Reversible Computation

S. Buss, 22 January 2013.

Part I:
[Bennett '73; Bennett '89; Levine-Sherman '90].
[Also: Lecher '63.]
Goal: Reversible simulation of deterministic computation.

"Poor man's" or "Global" reversibility.

→ Remember the input and count the number of steps.
→ Can reverse a computation step by returning to the initial configuration, and running the entire computation up to the previous step.

Bennett '73 defined "reversible" more stringently:
No two configurations can lead to the same successor configuration.

Slightly modified definition of TM so that an instruction can either:
(a) Read a symbol + overwrite with a new symbol, or
(b) Ignore the read symbol (not even the stack arm) + move tape head -1, 0, or 1. Square right.

(Options (a) + (b) can be chosen differently in different ways)

Some things that can be done reversibly:
(1) Make a copy of a string (on top of blanks!)
(2) Erase (overwrite with blanks) a string if it is a copy of another string.
Bennett\'s construction

Let M be a deterministic (multipurpose) TM, with k types. Reversibly simulate M with a $(k+1)$ type machine.

- The new type holds a history of the transition rules executed during the computation of M: $\leq 2k$ symbols per step of M.

Tape $k+1$

- **blank**

Tape $k+1-k$

- **Input**

simulates $\downarrow \downarrow \downarrow \downarrow \leftarrow$ Run M forward

Tape $k+1$

- **history**

Tape $k+1-k$

- **Work Tape**
 - **Output**

$\downarrow \downarrow \downarrow \downarrow \leftarrow$ Copy output

Tape $k+1$

- **history**

Tape $k+1-k$

- **Work Tape**
 - **Output**

$\downarrow \downarrow \downarrow \downarrow \leftarrow$ Run M backwards

Tape $k+1$

- **blank**

Tape $k+1-k$

- **blank write**

- **Input**
 - **Output**

For machines that use space $O(n)$, the input is read only, not part of the modified types. We\'ll deal only w/ such machine that have a boolean output or short output.
The above simulation of M uses

- Time $O(T)$
- Space $O(S+T)$

where $M \in TISP(T, S)$.

For poly-time, logspace machine this gives a poly-space procedure.

[Bennett'79]: Remarks you do a two level version of this and achieve Time $O(T)$ and Space $O(\sqrt{ST})$.

and that by using multiple nested levels can perhaps achieve Time $O(T^2)$ and Space $O(S\log T)$.

This is carried out, and improved, in [Bennett'89, Levin Shoup'90]

Parameters:
- $m = \#$ of steps simulated at base level à la [Bennett'73.]
- $k = \#$ of blocks between recursive calls

```
<table>
<thead>
<tr>
<th>Config</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Config</td>
</tr>
</tbody>
</table>
```

k recursive calls (Forward computation)

$k-1$ recursive calls (Reversing computation)
At level n:

- Number of states of M simulated: $m^k = k^n$.
- Time used for one configuration: T_{n-1}, computation at level n:

$$P_n = (2k-1)P_{n-1}$$
$$P_0 = m$$

So:

$$P_n = m(2k-1)^n$$

Space used is given by:

$$S_n = \begin{cases} (k-1)m & \text{if } n = 1 \\ (k-1)m + S_{n-1} & \text{if } n > 1. \end{cases}$$

So:

$$S_n = m - m(k-1).$$

Take $m = S$ (for level 0, history uses same space as T.M. M).

Fix k.

Suppose M is in $TISP(T, S)$. $T = mk^n$, $S = m$

[Lenine-Sherman]:

The reversible computation uses:

- Space: $S' = S_n = S - \log\frac{T}{S} \frac{k-1}{\log k}$
- Time: $T' = P_n = T \left(\frac{T}{S}\right)^k$

where $E = \frac{\log(2-1/k)}{\log k}$.

And $E \to 0$ as $k \to \infty$.

Proof:

$$T' = P_n = S \cdot (2k-1)^n \cdot S \cdot \left(\frac{2k-1}{k}\right)^n = T \cdot \left(\frac{2k-1}{k}\right)^n$$

$$= T \cdot \left(\frac{T}{S}\right)^k.$$
Let \(M \) be a deterministic, space-S Turing machine. Assume initial configurations have no predecessor configurations and \(M \) halts on all inputs.

On input \(x \): Initial configuration is \(C(x) \).

\(C(x) \) determines a component in the undirected graph of one-step reachability among configurations.

Lemma: The connected component of \(C(x) \) is tree-like with a single root (sink node).

![Graph Example](image)

From the directed graph of \(M \)'s configurations of depth \(S(x) \), form an "Eulerian tour" on the "edge ends" of \(6 \).

Ex: The edge ends are a1, a3, b2, b4, c3, c6, d4, d6, e5, e6, f6, f7.

Each vertex of \(G \) has finite form, corresponding to \(M \) having only finitely many transition rules. Form an arbitrary cyclic permutation of the incident edge ends. Also let \(\pi \) swap the ends of two an edge.

Ex: \(\pi(a1) = a3 \)
\(\pi(a3) = a1, \) etc.
\(\tau(a3) = c3 \)
\(\tau(a1) = a1, \) etc.
\(\tau(c6) = d6 \)
\(\tau(d6) = e6 \)
\(\tau(e6) = f6 \)
\(\tau(f6) = c6. \)

Define \(\lambda = \pi \tau \).

Ex: \(a1 \xrightarrow{\lambda} a3 \xrightarrow{\lambda} c6 \xrightarrow{\lambda} d4 \xrightarrow{\lambda} b2 \xrightarrow{\lambda} b4 \xrightarrow{\lambda} d6 \xrightarrow{\lambda} \cdots \)
Thus x is a cycle permutation of the edge ends of the connected component of $C(x)$.

The reversible simulation just iterates x until reaching one (the) finalizing configuration.

It needs to remember only the current edge end; hence uses only $O(5)$ space.

Hence uses item 2 of $O(5)$.

Then $SPACE(5) \leq rev_SPACE(5)$.

[Buttman-Trapp-Vitanyi '01; Williams, unpub.] gave since small representatives by combining Bennett's method with the LMT construction. Namely, the lower levels of Bennett's construction are replaced by a use of LMT.

Williams conjecture: $TISP(7, 5) \leq rev_TISP(1, 5) + \begin{array}{c}
\text{rev-} TISP \left(\max \left(7 + \varepsilon \cdot 2^5, 5 \right) \right) \\varepsilon
\end{array}$

should be possible. However current methods are not close to this yet.