Algorithmic Randomness via Probabilistic Algorithms

Sam Buss
Joint work with Mia Minnes
UC San Diego

The Constructive in Logic and Applications
Honoring Sergei Artemov’s 60th Birthday
April 24, 2012
Algorithmic Randomness:
What does it mean for $X \in \{0, 1\}^\infty$ to be algorithmically random?

Three classic paradigms, which often yield equivalent definitions:

- **Unpredictability**: No effective betting strategy succeeds by betting on the bits of a random object. [Schnorr '71]
- **Typical-ness**: A random object avoids effective measure 0 sets. [Levin'73, Schnorr'73]
- **Incompressibility**: (Kolmogorov Complexity) Finite portions of a random object cannot be concisely described effectively. [Martin-Löf '66]

Different notions of "effective" give rise to different notions of randomness.

We shall discuss only the **Unpredictability** paradigm. This paradigm is the most closely tied to algorithms and betting strategies.
Betting strategies

Let $X \in \{0, 1\}^\infty$. A betting strategy A satisfies:

- A sees the bits $X(i)$ of X sequentially,
- A decides how much to bet that the next bit of X is 0 or 1,
- For $\sigma \in \{0, 1\}^*$ an initial segment of X, A’s current winnings are given by a capital function $C = d(\sigma)$ where d is a martingale:
 \[
d(\lambda) \neq 0 \quad \text{and} \quad d(\sigma) = \frac{d(\sigma 0) + d(\sigma 1)}{2}.
\]
- A succeeds against X if $\lim_n d(X \upharpoonright n) = \infty$.

The bets made by A are specified by a stake function $q = q(\sigma)$, such that $q \in [0, 2]$ and means that A bets $(q - 1)C$ that the next bit is 0.

Therefore, $q(\sigma) = d(\sigma 0)/d(\sigma)$: the new capital C after the bet becomes

- $C + (q - 1)C = qC$ if next bit is 0,
- $C - (q - 1)C = (2 - q)C$ if next bit is 1.
Effective betting strategies and algorithmic randomness

X is . . .

- **Computable random** if for each **computable** martingale d,
 \[\lim_{n} d(X \upharpoonright n) \neq \infty. \]

- **Partial computable random** if for each **partial computable** martingale d,
 \[\lim_{n} d(X \upharpoonright n) \neq \infty. \]

- **Martin-Löf (ML) random** if for each **computably enumerable** martingale d,
 \[\lim_{n} d(X \upharpoonright n) \neq \infty. \]

Note: each limit can be replaced by limsup.
For computable and partial computable, the martingale is w.l.o.g. rational-valued.
A “c.e.” function outputs a real value α by enumerating the rationals less than α.
Notions of algorithmic randomness

Separations: [Nies, Stephan, Terwijn ’05, Merkle ’08, . . .]
Schnorr’s Critique

ML-randomness is a (the?) central notion in algorithmic randomness.

- Strongest of the natural notions of randomness based on effective computability.
- Elegant characterizations in all three paradigms.
- “Well-behaved” and tractable mathematical theory, including universal objects.

BUT

Schnorr’s critique:

- ML-randomness is defined in terms of computably enumerable objects rather than computable ones.
- “Left c.e.” property for a martingale is somewhat unnatural.
- Goal: Give a computable characterization of ML-randomness...
ML-randomness is a (the?) central notion in algorithmic randomness.

- Strongest of the natural notions of randomness based on effective computability.
- Elegant characterizations in all three paradigms.
- “Well-behaved” and tractable mathematical theory, including universal objects.

BUT

Schnorr’s critique:

- ML-randomness is defined in terms of computably enumerable objects rather than computable ones.
- “Left c.e.” property for a martingale is somewhat unnatural.
Schnorr’s Critique

ML-randomness is a (the?) central notion in algorithmic randomness.

- Strongest of the natural notions of randomness based on effective computability.
- Elegant characterizations in all three paradigms.
- “Well-behaved” and tractable mathematical theory, including universal objects.

BUT

Schnorr’s critique:

- ML-randomness is defined in terms of computably enumerable objects rather than computable ones.
- “Left c.e.” property for a martingale is somewhat unnatural.

Goal: Give a computable characterization of ML-randomness...
A probabilistic betting strategy A does the following at each step:
- Computes a probability p of betting
- Computes stake value q for bet (if one is placed)
- Bets on the next bit of X with probability p, or passes ("waits") with probability $1 - p$.

If the algorithm does not bet (passes), then the same bit of X remains available to be bet upon in the next step.

Finite initial segment of a betting game is
$$\sigma \in \{0, 1\}^*$$ - the bits of X seen — and bet upon — so far, and
$$\pi \in \{b, w\}^*$$ - the history of bet (b) vs. wait (w) moves.

A probabilistic strategy A is specified by two total computable rational-valued functions p_A and q_A:
$$p = p_A(\pi, \sigma) \quad \text{and} \quad q = q_A(\pi, \sigma).$$
Probabilistic strategies

The capital at node π after seeing σ is

- $C_A(\lambda, \lambda) = 1$;
- $C_A(\pi w, \sigma) = C(\pi, \sigma)$;
- $C_A(\pi b, \sigma 0) = C_A(\pi, \sigma) q_A(\pi, \sigma)$;
- $C_A(\pi b, \sigma 1) = C_A(\pi, \sigma) (2 - q_A(\pi, \sigma))$.

The probability of reaching node π when playing against σ is

- $P_A(\lambda, \lambda) = 1$;
- $P_A(\pi w, \sigma) = P_A(\pi, \sigma)(1 - p_A(\pi, \sigma))$;
- $P_A(\pi b, \sigma i) = P_A(\pi, \sigma) p_A(\pi, \sigma)$.

For a fixed $X \in \{0, 1\}^\infty$, P_A defines a measure μ^X_A on the space of possible bet/wait plays, $\{b, w\}^\infty$, defined by

$$\mu^X_A([\pi]) = P^X_A(\pi) := P_A(\pi, X \upharpoonright n)), \text{ where } n = |\pi|_b = \#b's \text{ in } \pi.$$
How to define success for probabilistic strategy?

The outcome of a probabilistic strategy on X is random, depending on the bet / wait choices. Success can be defined as either success with probability one (P_1) or success in expectation (E_x):

Def. A is a successful **P_1-strategy** for X if the set of $\Pi \in \{b, w\}^\infty$ s.t.

$$\lim_n C_A^X(\Pi \upharpoonright n) = \infty$$

has μ_A^X-measure one.

Def. A is a successful **E_x-strategy** for X if

$$\lim_n E_A^X(n) = \infty$$

where $E_A^X(n)$ is the expected capital after n-th bet.

- $E_A^X(n) = \sum_{\pi \in R(n)} P_A^X(\pi) C_A^X(\pi)$,
- $R(n) = \{\pi : \pi = \pi'b, \ |\pi|_b = n\}$.
How to define success?

\(X \) is . . .

- **P1-random** if there is no successful P1-strategy for \(X \).
- **Ex-random** if there is no successful Ex-strategy for \(X \).

We can also require that the strategy must eventually bet:

\(X \) is . . .

- Weak P1- or Weak Ex-random if no computable probabilistic strategy which always eventually bets with probability one is a successful P1-strategy (resp. Ex-strategy) for \(X \).
- Locally weak Ex-random if no computable probabilistic strategy which eventually bets on \(X \) with probability one is a successful Ex-strategy for \(X \).
How to define success?

X is ...

- **P1-random** if there is no successful P1-strategy for X.
- **Ex-random** if there is no successful Ex-strategy for X.

We can also require that the strategy must eventually bet:

X is ...

- **Weak P1- or Weak Ex-random** if no computable probabilistic strategy which always eventually bets with probability one is a successful P1-strategy (resp. Ex-strategy) for X.
- **Locally weak Ex-random** if no computable probabilistic strategy which eventually bets on X with probability one is a successful Ex-strategy for X.
New characterizations of algorithmic randomness

ML-random
\[\downarrow \quad \uparrow \]
partial computable random
\[\downarrow \quad \uparrow \]
computable random

All definitions are equivalent with \(\limsup \) instead of \(\lim \).
New characterizations of algorithmic randomness

\[
\begin{align*}
\text{ML-random} &= \text{Ex-random} \\
\downarrow & \uparrow \\
\text{partial computable random} &= \text{P1-random} \\
\downarrow & \uparrow \\
\text{computable random}
\end{align*}
\]

Equalities: [B-Minnes '12]
New characterizations of algorithmic randomness

\[
\text{ML-random} = \text{Ex-random}
\]

\[
\Downarrow \quad \Uparrow
\]

\[
\text{partial computable random} = P1\text{-random} = \text{locally weak Ex-random}
\]

\[
\Downarrow \quad \Uparrow
\]

\[
\text{computable random} = \text{weak P1-random} = \text{weak Ex-random}
\]

All definitions are equivalent with lim sup instead of lim.

Equalities: [B-Minnes '12]
Remarks

- The crucial difference between computable randomness and partial computable randomness is that the strategy may stop betting with non-zero probability on inputs other than X.

- The crucial difference between ML-random and (partial) computably random is partly the expectation (Ex) versus probability one (P1) distinction, and but also partly that the strategy for ML-randomness has unknown probability of never betting.
Replacing success probability one (P1) with success probability $\alpha > 0$ does not change the definitions in the (locally) weak cases:

Theorem [B-Minnes, i.p.]

A sequence X is partial computable random if and only if there is no locally-weak probabilistic strategy which is successful against X with probability $\alpha > 0$.

A sequence X is computable random if and only if there is no weak probabilistic strategy which is successful against X with probability $\alpha > 0$.

Proof intuition:
Given a betting strategy A that succeeds on X with probability $\alpha > 0$. W.l.o.g. A uses the “slow but surely savings trick” so that A never loses much of its capital.

Let $q_1 \approx q_2$ be rationals s.t. $q_1 < \alpha \leq q_2$. Values $C_0 << C_1 << C_2 << \cdots$ will be chosen to be sufficiently large.

A P1 strategy B works as follows:

a. Initially $i = 0$ and C_0 is large enough so that the capital will exceed C_0 with probability $\leq q_2$.

b. B acts like A in choosing p and q values, using the stake value q when an unknown bit of X is available. At the same time, B simulates other possible plays of the betting game by A, dovetailing over all possible moves with the same number of bets.

c. Whenever fraction $\geq q_1$ of the simulated plays by A exceed capital C_i: B chooses one of these at random, “jumps to” that play of A, increments i, computes a new sufficiently large C_i, and returns to b.
Open Problems

- **Understanding Ex-randomness.** The current definition uses the number of bets (“b” moves) as a stopping criterion to define successive capital values for the increasing expectation. Other natural definitions fail dramatically and unexpectedly — at least in the lim sup case.

 Open: Does the “lim” definition of Ex-random remain equivalent with more general stopping criteria?

- **Kolmogorov-Loveland (KL) randomness** is defined by non-monotonic betting strategies, which can bet on bits of X out of sequential order. It is known that ML randomness implies KL randomness. A major open question is whether the notions coincide.

 ML random \Rightarrow KL random \Rightarrow Partial computable random

 Open: What is the strength of a non-monotonic betting strategies under the P1 definition of success? This defines a class of random reals that lies between KL random and ML-random. Is it equal to either of these?
Thank you!