Math 262A Lecture Notes Counting, Threshold, Vector Addition

Lecturer: Samuel Buss Scribe: Udbhav Singh

January 15, 2014

Let $f_n = \{f_n\}_n$ be an *n*-ary function.

Definition 1 (AC^0). $f \in AC^0 \iff f_n$ has poly size, constant depth, unbounded fan in, $\lor, \land, X, \overline{X}$ circuits.

Definition 2 (NC¹). $f \in NC^1 \iff \forall n, f_n \text{ has poly size, } \mathcal{O}(\log n) \text{ depth, fan in } 2, \lor, \land, X, \overline{X} \text{ circuits.}$

Definition 3 (TC^0) . $f \in TC^0 \iff \forall n, f_n \text{ has poly size, constant depth, unbounded fan in, <math>\lor, \land, Majority, X, \overline{X}$ circuits.

Also we have NC - Nick's Class SC - Steve's Class SC^{k} - simultaneously polynomial time and log space.

When defining circuit size, we count the number of wires or edges in the circuit (because a symbol can be fed multiple times). Recall

$$Majority^{n}(X_{1},...,X_{n}) = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} X_{i} \ge n/2\\ 0 & \text{otherwise} \end{cases}$$
(1)

$$Threshold_{k}^{n}(X_{1},\ldots,X_{n}) = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} X_{i} \ge k \\ 0 & \text{otherwise} \end{cases}$$
(2)

$$Exact_{k}^{n}(X_{1},\ldots,X_{n}) = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} X_{i} = k \\ 0 & \text{otherwise} \end{cases}$$
(3)

All the above three functions are examples of symmetric functions.

Definition 4 (Symmetric Functions). A function $f(X_1, \ldots, X_n)$ is symmetric if $f(X_1, \ldots, X_n) = g(\sum_{i=1}^n X_i)$ for some function g.

The definition implies that order doesn't matter in symmetric functions which is the source of the name symmetric.

Proposition 1. Thresholdⁿ_k can be expressed with a TC^0 circuit.

Proof. Trivially $Majority^n(X_1, \ldots, X_n) = Threshold_{\lceil \frac{n}{2} \rceil}^n(X_1, \ldots, x_n)$. In the other direction, we can write

$$Threshold_k^n(X_1,\ldots,X_n) = \begin{cases} Majority^{2k}(X_1,\ldots,X_n,0,\ldots,0) & \text{if } k \ge n/2\\ Majority^{2(n-k)}(X_1,\ldots,X_n,1,\ldots,1) & \text{if } k \le n/2 \end{cases}$$

We could equivalently define other TC^0 gates using $Threshold_k^n$ gates.

 $Exact_{k}^{n}(X_{1},\ldots,X_{n}) \equiv Threshold_{k}^{n}(X_{1},\ldots,X_{n}) \wedge \neg Threshold_{k+1}^{n}(X_{1},\ldots,X_{n})$ Threshold_{k}^{n}(X_{1},\ldots,X_{n}) \equiv \lor_{j=k}^{n} Exact_{j}^{n}(X_{1},\ldots,X_{n})

Hence all these gates can be defined in terms of each other.

Theorem 1. Majorityⁿ is in NC^1 . thus $TC^0 \subseteq NC^1$

Part 1: Proof of conclusion. We will first prove the conclusion that if $Majority^n$ is in NC^1 , then $TC^0 \subseteq NC^1$.

We will convert a given circuit C of fixed depth d, of size $S = n^{\mathcal{O}(1)}$ using $\lor, \land, Majority$ gates into an NC^1 circuit.

Consider a particular gate g in C. g is either \lor, \land or *Majority*. g has less than S many inputs. If g is \lor or \land , we can "balance" it by replacing it by a tree of fan in $2 \lor, \land$ s of depth $\mathcal{O}(\log S) = \mathcal{O}(\log n)$

If g is $Majority^m$, $m = n^{\mathcal{O}(1)}$, replace it by a NC^1 circuit for $Majority^m$. The overall circuit is thus $\mathcal{O}(d \log n) = \mathcal{O}(\log n)$ (d is a constant)

Before showing that $Majority^n$ is in NC^1 , we will present a few definitions and lemmas to guide us with the proof.

Definition 5. The function $Addition^m(X_0, \ldots, X_{m-1}, Y_0, \ldots, Y_{m-1}) = Z_0, \ldots, Z_m$ defines the binary addition operation on two m-digit binary numbers and outputs their sum in binary i.e $(Z_0, \ldots, Z_m)_2 = (X_0, \ldots, X_{m-1})_2 + (Y_0, \ldots, Y_{m-1})_2$ or $(\vec{Z})_2 = (\vec{X})_2 + (\vec{Y})_2$ in vector notation.

We can define the vector addition function analogously.

Definition 6. The function $VecAdd^m(X_{00}, \ldots, X_{0,l-1}, X_{10}, \ldots, X_{1,l-1}, \ldots, X_{m-1,l-1}) = Z_0, \ldots, Z_{l+\log m}$ performs binary addition of m many l bit numbers and gives their result in binary.

Lemma 1. Addition^m has circuits of size $\mathcal{O}(m)$ and depth $\mathcal{O}(m)$

Proof. We can make use of Half-Adders ad Full-Adders for building such circuits. Each of these have size $\mathcal{O}(1)$ and depth $\mathcal{O}(1)$. to add we simply build the following circuit.

Lemma 2. $Addition^m \in AC^0$ (and hence in NC^1)

Proof. We can modify the circuit of the previous lemma to get a constant depth circuit. The only problem is the carry bit which *ripples* through the circuit to give linear depth. We can instead get the carry bit at each stage by using a circuit of depth 3 to get to constant depth circuit. This is called carry lookahead. We can define the *i*th carry bit to be

$$C_{i} = \bigvee_{j=0}^{i} \left(\left(X_{j} \wedge Y_{j} \right) \wedge \left(\bigwedge_{k=j+1}^{i} \left(X_{k} \vee Y_{k} \right) \right) \right)$$

Using the carry bit from this circuit at each stage, we get a circuit for $Addition^m$ of depth 3. Thus $Addition^3$ is in AC^0 .

Lemma 3. $VecAdd^m \in NC^1$

Proof. We use carry save addition [Ofman '62][Wallace '64]

A carry save operation on three numbers $(\vec{X})_2, (\vec{Y})_2, (\vec{Z}))_2$ gives two numbers $(\vec{U})_2, (\vec{V})_2$ such that $(\vec{X})_2 + (\vec{Y}_2 + (\vec{Z}))_2 = (\vec{U})_2 + (\vec{V})_2$. In function form, this is written as

$$CSA^{m}(X_{0},\ldots,X_{m-1},Y_{0},\ldots,Y_{m-1},Z_{0},\ldots,Z_{m-1}) = U_{0}\ldots U_{m-1},V_{0}\ldots V_{m-1}$$
 (4)

The implementation of the function is as follows.

For an NC^1 circuit for $VecAdd_l^m$, we apply carry save addition operations in parallel (in rounds). There are $\lceil \log_{3/2} m \rceil$ many rounds each of depth $\mathcal{O}(1)$ and at the end we get two numbers $(\vec{U})_2$ and $(\vec{V})_2$ which we can sum using AC^0 circuits.

Remark: This suffices to prove that $Majority^n \in NC^1$ and hence the first part of Theorem 1

 $Majority^n$ can be expressed using $VecAdd_1^n$ as follows

$$Majority^{n}(X_{1}, \dots, X_{n}) = 1 \leftrightarrow VecAdd_{1}^{n}(X_{1}, \dots, X_{n}) \ge k = n/2$$
(5)

For this we define the following functions

$$\begin{aligned} Equal^m(X_0, \dots, X_{m-1}, Y_0, \dots, Y_{m-1}) &\equiv \bigwedge_{i=0}^{m-1} X_i = Y_i \\ GT^m(X_0, \dots, X_{m-1}, Y_0, \dots, Y_{m-1}) &\equiv (\vec{X})_2 > (\vec{Y})_2 \\ &\equiv \bigvee_{i=0}^m (X_i \wedge \bar{Y}_i \wedge (\bigwedge_{j=i+1}^{m-1} (X_j \equiv Y_j))) \\ GE^m(\vec{X}, \vec{Y}) &= Equal^m(\vec{X}, \vec{Y}) \lor GT^m(\vec{X}, \vec{Y}) \\ Majority^n(X_1, \dots, X_n) &= GE^m(\vec{a}, VecAdd^n(X_1, \dots, X_n)) \quad (\vec{a} = \text{constant bits of } n/2) \end{aligned}$$

Thus if $VecAdd^n \in NC^1$, then so is $Majority^n$. A corollary of the lemma is the following

Corollary 1. Multiplication is in NC^1

Lemma 4. $VecAdd \in TC^0$ [Chandra, Stockmeyer, Vishkin 1984]

Proof. We will build a TC^0 circuit for $VecAdd_l^m$.

Out idea is to to use $VecAdd_1^m$ to add up separate coloumns. We add the *i*th bits of the *m* numbers to get S_i which is a m' bit number where $m' = \lceil \log(m+1) \rceil$

$$S_{i} = Addition_{1}^{m}(X_{0,i}, X_{1,i}, \dots, X_{m-1,i})$$
(6)

Doing this for each i, we get l m'-bit numbers such that

$$\sum_{i=0}^{l-1} 2^i S_i = VecAdd_l^m(X_{0,0}, X_{0,1}, \dots, X_{0,l-1}, \dots, X_{m-1,0}, \dots, X_{m-1,l-1})$$
(7)

We now reblock the bits to get numbers $T_0, T_1, \ldots, T_{m'-1}$, each with $\leq m + m'$ many bits such that

$$\sum_{i=0}^{m'-1} T_i = VecAdd_l^m(X_{0,0}, X_{0,1}, \dots, X_{0,l-1}, \dots, X_{m-1,0}, \dots, X_{m-1,l-1})$$
(8)

Now we repeat the above process with these new numbers to get m'' many m + m' + m''-bit numbers $U_0, \ldots, U_{m''-1}$ such that

$$\sum_{i=0}^{m''-1} U_i = VecAdd_l^m(X_{0,0}, X_{0,1}, \dots, X_{0,l-1}, \dots, X_{m-1,0}, \dots, X_{m-1,l-1})$$
(9)

where $m''' = \lceil \log m' \rceil$. The U_i s can be computed by a CNF or a DNF of polynomial size $(\mathcal{O}(m))$. Addition₁^{m'}() has only $m' \leq \log m + 2$ many inputs and hence has size $\mathcal{O}(m)$. So finally, we have m'' many m + m' + m''-bit numbers which we will sum as follows.

We list the numbers $U_0, \ldots, U_{m'-1}$ as rows and block the bits into groups of $\frac{m'}{m''}$ many contiguous coloumns. Now we pick the even blocks and zero out the other blocks and take the sum of what results. There is no carry propagation from one non-zero block to the next non-zero block. thus each output bit depends on only one block of bits and there are $(m'/m'')m'' = m' \leq \log m + 2$ many bits in each block.

Thus we can use a CNF or DNF formula of size $\mathcal{O}(m)$ to compute each output bit. This gives the binary representation of the number V_1 . Now we repeat the same procedure for odd blocks to get the number V_2 . Finally we get $V_1 + V_2 = VecAdd_l^m(X_{0,0}, X_{0,1}, \ldots, X_{0,l-1}, \ldots, X_{m-1,0}, \ldots, X_{m-1,l-1})$ using an AC^0 circuit to get the desired result.

An immediate corollary is the following

Corollary 2. Multiplication is in TC^0 (using binary representation)