
Volume 8, numbr&r 3 INFORMATION PROCESSING LETTERS March 1979

A LINEAR-TIME ALGORITHM FOR TESTING THE TRUTH OF CERTAIN QUANTIFIED
BOOLEAN FORMULAS *

Bengt ASPVALL, Michael F. PLASS and Robert Endre TARJAN
Computer Science Department, Stanford University, Stanford, CA 94305, U.S.A.

Received 22 August 1978, revised version received 16 October 1978

Quantified Boolean formula, strongly connected components, 2CNF, 2-satisfiability

Let F = Qlxr Qzxz l ** Qnx, C be a quantified
Boolean formula with no free variables, where each
Qi is either 3 or t, and C is in conjunctive normal
form. That is, C is a conjunction of clauses, each
clause is a disjunction of literals, and each literal is
either a variable, xi, or the negation of a variable, Zi
(1 < i f n). We shall use Ui to denote a literal equal
to either Xi or Fi. The evaluation problem for quanti-
fied Boolean formulas is to determine whether such a
formula F is true.

The evaluation problem is complete in polynomial
space [6], even if C is restricted to contain at most
three literals per clause. The satisfiability problem,
the special case in which all quantifiers are existential,
is NP-complete [1,2,4] for formulas with three literals
per clause. However, the satisfiability problem for
formulas with only two literals per clause is solvable
in polynomial time [1,2,4] ; Even, Itai, and Shamir [3]
outline a linear-time algorithm. Schaefer [5] claims
a polynomial time bound for the evaluation problem
with two literals per clause, although he gives no
proof. In this note we present a simple constructive
algorithm for the evaluation of formulas having two
literals per clause, which runs in linear time on a ran-
dom access machine.

* This work was supported by National Science Foundation
Grants MCS-75-22870 and MCS-77-23738, by Office of
Naval Research Contract N00014-76C-0688, by a National
Science Foundation Graduate Fellowship, and by a Guggen-
heim Fellowship. Reproduction in whole or in part is
permitted for any purposes of the United States govern-
ment.

Our algorithm uses properties of directed graphs.
Suppose we are given a formula F =
Qlxr Qzx2 l ‘* Q,x, C such that C is in conjunctive
normal form with at most two literals per clause.,We
can assume without loss of generality that there are
no clauses with only one literal since the clause u is
equivalent to the clause u VU. We construct a directed
graph G(F) with 2n vertices and 2lCl edges (counting
multiple edges) as follows:

l(i) For each variable Xi, we add two vertices
named Xi and Xi to G(F). We identify Zi with Xi, and
we call xi and Xi complements of each other.

l(ii) Far each clause (u v u) of C, we add edges
ii+ u and t’+ u to GQ.
The graph G(F) has the following duality property:
G(F) is isomorphic to the graph obtained from G(F)
by reversing the directions of all the edges and com-
plementing the names of all the vertices. See Fig. 1.

Our algorithm relies upon identifying the strong
components of G(F). A graph is strorzgly connected
if there is a path from any vertex to any other. The

-,
a d 6 c

c b a a

Fig. 1. Graph constructed for the set of clauses G =
(a Vb, b Vz F Vz, b Vd, d Va).

121

Volume 8, number 3 INFORMATION PROCESSING LETTERS March 1979

maximal strongly connected subgrsphs of a graph are
vertex-disjoint and are called its strong components.
If & and Sz are strong components such that an edge
cads from ;1 vertex in Sr to a vertex in S2, then Si is
a pre&cessor of S’s and S2 is a sl~ccessor of S1. The
strong components of a directed graph can be found
in linear time by an algorithm of Tarjan [1,4,7],

which generates the components in reverse topological
order; that is, in an order such that if S1 is generated
before S2. then Sr is not a predecessor of &.

By the duality property every strong component S
of G(F) has a dual component S consisting of the
subgraph induced by the complements of the vertices
In S. (It may be the case that S =S.) If S1 and S2 are
two strong components of G(F) and S1 is a predeces-
\r)r of’ Sz, then s1 is a successor of Sz and vice versa.
It foliows that Sr and Sz are incomparable if and only
if& and Sz are incomparable.

t(i) For all i, vertices Xi and fi receive comple-
mentary truth values.

Suppose we assign truth values to the vertices of
G(F). Such an assignment corresponds to a set of
truth values for the variables which m&kes C true if
rind only if:

2(ii) No edge u + u has u assigned true and u
assigned false (equivalently, no path leads from a
true vertex to a false vertex)

To clarify our approach, we first consider the
satisfiabiliry problem; thus let us assume that all the
quantifiers z-r F are existential.

Theorem I. The expression C is satisfiable if and only
if in G(F) I: ; vertex ui is in the same strong compo-
nent as its complement i7i (i.e., no strong component
S is equal to its complement ST).

Proof. In one direction the proof is easy: if some ver-
tex ui is in the same strong component as ii, then any
truth assignment to the vertices of G(F) must violate
either 2(i) or 2(ii); hence C is unsatisfiable. To prove
the converse we provide an algorithm which either
detects the condition in Theorem 1 or marks the
strong components of G(F) in a way which implies
the existence of a truth assignment satisfying C.

wo-~atis~a~j~it~ alg recess the strong com-
ponents S of G(F) in reverse topological order as
folio Jvs:

122

General Step. IfS is marked, do nothing. Other-
wise if S = S then stop: C is unsatisfiable. Otherwise
mark S true and S false.

This algorithm stops prematurely only if some
vertex is in the same strong component as its comple-
ment. By using the duality property and induction, it
is easy to prove every component marked true has
only true components as successors and every com-
ponent marked false has only false components as
predecessors. Thus, if the algorithm does not stop
prematurely, it marks the components so that com-
plementary components have complementary values
and no path leads from a true component to a false
component. If we assign to each vertex the truth
value of the component containing it, we get a truth
assignment satisfying 2(i) and 2(ii).

We now generalize this idea to solve the evaluation
problem. We call a vertex universal if the correspond-
ing variable is universally quantified and existential
otherwise.

Theorem 2. The formula F is true if and only if none

of the following three conditions holds:
3(i) An existential vertex u is in the same strong

component as its complement iT.
3(ii) A universal vertex ui is in the same strong

component as an existential vertex uj such that j < i
(i.e., xi is not quan tij?ed within the scope of Qi).

3(iii) There is a path from a universal vertex u to
another universal vertex v. (This condition includes
the case that v = U.)

Proof. It is easy to show that if any 3(i)-3(iii) holds,
then F is false. We prove the convea;e by giving an
algorithm that either detects an occurrence of 3(i),
3(ii), or 3(iii), or else marks the strong components of
G(F) in a way that verifies the truth of F.

Two-CNF evaluation algorithm. Process the strong
components S of G(F) in reverse topological order as
follows:

Step 1. If S is marked then go on to the next com-
ponent. Otherwise if some successor of S is marked
false or contingent go to Step 2. Otherwise go to
Step 3.

Step 2. (S has a false or contingent successor.) If S
contains one or more universal vertices, stop: condi-

Volume 8, number 3 INFCRMATION PROCESSING LETTERS March 1979

tion 3(iii) holds. Otherwise, mark S false and go to
Step 5.

Step 3. (All successors of S are true.) If S contains
two or more universal vertices, stop: condition 3(iii)

holds. Otherwise, if S contains one universal variable
Ui, go to Step 4. Otherwise, mark S true and go to
Step 5.

Step 4. (S contains a universal vertex Ui.) If S con-
tains an existential vertex Uj withj < i, stop: condi-

tion 3(ii) holds. Otherwise mark S contingent and go
to Step 5.

Step 5. (S is marked successfully.) If S = s stop:
condition 3(i) or 3(iii) holds. Otherwise, go to Step 6.

Step 6. (S # g) If S is marked contingent or false
and s is a predecessor of S, stop: condition 3(iii)
holds. Otherwise, mark s false if S is true, contingent
if S is contingent, and true if S is false; go on to the
next component.

This algorithm marks each component processed
either true, false, or contingent. Each component
containing a universal vertex is marked contingent;
each component containing only existential variables
is marked either trre or false. When a component is
marked false, either all its successors are marked, at
least one of them contingent or false, or all its pre-
decessors are marked, all of them false. This follows
immediately from Steps 2,3, and 6 and the duality
property. It follows by induction that if, during the
operation of the algorithm, some component S1 is
marked false while it has an unmarked predecessor,
then there is a path from S1 to a comp0nen.t S,
marked contingent. Similarly, when a component is
marked true, either all its successors are marked, all
true, or all its predecessors are marked, at least one
true or contingent. Thus if some component S2 is
marked true while it has an unmarked successor,
then there is a path from some contingent component
s1 to&.

It follows from these facts that if the algorithm
stops in Step 2 or Step 6, then condition 3(iii) holds.
If the algorithm stops in Step 3, Step 4, or Step 5, it
is obvious that the indicated condition holds. Thus if
the algorithm stops prematurely, at least one of the
conditions 3(i)-3(iii) holds.

If the algorithm does not stop prematurely, every
component is marked so that any true or contingent
component has only true components as successors,

and any false or contingent component has only
false components as predecessors. This follows easily
from the operation of the algorithm and the d.uality
property. Furthermore every component stld its
complement receive complementary truth values,
and every Izontingent component containing a uni-
versal vertex Ui contains as additional vertifzes only
existential vertices Uj such that i <j. We can prove
that F is true as follows: to each vertex in a true or
false component we assign true or false, respectively.
For any assignment of truth values to the universal
variables, we assign to each vertex in a component
containing a universal vertex Ui the truth value of xi
if&= xi and the complementary truth value if
Ui = Fi. Such an assignment satisfies 2(i) and 2(ii).
Thus F is true.

Our algorithm requires O(n + m) time, where m is
the number of edges in G(F) (twice the number of
clauses in C’). The algorithm processes the strong com-
ponents in the same order as they are generated by
the linear-time strong components algorithm; thus
the strong components algorithm may be used with
only minor modifications to solve this evaluation
problem.

References

[l

12

13

VI

PI

161

v3

A.V. Aho, I.E. Hopcroft and J.D. UIlman, The Design
and Analysis of Computer Algorithms (Addison-Wesley,
Reading, MA, 1974).
S.A. Zook, The complexity of theorem proving proce-
dures, Proc. 3rd Ann. ACM Symp. Theory Comput.
(1971) 151-158.
S. E\,en, A. Itai and A. Shamir, On the complexity of
time table and multi-commodity flow problems, SIAM
J. Cornput. 5 (4) (1976) 691-703.
E.M. Reingold, J. Nievergelt and N. Deo, CombinatoriaI
Algorithms: Theory and Practice (Prentice-HaII, Engle-
wool1 Cliffs, NJ, 1977).
T.J. Schaefer, The complexity of satisfiability problems,
Proc. 10th Ann. ACM Symp. Theory Comput. (1978)
216-226.
L.J. Stockmeyer and A.R. Meyer, Word problems
requiring exponential time, Proc. 5th Ann. ACM Symp.
Theory Comput. (1973) l-9.
R.E I Tarjan, Depth fist search and linear graph algo-
rithms, SIAM J. Comput. 1 (2) (1972) 146-160.

123

