, the resulting decision tree for f has (k1k2−k1)+k1 queries on its longest branch,
and hence has depth k1k2. �

Exercise: Is this bound (k1k2) tight?

2. Decision Trees for Parity

Let us consider now decision trees for the function Parityn.

Of course we may query each variable in sequence to get a decision tree of depth n.

What about a decision tree T of depth n − 1? T will only agree with Parityn on exactly
half of the inputs in {0, 1}n.

Similarly, we can write Parityn as a k-DNF (CNF) for k = n, but not for any k < n. Notice
that this gives us a lower bound of 2n−1 on depth 2 circuits for Parityn. We improve this
result with the next theorem:

Theorem. For d ≥ 2, any depth (d+ 1) circuit for Parityn has size

2Ω(n
1/d).

MATH 262A LECTURE 11: LOWER BOUNDS FOR CONSTANT DEPTH CIRCUITS FOR PARITY 3

Definition. Let f be an n-ary Boolean function. Define R(f) to be the minimum number

of variables which can be set to 0 or 1 to force the value of f to be constant.

For example, R(Parityn) = n.

Lemma. Let f(x1, . . . , xn) be an n-ary Boolean function computed by a depth (d + 1)
circuit over

∧

,
∨

, xi, xi of size S. Then

R(f) ≤ n−
n

cd(logS)d−1
+ 2 log S,

where cd = 26d−1.

Proof of Theorem from Lemma. Let Parityn be computed by a depth (d + 1) circuit of
size S. Then by the lemma, since R(Parityn) = n,

n ≤ n−
n

cd(log S)d−1
+ 2 log S ⇒

n

cd(log S)d−1
≤ 2 log S ⇒

2(log S)d ≥
n

cd
⇒

(log S)d ≥
n

2cd
⇒

(logS)d ≥
n

26d
⇒

log S ≥
n1/d

26
⇒

S ≥ 2
n1/d

26 ⇒

S = 2Ω(n
1/d).

�

Proof of Lemma. We use the Switching Lemma.

Suppose we have a circuit C of size S and depth (d + 1) (with a level of
∧

’s at the
bottom).

Add extra 1-input
∨

’s to the bottom so that the circuit now has depth (d+2) and bottom
fan-in 1. Now we may apply the switching lemma with t = 1, s = 2 log S, and p = 1

32 .
Each

∧

of
∨

’s of size 1 at the bottom of C becomes a
∨

of
∧

’s of size at most s with
probability at least

1− (16pt)s = 1−

(

16

32

)2 logS

= 1− S−2.

4 SCRIBE: CHRISTIAN WOODS

Since there are at most S many
∧

of
∨

’s at the bottom of C, the probability that at least
one fails to switch is at most

S

(

1

S2

)

=
1

S
.

Now we have a depth (d + 1) circuit, still with S nodes (not counting the very bottom
level) with bottom fan-in at most 2 log S.

Now continue to switch from depth d′ to depth d′ − 1 (for d′ = d + 1, d, . . . , 3) using
t = 2 log S, s = 2 log S, and p = 1

64(log S) . We end up with a depth two sub circuit with

probability at least

1− (16pt)s = 1−
1

S2

and the probability that something at the bottom fails to switch is still at most 1
S .

At the end of the process we will have a depth two circuit with bottom fan-in 2 log S,
having set all but

n

(

1

32

)(

1

64(log S)

)d−1

=
n

26d−1(log S)d−1

variables.

Now by setting only 2 log S more variables (the ones at the bottom level), we may force
the function f to be constant. Therefore,

R(f) ≤ n−
n

cd(logS)d−1
+ 2 log S.

�

If we continue the construction by switching once more, we express the circuit as a
∧

of
∨

’s
of bottom fan-in 2 log S and a

∨

of
∧

’s of bottom fan-in 2 log S. By the earlier theorem,
this means that f has a decision tree of depth

(2 log S)2 < S.

Thus this decision tree is wrong for Parityn on exactly half of its inputs.

We’ve set at most n − n
(

1
26d−1(log S)d−1

)

variables at random and get with probability at

least 1− (d+1)
S a decision tree that is wrong on Parityn on exactly half of its inputs.

By an averaging argument, there is some set of L variables such that, when assigned values

0 or 1 at random, with probability at least 1− (d+1)
S the result (as computed by C) is wrong

half of the time.

So the original circuit disagreed with Parityn at least on

2L
(

1−
(d+ 1)

S

)

2n−L−1 = 2n
(

1

2
−

(d+ 1)

2S

)

MATH 262A LECTURE 11: LOWER BOUNDS FOR CONSTANT DEPTH CIRCUITS FOR PARITY 5

settings. In other words, C is wrong on about 1
2 − (d+1)

2S of the inputs. We say that the
inapproximability of Parityn is

1

2
− Ω

(

1

2n
1/(d−1)

)

.

In 2012 Beame-Impagliazzo-Srinivasan, and later Hastad, showed better bounds. In par-
ticular, Hastad showed an inapproximability of

1

2
− 2

−Ω
(

n

(log S)d−1

)

.

	1. Depth Bounds for Decision Trees
	2. Decision Trees for Parity

