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Let F = Qlxr Qzxz l ** Qnx, C be a quantified 
Boolean formula with no free variables, where each 
Qi is either 3 or t, and C is in conjunctive normal 
form. That is, C is a conjunction of clauses, each 
clause is a disjunction of literals, and each literal is 
either a variable, xi, or the negation of a variable, Zi 
(1 < i f n). We shall use Ui to denote a literal equal 
to either Xi or Fi. The evaluation problem for quanti- 
fied Boolean formulas is to determine whether such a 
formula F is true. 

The evaluation problem is complete in polynomial 
space [6], even if C is restricted to contain at most 
three literals per clause. The satisfiability problem, 
the special case in which all quantifiers are existential, 
is NP-complete [ 1,2,4] for formulas with three literals 
per clause. However, the satisfiability problem for 
formulas with only two literals per clause is solvable 
in polynomial time [ 1,2,4] ; Even, Itai, and Shamir [3] 
outline a linear-time algorithm. Schaefer [5] claims 
a polynomial time bound for the evaluation problem 
with two literals per clause, although he gives no 
proof. In this note we present a simple constructive 
algorithm for the evaluation of formulas having two 
literals per clause, which runs in linear time on a ran- 
dom access machine. 
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Naval Research Contract N00014-76C-0688, by a National 
Science Foundation Graduate Fellowship, and by a Guggen- 
heim Fellowship. Reproduction in whole or in part is 
permitted for any purposes of the United States govern- 
ment. 

Our algorithm uses properties of directed graphs. 
Suppose we are given a formula F = 
Qlxr Qzx2 l ‘* Q,x, C such that C is in conjunctive 
normal form with at most two literals per clause.,We 
can assume without loss of generality that there are 
no clauses with only one literal since the clause u is 
equivalent to the clause u VU. We construct a directed 
graph G(F) with 2n vertices and 2lCl edges (counting 
multiple edges) as follows: 

l(i) For each variable Xi, we add two vertices 
named Xi and Xi to G(F). We identify Zi with Xi, and 
we call xi and Xi complements of each other. 

l(ii) Far each clause (u v u) of C, we add edges 
ii+ u and t’+ u to GQ. 
The graph G(F) has the following duality property: 
G(F) is isomorphic to the graph obtained from G(F) 
by reversing the directions of all the edges and com- 
plementing the names of all the vertices. See Fig. 1. 

Our algorithm relies upon identifying the strong 
components of G(F). A graph is strorzgly connected 
if there is a path from any vertex to any other. The 
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Fig. 1. Graph constructed for the set of clauses G = 
(a Vb, b Vz F Vz, b Vd, d Va). 
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maximal strongly connected subgrsphs of a graph are 
vertex-disjoint and are called its strong components. 
If & and Sz are strong components such that an edge 
cads from ;1 vertex in Sr to a vertex in S2, then Si is 
a pre&cessor of S’s and S2 is a sl~ccessor of S1. The 
strong components of a directed graph can be found 
in linear time by an algorithm of Tarjan [ 1,4,7], 

which generates the components in reverse topological 
order; that is, in an order such that if S1 is generated 
before S2. then Sr is not a predecessor of &. 

By the duality property every strong component S 
of G(F) has a dual component S consisting of the 
subgraph induced by the complements of the vertices 
In S. (It may be the case that S =S.) If S1 and S2 are 
two strong components of G(F) and S1 is a predeces- 
\r)r of’ Sz, then s1 is a successor of Sz and vice versa. 
It foliows that Sr and Sz are incomparable if and only 
if& and Sz are incomparable. 

t(i) For all i, vertices Xi and fi receive comple- 
mentary truth values. 

Suppose we assign truth values to the vertices of 
G(F). Such an assignment corresponds to a set of 
truth values for the variables which m&kes C true if 
rind only if: 

2(ii) No edge u + u has u assigned true and u 
assigned false (equivalently, no path leads from a 
true vertex to a false vertex) 

To clarify our approach, we first consider the 
satisfiabiliry problem; thus let us assume that all the 
quantifiers z-r F are existential. 

Theorem I. The expression C is satisfiable if and only 
if in G(F) I: ; vertex ui is in the same strong compo- 
nent as its complement i7i (i.e., no strong component 
S is equal to its complement ST). 

Proof. In one direction the proof is easy: if some ver- 
tex ui is in the same strong component as ii, then any 
truth assignment to the vertices of G(F) must violate 
either 2(i) or 2(ii); hence C is unsatisfiable. To prove 
the converse we provide an algorithm which either 
detects the condition in Theorem 1 or marks the 
strong components of G(F) in a way which implies 
the existence of a truth assignment satisfying C. 

wo-~atis~a~j~it~ alg recess the strong com- 
ponents S of G(F) in reverse topological order as 
folio Jvs: 
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General Step. IfS is marked, do nothing. Other- 
wise if S = S then stop: C is unsatisfiable. Otherwise 
mark S true and S false. 

This algorithm stops prematurely only if some 
vertex is in the same strong component as its comple- 
ment. By using the duality property and induction, it 
is easy to prove every component marked true has 
only true components as successors and every com- 
ponent marked false has only false components as 
predecessors. Thus, if the algorithm does not stop 
prematurely, it marks the components so that com- 
plementary components have complementary values 
and no path leads from a true component to a false 
component. If we assign to each vertex the truth 
value of the component containing it, we get a truth 
assignment satisfying 2(i) and 2(ii). 

We now generalize this idea to solve the evaluation 
problem. We call a vertex universal if the correspond- 
ing variable is universally quantified and existential 
otherwise. 

Theorem 2. The formula F is true if and only if none 

of the following three conditions holds: 
3(i) An existential vertex u is in the same strong 

component as its complement iT. 
3(ii) A universal vertex ui is in the same strong 

component as an existential vertex uj such that j < i 
(i.e., xi is not quan tij?ed within the scope of Qi). 

3(iii) There is a path from a universal vertex u to 
another universal vertex v. (This condition includes 
the case that v = U.) 

Proof. It is easy to show that if any 3(i)-3(iii) holds, 
then F is false. We prove the convea;e by giving an 
algorithm that either detects an occurrence of 3(i), 
3(ii), or 3(iii), or else marks the strong components of 
G(F) in a way that verifies the truth of F. 

Two-CNF evaluation algorithm. Process the strong 
components S of G(F) in reverse topological order as 
follows: 

Step 1. If S is marked then go on to the next com- 
ponent. Otherwise if some successor of S is marked 
false or contingent go to Step 2. Otherwise go to 
Step 3. 

Step 2. (S has a false or contingent successor.) If S 
contains one or more universal vertices, stop: condi- 
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tion 3(iii) holds. Otherwise, mark S false and go to 
Step 5. 

Step 3. (All successors of S are true.) If S contains 
two or more universal vertices, stop: condition 3(iii) 

holds. Otherwise, if S contains one universal variable 
Ui, go to Step 4. Otherwise, mark S true and go to 
Step 5. 

Step 4. (S contains a universal vertex Ui.) If S con- 
tains an existential vertex Uj withj < i, stop: condi- 

tion 3(ii) holds. Otherwise mark S contingent and go 
to Step 5. 

Step 5. (S is marked successfully.) If S = s stop: 
condition 3(i) or 3(iii) holds. Otherwise, go to Step 6. 

Step 6. (S # g) If S is marked contingent or false 
and s is a predecessor of S, stop: condition 3(iii) 
holds. Otherwise, mark s false if S is true, contingent 
if S is contingent, and true if S is false; go on to the 
next component. 

This algorithm marks each component processed 
either true, false, or contingent. Each component 
containing a universal vertex is marked contingent; 
each component containing only existential variables 
is marked either trre or false. When a component is 
marked false, either all its successors are marked, at 
least one of them contingent or false, or all its pre- 
decessors are marked, all of them false. This follows 
immediately from Steps 2,3, and 6 and the duality 
property. It follows by induction that if, during the 
operation of the algorithm, some component S1 is 
marked false while it has an unmarked predecessor, 
then there is a path from S1 to a comp0nen.t S, 
marked contingent. Similarly, when a component is 
marked true, either all its successors are marked, all 
true, or all its predecessors are marked, at least one 
true or contingent. Thus if some component S2 is 
marked true while it has an unmarked successor, 
then there is a path from some contingent component 
s1 to&. 

It follows from these facts that if the algorithm 
stops in Step 2 or Step 6, then condition 3(iii) holds. 
If the algorithm stops in Step 3, Step 4, or Step 5, it 
is obvious that the indicated condition holds. Thus if 
the algorithm stops prematurely, at least one of the 
conditions 3(i)-3(iii) holds. 

If the algorithm does not stop prematurely, every 
component is marked so that any true or contingent 
component has only true components as successors, 

and any false or contingent component has only 
false components as predecessors. This follows easily 
from the operation of the algorithm and the d.uality 
property. Furthermore every component stld its 
complement receive complementary truth values, 
and every Izontingent component containing a uni- 
versal vertex Ui contains as additional vertifzes only 
existential vertices Uj such that i <j. We can prove 
that F is true as follows: to each vertex in a true or 
false component we assign true or false, respectively. 
For any assignment of truth values to the universal 
variables, we assign to each vertex in a component 
containing a universal vertex Ui the truth value of xi 
if&= xi and the complementary truth value if 
Ui = Fi. Such an assignment satisfies 2(i) and 2(ii). 
Thus F is true. 

Our algorithm requires O(n + m) time, where m is 
the number of edges in G(F) (twice the number of 
clauses in C’). The algorithm processes the strong com- 
ponents in the same order as they are generated by 
the linear-time strong components algorithm; thus 
the strong components algorithm may be used with 
only minor modifications to solve this evaluation 
problem. 
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