
Math 262A Lecture Notes

Counting, Threshold, Vector Addition

Lecturer: Samuel Buss

Scribe: Udbhav Singh

January 15, 2014

Let fn = {fn}n be an n-ary function.

Definition 1 (AC0). f ∈ AC0 ⇐⇒ fn has poly size, constant depth, un-
bounded fan in, ∨,∧, X, X̄ circuits.

Definition 2 (NC1). f ∈ NC1 ⇐⇒ ∀n, fn has poly size, O(log n) depth, fan
in 2, ∨,∧, X, X̄ circuits.

Definition 3 (TC0). f ∈ TC0 ⇐⇒ ∀n, fn has poly size, constant depth,
unbounded fan in, ∨,∧,Majority,X, X̄ circuits.

Also we have
NC - Nick’s Class
SC - Steve’s Class
SCk - simultaneously polynomial time and log space.

When defining circuit size, we count the number of wires or edges in the
circuit (because a symbol can be fed multiple times).
Recall

Majorityn(X1, . . . , Xn) =











1 if

n
∑

i=1

Xi ≥ n/2

0 otherwise

(1)

Thresholdnk(X1, . . . , Xn) =











1 if

n
∑

i=1

Xi ≥ k

0 otherwise

(2)

Exactnk (X1, . . . , Xn) =











1 if

n
∑

i=1

Xi = k

0 otherwise

(3)

All the above three functions are examples of symmetric functions.

1

Definition 4 (Symmetric Functions). A function f(X1, . . . , Xn) is symmetric
if f(X1, . . . , Xn) = g(

∑n
i=1 Xi) for some function g.

The definition implies that order doesn’t matter in symmetric functions
which is the source of the name symmetric.

Proposition 1. Thresholdnk can be expressed with a TC0 circuit.

Proof. Trivially Majorityn(X1, . . . , Xn) = Thresholdn⌈n

2
⌉(X1, . . . , xn). In the

other direction, we can write

Thresholdnk(X1, . . . , Xn) =

{

Majority2k(X1, . . . , Xn, 0, . . . , 0) if k ≥ n/2

Majority2(n−k)(X1, . . . , Xn, 1, . . . , 1) if k ≤ n/2

We could equivalently define other TC0 gates using Thresholdnk gates.

Exactnk (X1, . . . , Xn) ≡ Thresholdnk(X1, . . . , Xn) ∧ ¬Thresholdnk+1(X1, . . . , Xn)

Thresholdnk(X1, . . . , Xn) ≡ ∨n
j=kExactnj (X1, . . . , Xn)

Hence all these gates can be defined in terms of each other.

Theorem 1. Majorityn is in NC1. thus TC0 ⊆ NC1

Part 1: Proof of conclusion. We will first prove the conclusion that ifMajorityn

is in NC1, then TC0 ⊆ NC1.
We will convert a given circuit C of fixed depth d, of size S = nO(1) using
∨,∧,Majority gates into an NC1 circuit.
Consider a particular gate g in C. g is either ∨,∧ or Majority. g has less than
S many inputs. If g is ∨ or ∧, we can “balance” it by replacing it by a tree of
fan in 2 ∨,∧s of depth O(log S) = O(logn)
If g is Majoritym,m = nO(1), replace it by a NC1 circuit for Majoritym.
The overall circuit is thus O(d log n) = O(log n) (d is a constant)

Before showing that Majorityn is in NC1, we will present a few definitions
and lemmas to guide us with the proof.

Definition 5. The function Additionm(X0, . . . , Xm−1, Y0, . . . , Ym−1) = Z0, . . . , Zm

defines the binary addition operation on two m-digit binary numbers and outputs
their sum in binary i.e (Z0, . . . , Zm)2 = (X0, . . . , Xm−1)2 + (Y0, . . . , Ym−1)2 or

(~Z)2 = (~X)2 + (~Y)2 in vector notation.

We can define the vector addition function analogously.

Definition 6. The function V ecAddm(X00, . . . , X0,l−1, X10, . . . , X1,l−1, . . . , Xm−1,l−1) =
Z0, . . . , Zl+logm performs binary addition of m many l bit numbers and gives
their result in binary.

Lemma 1. Additionm has circuits of size O(m) and depth O(m)

2

Proof. We can make use of Half-Adders ad Full-Adders for building such circuits.
Each of these have size O(1) and depth O(1). to add we simply build the
following circuit.

Lemma 2. Additionm ∈ AC0 (and hence in NC1)

Proof. We can modify the circuit of the previous lemma to get a constant depth
circuit. The only problem is the carry bit which ripples through the circuit to
give linear depth. We can instead get the carry bit at each stage by using a
circuit of depth 3 to get to constant depth circuit. This is called carry lookahead.
We can define the ith carry bit to be

Ci =

i
∨

j=0

((

Xj ∧ Yj

)

∧

(i
∧

k=j+1

(

Xk ∨ Yk

)))

Using the carry bit from this circuit at each stage, we get a circuit for Additionm

of depth 3. Thus Addition3 is in AC0.

Lemma 3. V ecAddm ∈ NC1

Proof. We use carry save addition [Ofman ’62][Wallace ’64]

A carry save operation on three numbers (~X)2, (~Y)2, (~Z))2 gives two numbers

(~U)2, (~V)2 such that (~X)2 + (~Y2 + (~Z))2 = (~U)2 + (~V)2. In function form, this
is written as

CSAm(X0, . . . , Xm−1, Y0, . . . , Ym−1, Z0, . . . , Zm−1) = U0 . . . Um−1, V0 . . . Vm−1 (4)

The implementation of the function is as follows.
For an NC1 circuit for V ecAddml , we apply carry save addition operations in
parallel (in rounds). There are ⌈log3/2 m⌉ many rounds each of depth O(1) and

at the end we get two numbers (~U)2 and (~V)2 which we can sum using AC0

circuits.

Remark: This suffices to prove that Majorityn ∈ NC1 and hence the first
part of Theorem 1
Majorityn can be expressed using V ecAddn1 as follows

Majorityn(X1, . . . , Xn) = 1 ↔ V ecAddn1 (X1, . . . , Xn) ≥ k = n/2 (5)

For this we define the following functions

Equalm(X0, . . . , Xm−1, Y0, . . . , Ym−1) ≡

m−1
∧

i=0

Xi = Yi

GTm(X0, . . . , Xm−1, Y0, . . . , Ym−1) ≡ (~X)2 > (~Y)2

≡

m
∨

i=0

(Xi ∧ Ȳi ∧ (

m−1
∧

j=i+1

(Xj ≡ Yj)))

GEm(~X, ~Y) = Equalm(~X, ~Y) ∨GTm(~X, ~Y)

Majorityn(X1, . . . , Xn) = GEm(~a, V ecAddn(X1, . . . , Xn)) (~a=constant bits of n/2)

3

Thus if V ecAddn ∈ NC1, then so is Majorityn. A corollary of the lemma is
the following

Corollary 1. Multiplication is in NC1

Lemma 4. V ecAdd ∈ TC0 [Chandra, Stockmeyer, Vishkin 1984]

Proof. We will build a TC0 circuit for V ecAddml .
Out idea is to to use V ecAddm1 to add up separate coloumns. We add the ith bits
of the m numbers to get Si which is a m′ bit number where m′ = ⌈log(m+ 1)⌉

Si = Additionm
1 (X0,i, X1,i, . . . , Xm−1,i) (6)

Doing this for each i, we get l m′-bit numbers such that

l−1
∑

i=0

2iSi = V ecAddml (X0,0, X0,1, . . . , X0,l−1, . . . , Xm−1,0, . . . , Xm−1,l−1) (7)

We now reblock the bits to get numbers T0, T1, . . . , Tm′−1, each with ≤ m+m′

many bits such that

m′−1
∑

i=0

Ti = V ecAddml (X0,0, X0,1, . . . , X0,l−1, . . . , Xm−1,0, . . . , Xm−1,l−1) (8)

Now we repeat the above process with these new numbers to get m′′ many
m+m′ +m′′-bit numbers U0, . . . , Um′′−1 such that

m′′−1
∑

i=0

Ui = V ecAddml (X0,0, X0,1, . . . , X0,l−1, . . . , Xm−1,0, . . . , Xm−1,l−1) (9)

where m′′′ = ⌈logm′⌉. The Uis can be computed by a CNF or a DNF of poly-
nomial size (O(m)). Additionm′

1 () has only m′ ≤ logm + 2 many inputs and
hence has size O(m). So finally, we have m′′ many m +m′ +m′′-bit numbers
which we will sum as follows.

We list the numbers U0, . . . , Um′−1 as rows and block the bits into groups

of m′

m′′
many contiguous coloumns. Now we pick the even blocks and zero out

the other blocks and take the sum of what results. There is no carry propaga-
tion from one non-zero block to the next non-zero block. thus each output bit
depends on only one block of bits and there are (m′/m′′)m′′ = m′ ≤ logm+ 2
many bits in each block.
Thus we can use a CNF or DNF formula of size O(m) to compute each out-
put bit. This gives the binary representation of the number V1. Now we re-
peat the same procedure for odd blocks to get the number V2. Finally we get
V1+V2 = V ecAddml (X0,0, X0,1, . . . , X0,l−1, . . . , Xm−1,0, . . . , Xm−1,l−1) using an
AC0 circuit to get the desired result.

An immediate corollary is the following

Corollary 2. Multiplication is in TC0 (using binary representation)

4

