3.12b does not have identity:

Suppose for contradiction that $e \in G$ is the identity. Choose $a \in G$ such
(this is possible since G has no minimal element).
Then $\max \{ a, e \} = e \neq a$ so e is not the identity, a contradiction.
Since there is no identity, elements also cannot have inverses.
(This is associative and closed.)

2d This does not have an identity:

Suppose for contradiction that $e \in G$ is the identity. Consider
$-2 \times e = 1 - 2e \in 1$ by def of \times
$= -2$ by def of identity.
This is impossible since $-2 \in G$ and the absolute value of an integer
cannot be negative.
Since there is no identity, elements cannot have an inverse.
(This is associative and closed.)

10. Closure: let $f, g, m_1 x + b_1, \ g, m_2 x + b_2$ be arbitrary elements in G (so m_1 and $m_2 \neq 0$).

$f \circ g = f(m_2 x + b_2) + m_1 (m_2 x + b_2) + b_1 = m_1 (m_2 x + b_2) + b_1$.
Since $m_1, m_2, b_1, b_2 \in \mathbb{R}$,
$m_1 m_2 \in \mathbb{R}$ (and $m_1 m_2 \neq 0$ since $m_1 \neq 0$ and $m_2 \neq 0$) and $m_1 b_2 + b_1 \in \mathbb{R}$ so $f \circ g \in G$.
Associativity: This follows from associativity of function composition and won't
always need to be shown. For this problem I will show it.
Let f and g be as above and $h = m_3 x + b_3$ be an arbitrary element of G.

$(f \circ g) h = (m_1 (m_2 x + b_2) + b_1) h = m_1 (m_2 (m_3 x + b_3) + b_2) + b_1$.

$f(g h) = f(m_2 (m_3 x + b_3) + b_2) = m_1 (m_2 (m_3 x + b_3) + b_2) + b_1$.
Since these are equal, \circ is associative.

Identity: I claim $e = x$ is the identity function: If $f \in G$ is arbitrary,

$f \circ e = f(x) = m_1 x + b_1 = f$ and
$e \circ f = e(m_1 x + b_1) = m_1 x + b_1 = f$ so x is the identity.

Inverse: Let $f \in G$ be arbitrary and choose $g = \frac{1}{m_1} x - \frac{b_1}{m_1} \in G$ since $m_1 \neq 0$ and

$\frac{1}{m_1} \cdot -b_1 \in \mathbb{R}$.

$f \circ g = f \left(\frac{1}{m_1} x - \frac{b_1}{m_1} \right) = m_1 \left(\frac{1}{m_1} x - \frac{b_1}{m_1} \right) + b_1 = x - b_1 + b_1 = x = e$ and

g \circ f = \frac{1}{m_1} (m_1 x + b_2) - \frac{b_1}{m_1} = x$ so $g = f^{-1}$. Since f was arbitrary, all elements in G have
inverses and since all 4 conditions for a group are met, G is a group.
Closure: Let \(\begin{bmatrix} m_1 & b_1 \\ 0 & 1 \end{bmatrix} \) and \(\begin{bmatrix} m_2 & b_2 \\ 0 & 1 \end{bmatrix} \) be arbitrary elements in \(G \) (so \(m_1, m_2 \neq 0 \)).

\[
\begin{bmatrix} m_1 & b_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} m_2 & b_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} m_1 m_2 & m_1 b_2 + b_1 \\ 0 & 1 \end{bmatrix}
\]
and \(m_1, m_2 \neq 0 \) so this is in \(G \).

Associativity of matrix multiplication was proven in class.

Identity: Let \(e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \) and note that \(e \in G \). For an arbitrary element in \(G \),

\[
\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} m_1 & b_1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} m_1 & b_1 \\ 0 & 1 \end{bmatrix}
\]
and \(\begin{bmatrix} m_1 & b_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} m_1 & b_1 \\ 0 & 1 \end{bmatrix} \) so \(e \) is the identity.

Inverse: Let \(\begin{bmatrix} m_1 & b_1 \\ 0 & 1 \end{bmatrix} \in G \) be arbitrary and consider \(\begin{bmatrix} m_1^{-1} & -b_1 m_1^{-1} \\ 0 & 1 \end{bmatrix} \) which is also in \(G \).

\[
\begin{bmatrix} m_1 & b_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} m_1^{-1} & -b_1 m_1^{-1} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -b_1 b_1^{-1} \\ 0 & 1 \end{bmatrix} = e \text{ and}
\]

\[
\begin{bmatrix} m_1^{-1} & -b_1 m_1^{-1} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} m_1 & b_1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] so elements have inverses and \(G \) is a group.

Closure: Sum and products of real numbers are real and it remains to show \(ab \neq -1 \).

Suppose for contradiction that \(ab = -1 \). Then \(ab + b + 1 = 0 \) and

\[
a(1+b)+b(1) = 0 \quad \text{and} \quad (a+1)(b+1) = 0
\]
which implies \(a = -1 \) or \(b = -1 \), a contradiction.

Associativity: \((ab)c = (ab)bc = abc + ab + ac + bc \)

\[
a(bc) = (a+b+c) = abc + ab + ac + bc + abc.
\]

Since these are equal and above \(m = 3 \) were arbitrary, associativity holds.

Identity: Let \(e = 0 \), \(a = m = 3 \) arbitrary.

\[
0 + a = a + 0 = a \quad \text{and} \quad a + 0 = a + 0 = a \quad \text{so} \quad 0 \quad \text{is the identity}.
\]

Inverse: (As most naturally calculated by students).

Let \(a \in m = 3 \) arbitrary.

\[
G = a + b = ab + bc
\]

\[
\Rightarrow -a = b(1 + a)
\]

\[
\Rightarrow b = \frac{-a}{1 + a}.
\]

Note that \(b \in G \) (since \(a + 1 \neq 0 \) when \(a \neq -1 \)) and \(b \neq -1 \) since \(-1 = \frac{-a}{1 + a}, \Rightarrow -a - 1 = a \Leftrightarrow 0 = -2 \).

Thus, \(b \in m = 3 \) and we have shown it is a right inverse. We must show it is a left inverse.

\[
b \cdot a = \frac{-a}{1 + a} + a = \frac{-a + a^2}{a + 1} + \frac{-a^2}{a + 1} = \frac{-a + a^2}{a + 1} - \frac{a^2}{a + 1} = 0 \cdot e.
\]

Thus, \(b \) is a two-sided inverse in \(m = 3 \) and so this is a group.
3.15 \[g^2 = g \]
\[e = g^{-1}g \]
\[e = e \]
\[g = e. \]

22 \(\implies \) Suppose \(G \) is abelian and let \(a \) be \(G \) arbitrary.
\[(ab)^{-1} = b^{-1}a^{-1} \quad (\text{as shown in class})
\]
\[= a^{-1}b^{-1} \quad (\text{since } a^{-1}b^{-1} \in G \text{ and } G \text{ abelian } \implies a^{-1}b^{-1} = b^{-1}a^{-1}).
\]

\(\implies \) Suppose \((ab)^{-1} = a^{-1}b^{-1} \) where \(a, b \in G \) are arbitrary.
\[ab = ((ab)^{-1})^{-1} \quad (\text{by properties of inverse})
\]
\[= (a^{-1}b^{-1})^{-1} \quad (\text{since } (ab)^{-1} = a^{-1}b^{-1} \text{ by assumption})
\]
\[= (b^{-1})^{-1}(a^{-1})^{-1} \quad (\text{as shown in class})
\]
\[= ba.
\]
So \(G \) is abelian.

Extra 1: Order: I claim that \(G \) as a set equals \(\{1, e^{2\pi i k/n}, e^{4\pi i k/n}, \ldots, e^{2(n-1)\pi i k/n} \} \).

To show this, let \(g \in G \), \(k \in \mathbb{Z} \) be an arbitrary element of \(G \).

By the division algorithm, \(k = bn+r \), \(b, r \in \mathbb{Z}, 0 \leq r < n-1 \).

Then \(g = e^{2\pi i (bn+r)/n} = e^{2\pi i kn/n + 2\pi i r/n} = e^{2\pi i r/n} \) since \(e^{2\pi i k/n} \) is an element in the set listed above and since \(g \) was arbitrary, any element of \(G \) is equal to \(1 \) of the elements listed above.

Conversely, note that every element listed in the set above is actually in \(G \).

It remains to show that the \(n \) elements in the above set are distinct.

Suppose we have 2 arbitrary elements from the above set: \(e^{2\pi i k/n}, e^{2\pi i j/n} \), \(0 \leq k, j \leq n-1 \) and suppose \(e^{2\pi i j/n} = e^{2\pi i k/n} \). Then \(e^{2\pi i j/n - 2\pi i k/n} = 1 \) which implies \(n \mid j - k \).

So \(j = k \) for some \(k \in \mathbb{Z} \). \(0 \leq k, j \leq n-1 \) so \(- (n-1) \leq k-j \leq n-1 \) and this implies that \(a = 0 \) and \(k = j \). Thus, the only way two elements in the set above are equal is if the exponents are equal and so there are \(n \) distinct elements: \(\{e^{2\pi i k/n} \mid 0 \leq k \leq n-1 \} \).
(Extra 1) Group Closure: Let \(e^{2\pi i n}, e^{2\pi i k} \) be arbitrary elements in \(G \).

\[
e^{2\pi i n} \cdot e^{2\pi i k} = e^{2\pi i (n+k)l} = e^{2\pi i} = e
\]

and this is in \(G \) since \(j+k \in \mathbb{Z} \).

Associativity follows from associativity of complex numbers but can also be shown:

\[
(e^{2\pi i n}, e^{2\pi i k}) \cdot e^{2\pi i l} = e^{2\pi i (n+l)} = e^{2\pi i (j+k+l)} = e^{2\pi i (j+k+k')} = e^{2\pi i (j+k+l)}
\]

Identity: Let \(\text{id} = e^{2\pi i (0)} = e^{0} = 1 \). Note that \(1 \in G \) (taking \(k=0 \) in \(e^{2\pi i k} \)).

\[
e^{2\pi i n} \cdot 1 = e^{2\pi i n} \quad \text{and} \quad 1 \cdot e^{2\pi i n} = e^{2\pi i n} \quad \text{so} \quad 1 \text{ is the identity.}
\]

Inverse: Let \(e^{2\pi i k/n} \) be arbitrary and consider \(e^{2\pi i (-k)/n} \) which is also in \(G \).

\[
e^{2\pi i k/n} \cdot e^{2\pi i (-k)/n} = e^{2\pi i (k-k)/n} = e^{0} = 1 = \text{id}
\]

so elements have inverses and this is a group.

Extra 2 (Given associativity, \(e \cdot e = e \cdot e = e \), \(\forall a \in G \) so \(e \) is the \((2\text{-sided}) \) identity.

Let \(a \in G \) arbitrary and \(b \) be such that \(ba \cdot e = e \).

Then \(bae = ba(e) = ba(a) = eba \) (since \(ba \cdot e \) is given)

= \(eba \) (since \(ba \cdot e \) is given)

= \(ba \) (since \(e \cdot b \cdot a \) is given).

So \(ba = e \) and (by applying the left inverse of \(e \), which exists, to both sides) \(c = a \).

Since \(c \cdot a = e \cdot e = a \) \(\forall a \in G \) so \(e \) is the \((2\text{-sided}) \) identity.

Let \(a \in G \) arbitrary and \(e \) be such that \(ba = e \).

Then \(ab = eab \)

\[
= a(ba)b = (ab)ab.
\]

Since \(ab \in G \), it has a left inverse. Multiplying both sides by this gives \(e = ab \).

Thus, \(b \) is the right-inverse of \(a \), inverses exist, and so this is a group.