Bounded Arithmetic, Expanders, and Monotone Propositional Proofs

Sam Buss
joint work with Valentine Kabanets,
Antonina Kolokolova & Michal Koucký

Takeuti Symposium on Advances in Logic
Kobe, Japan
September 20, 2018
A. Bounded arithmetic theories are weak subtheories of Peano arithmetic with close connections to
 - Feasible complexity classes, e.g. P and NC1.
 - Propositional proof complexity, via the Paris-Wilkie and the Cook translations.

Moral: A proof in bounded arithmetic corresponds to a uniform family of propositional proofs.

B. Monotone propositional logic (MLK) is the propositional sequent calculus with no use of negation (\neg) permitted. LK is the usual propositional sequent calculus.

Main theorem: MLK polynomially simulates LK.

C. This talk describes how to formalize, in VNC1 — a theory of bounded arithmetic corresponding to NC1, the construction of expander graphs. Using prior work [Arai; Cook-Morioka; Atserias-Galesi-Pudlák; Jeřábek], this proves the main theorem.
The first Bounded Arithmetic theories ($I\Delta_0$, [Parikh’71, ...]) and (S_2^i, T_2^1, U_2^1, V_2^1 [B’85]) were for alternating linear time and for polynomial time (P), the polynomial hierarchy (PH), polynomial space and exponential time.

Takeuti [90]: the RSUV isomorphism translates theories such as U_2^1 into theories for feasible classes below P.

Clote-Takeuti [1992] achieved this for such several theories, including for alternating logarithmic time (Alogtime, or uniform NC1), log space (L) and nondeterministic log space (NL). Especially, they defined the bounded arithmetic theory TNC for Alogtime.

Arai [2000] developed an improved theory AID similar to TNC: he showed in addition that the theory AID has the Cook correspondence with propositional LK proofs.

Cook-Morioka [’05], Cook-Nguyen[’10] give newer versions, esp. VNC1.
Def’n: The *propositional sequent calculus (LK)* is a propositional proof system whose proofs consist of sequents, with a finite set of valid inference forms, for example

\[
\begin{align*}
\wedge: \text{right} & \quad \frac{\Gamma \rightarrow \Delta, A \quad \Gamma \rightarrow \Delta, B}{\Gamma \rightarrow \Delta, A \land B} \\
\text{Cut} & \quad \frac{\Gamma \rightarrow \Delta, A \quad A, \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta}
\end{align*}
\]

Def’n: The *monotone sequent calculus (MLK)* is LK restricted to allow only monotone formulas to appear in sequents.

MLK proofs are allowed to be dag-like.

Main Theorem: LK proofs of monotone sequents can be simulated by polynomial size MLK proofs.
I. **Combinatorial construction of expander graphs**, avoiding algebraic concepts such as eigenvalues even in proofs of correctness.

II. This construction can be **carried out in** NC^1 (logarithmic depth Boolean circuits).

III. Combinatorial constructions are **provably correct** in the weak first-order theory VNC^1 corresponding to NC^1.

IV. **Application:** *Monotone* propositional logic (MLK) polynomially simulates non-monotone propositional logic (LK)
I. Construction of Expanders

Expander Graphs:

- Undirected graphs, allowing self-loops and multiple edges.
- Expander graphs are both sparse (usually constant degree) and well connected.
- A random walk on an expander graphs converges quickly.
- Are used for pseudorandomness, e.g., for one-way functions, error-correcting codes, derandomization, etc.
- Are widely used in complexity theory, e.g.,
 - Reingold; Rozenman-Vadhan. USTCON in Logspace
 - Dinur: Combinatorial proof of PCP theorem
Definition of expander graph $G = (V, E)$, of constant degree d

For U, \overline{U} a proper partition of the vertices V, let

$$\text{edge-exp}_G(U) := \frac{|E(U, \overline{U})|}{d \cdot \min(|U|, |\overline{U}|)}.$$

$E(U, \overline{U})$ is the set edges between E and \overline{E}. The edge expansion of G is $\min_U(\text{edge-exp}_G(U))$.

G is an expander graph if it has $\Omega(1)$ edge expansion.

Edge expansion can be lower bounded in terms of the spectral gap (second largest eigenvalue λ_2) of the adjacency matrix.

Our work requires instead combinatorial constructions and proofs.
Classical (non)construction: [Pinkser’73]
A randomly chosen degree d graph is an expander.

Iterative Constructions:
Start with finite size expander graph(s). Then iteratively use:

- Powering (to increase expansion).
- Zig-zag product or replacement product (to reduce the degree).
- Tensoring (to increase the size of the graph).
- Adding self-loops (helps maintain edge expansion).

Original construction [Reingold-Vadhan-Wigderson’02]
- Used Zig-zag product, proof based on spectral gap.
- [Alon, Schwartz, Shapira’08] used Replacement product with combinatorial argument.

Our arguments for powering will use also Mihail’s combinatorial proof of mixing times from edge expansion [1989].
The explicit construction: (Similar to the prior constructions)
Starts with constants c, d and two “small” (fixed) graphs
- a $2d$-regular G_0 with edge expansion $\geq \epsilon = 1/1296$
- a d-regular H on $(2(4d)^2)^c$ vertices with edge expansion $\geq 1/3$.

Iterate: $G_{i+1} = [\bigodot((\bigodot G_i) \otimes (\bigodot G_i))]^c \circ H$.
- Add self-loops (\bigodot) to double the degree
- Tensor (\otimes) with itself
- Add self-loops
- Power to constant c
- Replace each vertex with H (replacement product, \circ)

Theorem: Each G_i is degree $2d$ and has edge expansion $\geq \epsilon$.
The size of G_{i+1} is greater than (size of G_i)2, (size squares)
$|G_i| = (|G_0|D_0)^{2^i}/D_0 > 2^{2^i}$, where $D_0 = (2(4d)^2)^c$.
Graph operations in more detail: $G = (V, E)$ of degree D.

Adding self-loops: $\bigcirc G$.
Add D self-loops to every vertex.
Vertex set remains the same. Degree doubles to $2D$.

Tensoring with itself: $G \otimes G$.
"Crossproduct of G with itself".
Vertex set is $V \times V$.
Degree squares to become D^2.

Raise to power c: G^c.
Paths of length c in G are edges of G^c.
Vertex set is unchanged. Degree becomes D^c.
Graph operations in more detail: \(G = (V, E) \) of degree \(D \) and \(H = (V', E') \) of size \(|V'| = D\) and degree \(d\).

Replacement product: \(G \circ H \).

Replace each \(G \)-vertex \(v \in V \) with a copy \(H_v \) of \(H \).

Thus vertex set is \(V \times V' \).

An edge \(e = (v_1, v_2) \) in \(G \) becomes

\[d \] parallel edges between vertices of \(H_{v_1} \) and \(H_{v_2} \).

If \(v_2 \) is \(i \)-th-neighbor of \(v_1 \) in \(G \), it uses \(i \)-th vertex of \(H_{v_1} \).

Degree becomes \(2d \).

Rotation map: For the replacement product, it is necessary to order the edges reaching each vertex. The rotation map of a graph \(G \) computes from \(v \in V \) and \(i < D \): the \(i \)-th neighbor \(w \) of \(v \), and the index \(j \) such that \(v \) is the \(j \)-th neighbor of \(w \).
Main Theorem 1: The rotation map of G_i is uniformly computable from i, j, v in
- Polynomial time.
- Alternating linear time.

Proof (a) Straightforward unwinding of construction gives the polynomial time algorithm.
(b) Alternating linear time: G_{i+1}’s rotation map is computed from G_i’s rotation map in constant alternation linear time. Only a single recursive call to G_i is needed. E.g. for powering, nondeterministically guess the path of length c. Then universally verify correctness of each step in the path. Since the size of G_{i+1} is > square of size G_i, the “linear time” is decreasing by factor of two with each recursive call. So the overall running time is linear (but not constant alternation).
Since the graph G_i is exponentially bigger than the size of the inputs to the rotation map function, we get:

Corollary As a function of G_i, there is an alternating logarithmic time algorithm (an NC^1 algorithm) to compute the edge relation on G_i.
Key constructive justification of edge-expansion:

Lemma If U is a set of vertices of G_{i+1} with $\text{edge-exp}_{G_{i+1}}(U) < \epsilon$, then there exists a set U' of vertices of G_i such that $\text{edge-exp}_{G_i}(U') < \epsilon$.

Proof idea: There is an NC^1 algorithm to compute membership in U' in terms of U. The correctness is provable by purely combinatorial means without recourse to algebraic concepts such as eigenvalues.

Technical tools needed:

- Representing graphs and rotation maps.
- Definition of the expansion of a set U (as a rational).
- Summing sequences of rationals (common denominator).
- Arithmetic manipulations of these sequences.
- Cauchy-Schwartz inequality.

All of these can be done in the bounded arithmetic theory VNC^1. ...
Notation: VNC^1 is a second-order theory of bounded arithmetic [Cook-Morioka’05], [Cook-Nguyen’10]; the first versions were defined by [Clote-Takeuti’92], [Arai’00].

VNC^1 corresponds in proof-theoretic strength to NC^1.

Its provably total functions are precisely the NC^1-functions.

VNC^1 First-order objects code (small) integers. Second-order objects code strings, graphs, sequences, etc. Σ^B_0 is the set of formulas with no second order quantifiers.

Axioms of VNC^1 include: BASIC axioms (purely universal). Σ^B_0-Comprehension (and hence Σ^B_0-induction).

Σ^B_0-Tree Recursion axiom: The value of a balanced Boolean formula (a tree) with Σ^B_0 functions for gates is well-defined, and defines a function encoded by a second order object. The depth of the tree is given by a first-order object.
The proofs of edge expansion for G_i are based on combinatorial constructions, counting, and summations of series. VNC^1 can formalize all these arguments and can also prove the correctness of the NC^1 algorithm for the graphs G_i.

Main Theorem 2: The theory VNC^1 can prove the existence of the expander graphs G_i, as encoded by second-order objects, and can prove their expansion properties by using the constructions of Main Theorem 1, and the above Lemma.
More details on formalization in VNC^1.
First-order objects (integers, pairs of integers, etc.) encode small numbers, e.g., indices of vertices or edges.

Second-order objects encode sets, e.g., sets of vertices, or sets of edges (i.e., graphs).

$\text{edge-exp}_G(U)$ is definable in VNC^1 using counting, which is known to be definable in VNC^1.

Theorem:

$$\text{VNC}^1 \vdash \forall i \exists G = (V, E), |G| = i \land \forall U \subseteq V \text{ edge-exp}_G(U) > 1/1296.$$

Proof uses the “parameter-free Π^B_1-LLIND”, a new logarithmic-length induction principle for Σ^B_1 (NP) properties, which is justified by the “squaring” growth rate of the expander construction.
VNC\(^1\) proves parameter-free \(\Pi^B_1\)-LLIND:

Theorem: Suppose \(\theta(X)\) is a \(\Sigma^B_0\)-formula containing only \(X\) free. and let \(\psi(a)\) be \((\exists X \leq a)\theta(X)\). Also suppose VNC\(^1\) proves

\[
(\forall a)(\psi(a) \rightarrow \psi(\sqrt{a})).
\]

(1)

Then VNC\(^1\) proves \(\psi(a) \rightarrow \psi(1)\), and thus also proves \(\theta(Y) \rightarrow (\exists X \leq 1)\theta(X)\).

Application: The hypothesis \((\forall a)(\psi(a) \rightarrow \psi(\sqrt{a}))\) will express a version of

\[
(\exists U \subset G_i)\text{edge-exp}_U \leq 1/1296 \rightarrow (\exists U \subset G_{i-1})\text{edge-exp}_U \leq 1/1296.
\]

The conclusion \(\psi(a) \rightarrow \psi(1)\) will express a version of

\[
(\forall U \subset G_i)\text{edge-exp}_U > 1/1296.
\]
Monotone Boolean Function: Let $0 < 1$, i.e. “False” < “True”. A Boolean function $f(\vec{x})$ is monotone provided that whenever $\vec{x} \leq \vec{y}$, we have $f(\vec{x}) \leq f(\vec{y})$.

Monotone Boolean Formula: A propositional formula over the basis \land and \lor.

Sequent: $A_1, \ldots, A_k \rightarrow B_1, \ldots, B_\ell$ means

$$A_1 \land A_2 \land \cdots \land A_k \rightarrow B_1 \lor B_2 \lor \cdots \lor B_\ell$$

Example: Pigeonhole principle tautologies: PHP_n

$$\bigwedge_{i=0}^{n} \bigvee_{j=0}^{n-1} x_{i,j} \rightarrow \bigvee_{0 \leq i_1 < i_2 \leq n} \bigvee_{j=0}^{n-1} (x_{i_1,j} \land x_{i_2,j}).$$
Def’n: The **propositional sequent calculus (LK)** is a propositional proof system whose proofs consist of sequents, with a finite set of valid inference forms, for example

\[
\land:\text{right} \quad \frac{\Gamma \rightarrow \Delta, A \quad \Gamma \rightarrow \Delta, B}{\Gamma \rightarrow \Delta, A \land B}
\]

\[
\text{Cut} \quad \frac{\Gamma \rightarrow \Delta, A \quad A, \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta}
\]

Def’n: The **monotone sequent calculus (MLK)** is LK restricted to allow only monotone formulas to appear in sequents.

MLK proofs are allowed to be dag-like.
Theorem: [Atserias-Galesi-Galvalda’01; Aterias-Galesi-Pudlák’02] For monotone sequent tautologies, MLK quasipolynomially simulates LK.

Proof idea: Restrict to “slices” where a fixed number of inputs are true. Then simulate $\neg x$ using threshold formulas. The properties of the threshold formulas must be proved; and the natural recursively-defined threshold formulas that admit such proofs are quasipolynomial size.

Theorem: [B ’86] The PHP$_n$ tautologies have polynomial size LK proofs.

Corollary: MLK has quasipolynomial size proofs of the pigeonhole tautologies PHP$_n$.
Theorem: [Jeřábek ’11] If VNC^1 can prove the existence of expander graphs, then MLK polynomially simulates LK.

Proof idea: Working in a slightly stronger system VNC^1_\ast, the AKS sorting networks can be constructed from expander graphs, and their correctness proved. VNC^1_\ast corresponds to logspace uniform NC^1-computability, so the AKS sorting networks can serve as logspace uniform polynomial size threshold circuits. Thus, MLK polynomially simulates LK (logspace uniformly).

As a corollary:

Main Theorem 3: MLK polynomially simulates LK.

Corollary. (Example) MLK has polynomial size proofs of the PHP_n tautologies.

Corollary. Propositional LJ (intuitionistic logic) polynomially simulates LK w.r.t. monotone sequents. ([Jeřábek ’09])
Can expanders be formalized also in VTC^0, the system of bounded arithmetic corresponding to TC^0?

"TC_0" = “constant depth threshold circuits.”

Are there U_{E^*}-uniform sorting networks? Can this be done with a modification of the AKS construction with our NC^1-expanders?

Can tree-like MLK polynomially simulate MLK (equivalently, simulate LK on monotone sequents)?

Can $\text{USTCON} \in \text{LogSpace}$ [Reingold’08] be formalized in VL or VLV, systems of bounded arithmetic corresponding to LogSpace?
Thank You!