Derandomizing Computation on Time/Space

How many random bits are needed for randomized algorithms?

Algorithm $A(x,r)$ - input x, random r.

Derandomization: estimate $\text{Prob} \ A(x,r)$

Generic derandomization: find a list $\{i_1, \ldots, i_k\}$ try all $A(x, i_j)$

Given truly random $(i_1, \ldots, i_k \in \{0,1\}^b, \ b \text{-bit } "\text{seed}"
angle$

$G(i_1, \ldots, i_k) = r$ is a pseudorandom generator.

Define $G: \{0,1\}^b \rightarrow \{0,1\}^b$ is an ε-prog, for algorithms in class C

if $\forall \ x, \forall A \in C,$

\[
\left| \text{Prob} \left[A(x, r) \right] - \text{Prob} \left[A(x, G(i)) \right] \right| \leq \varepsilon
\]

Class C for time/space tradeoff

Read-once, oblivious branching program, also OBDD.

For each fixed input x: $A(x, _)$ define an OBDD:

Space S branching program has $\leq 2^S$ many nodes (configurations)

Time T has T layers, last layer has

two nodes: "accept" or "reject".

Space $= \log \left(\text{width}(L) \right)$

Time $= \# \text{ of random bits}$

Now work with class $\mathcal{C} = \text{OBDD}$, with $\text{Time} T \times \text{Space} S$

An ε-prog for \mathcal{C} gives an ε-prog for $\text{TISP}(T,S)$.
Goal: Construct ε-PRG with small \(b \), for \((S, T)\)-OBDDs.

Want \(b \) small, since derandomized algorithm uses the \(T^* = 2^b \).

Also want \(b \) to be compatible in small space \(S \).

Nisan-Zuckerman — this talk.

Ajtai-Komlos-Szemeredi, Babai-Nisan-Szegedy — earlier work.

In \((S, T)\)-OBDD: Let \(N \) = \# of random bits so far (\(S \) layer).

When \(N > S \), each state (at layer \(N \)) is reached in about \(2^n / 2^S \) ways (\(\frac{2^n}{2^S} \approx 2^N \) if \(N > S \)).

Given \(N \) but story, can count state entropy of state is \(S \).

Entropy of random bits in \(N \).

Intuition: Use the unused entropy is \(\approx NS \).

Alternate intuition: Use "poor quality" randomness to create truly (enough) random bits.

Extractor: will use a small amount of true randomness.

\[E : \{0, 1\}^N \times \{0, 1\}^S \rightarrow \{0, 1\}^M \]

\(N \)-"flawed" randomness.

\(S \)-true randomness.

\(M \)-extracted randomness.

Defn \(E(x, s) \leftarrow U_M \)

\(\forall x \in \{0, 1\}^N, \ |x| \geq 2^k, \) the statistical distance is less than \(\varepsilon \):

\[E(x, s) \approx U_M \]

\(x \in X \)

\(S \in \{0, 1\}^S \)

where statistical distance equals \(L_1 \)-distance or total variation.

(\(\approx \frac{1}{2} \text{ tosses } x? \))
Claim: \(\exists \) construction \((k, \varepsilon, N, \lambda, M) - \) extractors

provided \(M = 5\mu(k) \), \(\lambda = \Omega(\log N + \log \log \varepsilon) \)

Strong extractor: \((E(x; s), s) \sim \mathcal{U}_n \times \mathcal{U}_n \)

Claim: Some claim holds \(\exists \) strong extractor.

Let \(N = O(S) \) \((N = O(S), \text{ constant})\)

\[
\begin{align*}
 k &= N - 2S \\
 \varepsilon &= \frac{1}{poly(T)} \\
 M &= S(5) \\
 \lambda &= O(\log S + \log T)
\end{align*}
\]

We'll first \(N + \frac{T}{N} \varepsilon \) bits to simulate \(T \) random bits

and apply the construction recursively.

Result: \(\rho_T \) has seed length \(\lambda' = O(S, \log T) \)

Top level of recursion:

\[
G_1(R, s_1, \ldots, s_m)
\]

\(N \)-bits \(\frac{2}{\lambda} \)-bit each

Random bits: \(R \circ E(R, s_1) \circ E(R, s_2) \ldots \circ E(s_{\mu}, T_1) \)

\(m \)-bits \(m \)-bits \(m \)-bits

(to make the analysis easier, don't use \(R \) as random)

Intuitively results of pseudo-random bits are close indistinguishable to truly random \(T \)-bits.
Resume application

\[\frac{s_0}{s_0} \cdots \frac{s_m}{s_m} \]

Use the \(\frac{F}{2^m} \) bit of randomness

Handle this recursively.

Split into \(N/2 \) steps

Recursively \(\ell = \frac{\log T}{\log (M^2)} \) times: Random bits are \(R_1, \ldots, R_\ell \)

Last level uses \(R_1, \ldots, R_\ell, \hat{s}_1^{(\ell)}, \ldots, \hat{s}_M^{(\ell)} \)

Transverse recursion tree to extract bits at level \(\ell \),
Space to compute: \(\text{height of tree}) \cdot M \)

Total random bits = \(O(NM) = O(\frac{s \log T}{\ell \cdot M}) \).
Extractor

Get randomness out of a partially random input as an approximately
uniformly random string.

\[E(x, s) : \{0, 1\}^n \times \{0, 1\}^m \rightarrow \{0, 1\}^m \]

If \(x \) has \(k \) bits of randomness and \(s \in \{0, 1\}^m \),
then \(E(x, s) \sim u \{0, 1\}^m \)

\[\text{mbits} \rightarrow \text{mbits} \]

Start

\[x, n \text{ bits} \]

\[y_1, y_2 \]

\[z_1 = E(x, s_1) \]

\[z_2 = E(x, s_2) \]

\[y_1, y_2 \ldots \text{ are random bits that would be used in the actually (uniformly} \]

\[\text{probabilistic) output.} \]

\[z_1, z_2, \ldots \text{ replace the } x \text{'s} \]

\[s_1, s_2, \ldots \text{ randomly chosen seeds, each } r \text{ bits.} \]

New randomness = \(n + (\frac{1}{m})n \)

New space = \(S \) (\(S \) is also the original space).

Apply recursively:

\[\text{mbits} \rightarrow \text{mbits} \]

\[\text{Acc} \]

\[\text{Ref} \]

Redo block + apply recursively, in = "tree" of randomness.
Lemma: If $E(x, s)$ is an (n, r, m, k, e)-extractor, then

\[
\left| \text{Prob}[\text{original computer accept}] - \text{Prob}[\text{extractors based algorithm accept}] \right| \\
\leq O\left(eT + \delta T \cdot 2^{-O\left(\left(\frac{n-k}{2} \right)^{2} \right)} \right) \\
= O\left((e + 2^{-\left(\frac{n-k}{2} \right)}) T \right) \\
= O\left((e + 2^{-\left(n-5-k \right)}) T \right).
\]

Intuition: We need k bits of "randomness" at each stage. Start off with n bits of (true) randomness. But after the 1^st level, only have $n-5$ bits of randomness. So need $k < n-5$.

Proof: Hybrid argument.

$D_0 = y_1 \cdots y_{Tm}$

$D_{Tm} = xz_1 \cdots z_{Tm}$

$D_i = xz_1 \cdots z_i \cdot y_i \cdots y_{Tm}$ P_i

Need to show $|P_i - P_{i+1}| \leq O\left((e + 2^{-\left(n-5-k \right)}) \right)$.

$D_{Tn} = x z_1 \cdots z_i \cdot y_i \cdots y_{Tm}$ - changes y_i are placed from D_i.

Can fix $z_1 \cdots z_i$, and $y_i \cdots y_{Tm}$ to maximize the difference $|P_i - P_{i+1}|$.

Let $F(x)$ be the state reached after 1^st stage (using the fixed $z_1 \cdots z_i$)

$F(x): z_0, y_1 \rightarrow z_0, y_1$

Let g be any state where $|F^{-1}(g)| \leq 2^k$

(This is the "bad" case, since $x \not\in F^{-1}(g)$ does not have k bits of randomness.)
For all "bad" g,
\[\operatorname{Prob}_x \left[F(x) = g \right] < 2^{-k/2n} \]
\[\operatorname{Prob} \exists \delta \left(\{F(\delta) \leq 2^k \text{ and } F(x) = g \} \right) < 2^k \cdot 2^{5/2n} = \frac{2^k}{2^n} \cdot 2^5 = 2^{-(n-5k)} \]

Let $S_i = |P_i - P_i+1|$,

So \exists fixed g such $\{F(g) \leq 2^k \}$ and
\[|P_i g - P_{i+1} g| > S_i - 2^{-(n-5k)} \]

"Distinguishing probability" conditioned on reaching configuration g.

$T(y)_i = \text{"it start at } g \text{ after } i$, do we accept using random bit } \hat{y}_{i+1} = y$.

For P_i, pick y at random.

For P_{i+1}, choose $x \in E_d F(g)$, and choose $z = E(x, \delta_{i+1})$.

Then
\[|\operatorname{Prob}_x \left[T(y) \right] - \operatorname{Prob}[T(z)]| \leq \varepsilon \]
and
\[S_i - 2^{-(n-5k)} \leq |\operatorname{Prob}_x \left[T(y) \right] - \operatorname{Prob}[T(z)]| \]

\text{ged Lemma.}

\text{RH Big } \varepsilon \text{ not needed.}
A pretty good extractor with a simple construction.

\[f : \{0,1\}^n \rightarrow \{0,1\}^m \]

\[g : \{0,1\}^n \rightarrow \{0,1\}^{2n} \]

\[B \] is random.

If \(T \) is a test that distinguishes pseudo-random strings
from truly random ones,
then \(\exists \text{ circuit } CT \text{ that computes } f, \quad |CT| \leq K \),

Then are \(2^K \) circuits of size \(k \).

If \(\sigma \) comes from a distribution \(\sigma \) with \(k \) bits of entropy,
then for every test \(T \), most \(\sigma \)'s are not equal to \(CT \), for each \(T \).

If not, \(T(f(\sigma)) \approx T(\sigma) \).

Parameters with earlier argument:
\[N = N \]
\[K \approx \text{ circuit size} \]
\[E = E \]
\[m \approx \text{ number of bits per} \]

Hardness to randomness construction

If \(f \) is least-case hard, \(g \) is hard to predict w/ \(> \frac{1}{2} + \epsilon \) advantage

[Basic idea: use even correcting code \(\mathcal{C} \)]

Using list-decoding codes from noise \(\frac{1}{2} - \delta \).

Now use Nisan-Wigderson construction.

Design \(S, S_n, S_n \), see \(15.1 = n \).

List-decoding code's parameters

\[L = \mathcal{O} \left(\frac{1}{\sqrt{\delta}} \right) \]
\[|ECC(f)| = \mathcal{O} \left(\log^4(N) \right) \]
\[R = \mathcal{O}(n) \]
\[r = n \cdot -n - \text{constant} \]
\[m = 2 \cdot \mathcal{O}(n) \]
\[m = \mathcal{n} \cdot \mathcal{O}(1) \]
\[L = \mathcal{O} \left(\log(N) \right) \]

\[k = 2^n \cdot n + \mathcal{O}(\log(1/\delta)) = N^{\mathcal{O}(1)} + \mathcal{O}(\log(1/\delta)) \]
\[M = k \]

\[R = \mathcal{O}(\log N), \quad E = N - k \]
\[E = \mathcal{O}(1) \]

\[n = \mathcal{O}(\max(\log T, S)) = \mathcal{O}(S) \]
\[m = n^3 \]

\[T \rightarrow T' = T \cdot \frac{\log S}{S^2} \]

of recursive iterations \(\mathcal{O} \left(\log S \right) \)

Total amount of randomness \(\approx \mathcal{O}(S \cdot \frac{\log T}{\log S}) \).