II. Introduction to
Bounded Arithmetic and Witnessing

Sam Buss, UCSD
sbuss@math.ucsd.edu

Prague, September 2009
Language of first-order theory of bounded includes:

\[
0, S, +, \cdot, \leq, |x| := \lceil \log_2(x + 1) \rceil, \lfloor \frac{1}{2}x \rfloor, x \# y := 2^{|x| \cdot |y|}.
\]

Sometimes also add all polynomial time functions and relations.

Axioms can include (among others):
(a) Defining (equational) axioms for functions and relations, “\text{BASIC}”.
(b) Restricted forms of induction.
Definition

A *bounded* quantifier is of the form \((\forall x \leq t)\) or \((\exists x \leq t)\). It is *sharply bounded* provided \(t\) has the form \(|s|\). A formula is *bounded* or *sharply bounded* provided all its quantifiers are bounded or sharply bounded (resp.).

Definition

\[\Delta^b_0 = \Sigma^b_0 = \Pi^b_0: \text{Sharply bounded formulas} \]
\[\Sigma^b_{i+1}: \text{Closure of } \Pi^b_i \text{ under existential bounded quantification and arbitrary sharply bounded quantification, modulo prenex operations.} \]
\[\Pi^b_{i+1} \text{ is defined dually.} \]

\(\Sigma^b_i, \Pi^b_i\) define exactly the predicates at the \(i\)-th level of the polynomial hierarchy (PH), if \(i \geq 1\). Thus, \(\Sigma^b_1\) and \(\Pi^b_1\) define exactly the NP and coNP sets.
Let formulas A be in Ψ, we have the following kinds of induction:

Ψ-IND: $A(0) \land (\forall x)(A(x) \rightarrow A(x + 1)) \rightarrow (\forall x)A(x)$.

Ψ-PIND: $A(0) \land (\forall x)(A(\lfloor \frac{1}{2}x \rfloor) \rightarrow A(x)) \rightarrow (\forall x)A(x)$.

Ψ-LIND: $A(0) \land (\forall x)(A(x) \rightarrow A(x + 1)) \rightarrow (\forall x)A(|x|)$.

Definition (Fragments of bounded arithmetic, B’85)

S_i^2: BASIC $+$ Σ_i^b-PIND.

T_i^2: BASIC $+$ Σ_i^b-IND.

$S_2 = \bigcup_i S_i^2$ and $T_2 = \bigcup_i T_i^2$.

Note T_2 is essentially $I\Delta_0 + \Omega_1$. [Parikh’71, Wilkie-Paris’87]
Theorem (B’85, B’90)

(a) $S_2^1 \subseteq T_2^1 \preceq_{\forall \Sigma^b_2} S_2^2 \subseteq T_2^2 \preceq_{\forall \Sigma^b_3} S_2^3 \subseteq \cdots$

(b) Thus, $S_2 = T_2$.

(c) $S_2^1 + \Sigma^b_i$-LIND equals S_2^i.

More axioms:

Φ-MIN: $(\exists x)A(x) \rightarrow (\exists x)(A(x) \land (\forall y < x)\neg A(y))$.

Φ-LMIN: $(\exists x)A(x) \rightarrow (\exists x)(A(x) \land (\forall y)(|y| < |x| \rightarrow \neg A(y)))$.

Φ-replacement:

$(\forall x \leq |t|)(\exists y \leq s)A(x, y) \rightarrow (\exists w)(\forall x \leq |t|)A(x, \beta(x, w))$.

Φ-strong replacement:

$(\exists w)(\forall x \leq |t|)[(\exists y \leq s)A(x, y) \leftrightarrow A(x, \beta(x, w))]$.
\[\Sigma^b_i \text{-IND} \iff \Pi^b_i \text{-IND} \iff \Sigma^b_i \text{-MIN} \iff \Pi^b_{i-1} \text{-MIN} \iff \Delta^b_{i+1} \text{-IND} \]
\[\Sigma^b_i \text{-PIND} \iff \Pi^b_i \text{-PIND} \iff \Sigma^b_i \text{-LIND} \iff \Pi^b_i \text{-LIND} \]
\[\Sigma^b_i \text{-LMIN} \iff (\Sigma^b_{i+1} \cap \Pi^b_{i+1}) \text{-PIND} \iff_1 \text{strong } \Sigma^b_i \text{-replacement} \]
\[\Sigma^b_{i-1} \text{-IND} \]

\[S^i_2 \preccurlyeq \forall \Sigma^b_i \ T^{i-1}_2 \quad S^i_2 \preccurlyeq_{\forall B(\Sigma^b_i)} T^{i-1}_2 + \Sigma^b_i \text{-replacement} \]

\[\Sigma^b_i \text{-PIND} + \Sigma^b_{i+1} \text{-replacement} \implies \Sigma^b_i \text{-PIND} \implies \Sigma^b_i \text{-replacement} \]

Open: The exact relative strength of \(\Sigma^b_i \text{-replacement} \).
Definition

Let R be a bounded theory. A function $f : \mathbb{N} \rightarrow \mathbb{N}$ is **provably total** in R provided there is a formula $A_f(x, y)$ that defines the graph of f such that $R \vdash (\forall x)(\exists ! y)A_f(x, y)$, with A_f polynomial time computable.

Definition

f is Σ^b_i-definable by R, provided there is a Σ^b_i-formula $A(x, y)$ such that

1. $R \vdash (\forall x)(\exists y \leq t)A(x, y)$ for some term t.
2. $R \vdash (\forall x)(A(x, y) \land A(x, z) \rightarrow y = z)$.
3. $A(x, y)$ defines the graph of f.
Thm. Any Σ^b_1-definable function in S^i_2 or T^i_2 can be introduced conservatively into the language of the theory with its defining axiom, and be used freely in induction formulas.

Theorem (B’85)

1. S^1_2 can Σ^b_1-define every polynomial time function.
2. S^i_2 can Σ^b_i-define every function which is polynomial time computable with an oracle from Σ^p_{i-1}.

(The converse holds too.)

Hence, we can w.l.o.g. assume that all polynomial time functions are present in the language of bounded arithmetic.
Similar definitions and results hold for predicates.

Definition

A predicate P is Δ^b_i-definable in R provided there are a Σ^b_i-formula A and Π^b_i-formula B which are R-provably equivalent and which define the predicate P.

Theorem (B’85)

Every polynomial time predicate is Δ^b_1-definable by S^1_2. Every predicate which is polynomial time computable with an oracle from $\Sigma^b_{i−1}$ is Δ^b_i-definable in S^i_2.

(Again, a converse holds.)

Thus, every polynomial time predicate can be conservatively introduced to S^i_2 or T^i_2 with its defining axioms, and used freely in induction axioms.
Witnessing Theorem for S_2^i

Theorem (Main Theorem for S_2^i, B’85)

Let $i \geq 1$. Suppose f is Σ^b_i-defined by S_2^i. Then f is computable in $P^{\Sigma^p_{i-1}}$, that is, in polynomial time with an oracle for Σ^p_{i-1}.

For $i = 1$, f is in P, polynomial time computable.

This gives an exact characterization of the functions that are Σ^b_i-definable in S_2^i.

For $i = 1$, the Σ^b_1-definable functions of S_2^1 are precisely the polynomial computable functions.

Likewise, the Δ^b_1-definable predicates of S_2^1 are precisely the predicates that are provably in $NP \cap coNP$.

Open: Give a more satisfactory account of the functions that are Σ^b_1-definable in S_2^i, $i > 1$. That is, of the provably total functions of these theories. (Note the uniqueness condition.)
We now start the proof of the Main Theorem.

Proof idea: Form a free-cut free proof, in which all formulas are in Σ^b_i. The free-cut free proof is then essentially an algorithm for the function f.

The proof is considerably simplified by working with *strict* Σ^b_i-formulas, denoted $s\Sigma^b_i$ for short. These are of the form:

$$(\exists x_1 \leq t_1)(\forall x_2 \leq t_2)\cdots (Qx_i \leq t_i)B(\vec{x})$$

where B is sharply bounded, and the quantifiers alternate in type (and subformulas of these formulas).

Thm. S^i_2 can equivalently be formulated with $s\Sigma^b_i$-PIND, provided $-\,$ and MSP are added to the language.

Proof idea: Careful bootstrapping, plus use of replacement.
To prove the witnessing theorem, by free-cut elimination, it suffices to consider sequent calculus proofs in which every formula is an $s\Sigma_{i}^{b}$-formula (including, via pairing functions, the final, proved formula). Henceforth, fix $i > 0$.

Definition

Let $A(\vec{c})$ be $s\Sigma_{i}^{b}$. The predicate $Wit_{A}(\vec{c}, u)$ is defined so that

- If A is $(\exists x \leq t)B(\vec{c}, x)$, $B \notin \Sigma_{i-1}^{b}$, then $Wit_{A}(\vec{c}, u)$ is the formula $u \leq t \land B(\vec{c}, u)$.
- If A is in Π_{i-1}^{b}, then $Wit_{A}(\vec{c}, u)$ is just $A(\vec{c})$.

The following is trivial since we are working with strict formulas.

Fact: $A(\vec{c}) \leftrightarrow (\exists u)Wit_{A}(\vec{c}, u)$.

Fact: Wit_{A} is a Π_{i-1}^{b}-formula (or Δ_{1}^{b}, when $i = 1$.)
A cedent is a set of formulas. If Γ and Δ are cedents, then $\Gamma \rightarrow \Delta$ is a sequent. Its meaning is that the conjunction of Γ implies the disjunction of Δ.

Letting $\Gamma = A_1, \ldots, A_k$, then $\text{Wit}_\Gamma(\vec{c}, u)$ is the statement:

$$\bigwedge_{i=1}^{k} \text{Wit}_{A_i}(\vec{c}, (u)_i).$$

For $\Delta = B_1, \ldots, B_\ell$, $\text{Wit}_\Delta(\vec{c}, u)$ is the statement

$$\bigvee_{j=1}^{\ell} ((u)_1 = j \land \text{Wit}_{B_j}(\vec{c}, (u)_2))$$

The notation $(u)_i$ means $\beta(i, u)$, the i-entry in the sequence coded by u. That is, $u = \langle u_1, \ldots, u_k \rangle$ in the first case, and $u = \langle u_1, u_2 \rangle$ in the second case.
Theorem (Witnessing Lemma)

If $\Gamma \rightarrow \Delta$ is an S^i_2-provable sequent of $s\Sigma^b_i$ formulas with free variables \vec{c}, then there is a function $f(\vec{c}, u)$ which is Σ^b_i-definable in S^i_2 and computable in polynomial time with an oracle for Σ^b_{i-1} such that S^i_2 proves

$$Wit_\Gamma(\vec{c}, u) \rightarrow Wit_\Delta(\vec{c}, f(\vec{c}, u)).$$

The theorem is proved by induction on the number of lines in a free-cut free S^i_2-proof P of $\Gamma \rightarrow \Delta$. The base cases are the equational axioms defining the symbols of the language. Since witnesses for Δ^b_0-formulas are trivial, these cases are all trivial.

The induction step splits into cases depending on the last inference of the proof P.
Case (1): Last inference is $\exists \leq$:right.

\[
\Gamma \rightarrow \Delta, A(\vec{c}, s) \\
\quad s \leq t, \Gamma \rightarrow \Delta, (\exists x \leq t)A(\vec{c}, x)
\]

The formula A is $s\Pi_{i-1}^b$. The induction hypothesis gives a function f, which accepts witnesses for Γ and produces a witness either making a formula in Δ true or making $A(\vec{c}, s)$ true. Modify f, so that in the latter case, it returns $\langle \ell, s \rangle$.

\[
g(\vec{c}, u) = \begin{cases}
 f(\vec{c}, \text{cdr}(u)) & \text{if } (f(\vec{c}, \text{cdr}(u)))_1 < \ell \\
 \langle \ell, s(\vec{c}) \rangle & \text{if } (f(\vec{c}, \text{cdr}(u)))_1 = \ell.
\end{cases}
\]

(The “\text{cdr}” operation strips the first entry from a sequence.)
Case (2): Last inference is $\exists \leq$:

\[
\begin{array}{c}
b \leq t, A(\vec{c}, b), \Gamma \rightarrow \Delta \\
(\exists x \leq t) A(\vec{c}, x), \Gamma \rightarrow \Delta
\end{array}
\]

where A is $s\Pi_{i-1}^b$ but not $s\Sigma_{i-1}^b$. Let f be given by the induction hypothesis. Define g by

\[
g(\vec{c}, u) = f(\vec{c}, (u)_1, \langle 0 \rangle \ast u)
\]

(The "\ast" operation is sequence concatenation.)
Case (2'): Last inference is $\exists \leq$: left.

$$b \leq t, A(\vec{c}, b), \Gamma \rightarrow \Delta$$

$$\overline{(\exists x \leq t)A(\vec{c}, x), \Gamma \rightarrow \Delta}$$

where A is $s\Pi_{i-2}^b$. Let f be given by the induction hypothesis. Let $\mu_A(\vec{c})$ equal the least $x \leq t(\vec{c})$ such that $A(\vec{c}, x)$ is true, or equal $t + 1$ if no such x exists.

Define g as

$$g(\vec{c}, u) = f(\vec{c}, \mu_A(\vec{c}), \langle 0 \rangle \ast u).$$

Note that μ_A is computable in polynomial time with an oracle for $s\Sigma_{i-1}^b$.

A similar argument applies for $\forall \leq$: right inferences.
Case (3): Last inference is PIND.

\[
\frac{A(\lfloor \frac{1}{2} b \rfloor), \Gamma \rightarrow \Delta, A(b)}{A(0), \Gamma \rightarrow \Delta, A(t)}
\]

where \(A \in \Sigma^b_i \setminus \Sigma^b_{i-1} \). Let \(f \) be given by the induction hypothesis. Define

\[
h(\vec{c}, b, u) = \begin{cases}
 h(\vec{c}, \lfloor \frac{1}{2} b \rfloor, u) & \text{if } (h(\vec{c}, \lfloor \frac{1}{2} b \rfloor, u))_1 < \ell \\
 f(\vec{c}, b, \langle (h(\vec{c}, \lfloor \frac{1}{2} b \rfloor, u))_2 \rangle \ast \text{cdr}(u)) & \text{otherwise}
\end{cases}
\]

and \(h(\vec{c}, 0, u) = \langle \ell, (u)_1 \rangle \). \(h \) can be defined by \textit{limited iteration on notation} and is polynomial time computable relative to \(f \). Here, \(\ell \) is the number of formulas in the antecedent.

Then set \(g(\vec{c}, u) = h(\vec{c}, t(\vec{c}), u) \). Q.E.D.
Corollary

If $R(x, y) \in \mathbb{P}$ and $S^1_2 \vdash (\forall x)(\exists y)R(x, y)$, then $R(x, y)$ is computable by some polynomial time function, provably in S^1_2. That is, for some Σ^b_1-defined, hence ptime, function f, $S^1_2 \vdash \forall xR(x, f(x))$.

Proof: Parikh’s theorem gives a polynomial bound on y that is provable in S^1_2. Then, the corollary is immediate from the Witnessing Lemma.
Next we sketch the proof of the fact that S_{2}^{i+1} is $\forall \Sigma_{i+1}$-conservative over T_{2}^{i}.

Lemma

$T_{2}^{i} \vdash \Pi_{i}^{b}$-IND.

Proof. Given $A(x)$ in Π_{i}^{b}, instead of using induction on $A(x)$ from $x = 0$ up to $x = t$, use induction on $\neg A(t \div x)$ with t fixed.

Lemma

$T_{2}^{i} \vdash \Sigma_{i}^{b}$-minimization.

Proof. Suppose $(\exists x)A(x)$, but there is no least such x. Use induction on the Π_{i}^{b}-formula $(\forall x < a)\neg A(x)$ to get a contradiction.
Lemma

T^i_2 can Σ^{b}_{i+1}-define every function in $P\Sigma^b_i$.

Proof. (Idea.) Let f be in $P\Sigma^b_i$. Without loss of generality, f is computed using a “witness oracle” that when queried “$\exists x \leq t. A(x, n)$?” either returns a value for $x \leq t$ that makes A true, or returns $t + 1$ indicating no such x exists.

A consistent computation for f is a computation based on a sequence of oracle answers such that any response $x \leq t$ does satisfy A (but answers “$t + 1$” may be incorrect).

The property of being a consistent computation is Π^{b}_{i-1}. Order consistent computations lexicographically; T^i_2, via Σ^b_i-minimization, proves there exists a minimum consistent computation. And, that this consistent computation has all oracle answers correct. It is straightforward to check that the minimum consistent computation is Σ^{b}_{i+1}-definable.
Theorem (B’90)

\[S_{2}^{i+1} \text{ is } \forall \Sigma_{i+1}^{b}-\text{conservative over } T_{2}^{i}. \]

Proof. (Idea) Repeat the proof of the Witnessing Lemma for \(S_{2}^{i+1} \), but now the conclusion is that \(T_{2}^{i} \) proves the witnessing sequent (instead of \(S_{2}^{i+1} \)):

\[
\text{Wit}_{\Gamma}(\vec{c}, u) \rightarrow \text{Wit}_{\Delta}(\vec{c}, f(\vec{c}, u)).
\]

It can be checked that \(T_{2}^{i} \) can formalize all the reasoning that was earlier formalized in \(S_{2}^{i+1} \).
A *Polynomial Local Search* PLS is formalized in S^1_2 provided its feasible set, initial point function, neighborhood function, and cost function are Σ^b_1-defined (as ptime functions).

Theorem

T^1_2 can prove that any (formalized) PLS problem is total.

Proof: By Σ^b_1-minimization, T^1_2 can prove there is a minimum cost value c_0 satisfying

$$(\exists s \leq b(x))(F(x, s) \land c(x, s) = c_0).$$

Choosing s that realizes the cost c_0 gives either a solution to the PLS problem or a place where the PLS conditions are violated. □

Open: Can T^1_2 witness any PLS problem with a Σ^b_1-definable (single-valued) function?
Theorem (BK’94)

If $A \in \Sigma^b_1$ and $T_2^1 \vdash (\forall x)(\exists y)A(x, y)$, then there is a PLS problem R such that T_2^1 proves

$$(\forall x)(\forall y)(R(x, y) \rightarrow A(x, (y)_1)).$$

If $A \in \Delta^b_1$, then can replace “$(y)_1$” with just “y”.

This gives an exact complexity characterization of the $\forall \Sigma^b_1$-definable functions of T_2^1, in terms of PLS-computability.
Theorem (Witnessing Lemma)

If $\Gamma \rightarrow \Delta$ is a T_2^1-provable sequent of $s\Sigma_1^b$ formulas with free variables \vec{c}, then there is a PLS problem $R(\langle \vec{c}, u \rangle, v)$ so that T_2^1 proves

$$Wit_\Gamma(\vec{c}, u) \land R(\langle \vec{c}, u \rangle, v) \rightarrow Wit_\Delta(\vec{c}, v).$$

Proof idea: Use a free-cut free T_2^1-proof, proceed by induction on number of inferences in the proof. Arguments are similar to what was used to prove the witnessing lemma for S_2^i ($i = 1$ case). Most cases just require closure of PLS under polynomial time operations. However, induction (Σ_1^b-IND inference) now requires exponentially long iteration: this is handled via the exponentially many possible cost values.

The Theorem and Witnessing Lemma generalize to $i > 1$ with $PLS^{\Sigma_i^b\Sigma_{i-1}}$. The fourth talk will improve on this, however.
Some selected references