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I study noncommutative algebra, specifically Ore extensions and Artin-Schelter
regular algebras with connections to noncommuatative algebraic geometry.

AS-regular algebras are noncommutative polynomial rings that in some sense
generalize commutative polynomial rings while maintaining some very “nice” prop-
erties, such as having finite dimension. In particular, these properties allow AS-
regular algebras to be used to construct a noncommutative equivalent of projective
schemes. Research in noncommutative algebraic geometry and its applications to
fields such as mathematical physics relies heavily on analyzing specific examples
of quantum Pn’s, which can be constructed algebraically by forming the noncom-
mutative projective scheme Proj(A) where A is a noetherian AS-regular algebra of
global dimension n + 1. Thus, the classification of AS-regular algebras, and less
generally the explicit construction of examples of such algebras, is an extremely
active area of current research in the field.

Under mild assumptions, iterated Ore extensions are AS-regular algebras with
additional “nice” properties. For example, they have the same K-vector space basis
as commutative polynomial rings, {xi11 · · ·xinn }, and multiplication in these algebras
is somewhat well understood. As a result, their classification provides a natural
starting place for the classification of AS-regular algebras in higher dimensions,
which remain very poorly understood in general.

1. Background

Definition 1.1. Let R be a ring. An Ore extension R[x, σ, δ] is a ring with elements

of the form f(x) =
n∑

i=0

aix
i, ai ∈ R and multiplication satisfying xr = σ(r)x+ δ(r)

for all r ∈ R where σ is an endomorphism of R and δ is a σ-derivation of R, i.e.
δ(r1r2) = σ(r1)δ(r2) + δ(r1)r2 for all r1, r2 ∈ R.

An iterated Ore extension R[x1, σ1, δ1][x2, σ2, δ2] · · · [xn, σn, δn] is an Ore exten-
sion where for all j > 1, σj and δj are a ring endomorphism and a σj-derivation of
R[x1, σ1, δ1][x2, σ2, δ2] · · · [xj−1, σj−1, δj−1], respectively. Elements in this extension

have the form
∑
aix

i1
1 · · ·xinn , ai ∈ R.

Let K be an algebraically closed, characteristic 0 field and A an N-graded K-

algebra, A =
∞⊕
i=0

Ai with AiAj ⊆ Aij for all i and j. An iterated Ore extension

K[x1][x2, σ2, δ2] · · · [xn, σn, δn] which is also graded and has every σi injective is also
AS-regular as defined below [AST, Proposition 2].

While this definition provides a convenient way to present an Ore extension in
terms of the multiplication, it is often also useful to present the algebra as the
quotient of a free algebra by a finitely generated homogeneous ideal.

Example 1.2. Consider the graded iterated Ore extensionA with variables (x3, x2, x1)
of respective degrees (1,1,2) defined by the relations:

r32 :x3x2 = x1 + x2x3

r31 :x3x1 = x1x3

r21 :x2x1 = x1x2.
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In order for the multiplication to be a well-defined associative operation, any choice
of multiplication should lead to the same result. In particular, it is necessary to
compute the overlap:

(x3x2)x1 = (x1 + x2x3)x1

= x1x1 + x2(x1x3)

= x1x1 + x1x2x3, while

x3(x2x1) = x3(x1x2)

= (x1x3)x2

= x1(x1 + x2x3)

= x1x1 + x1x2x3.

Since these are equal, this is actually an Ore extension and every element can be
written in the form

∑
aix

i1
1 x

i2
2 x

i3
3 .

Alternatively, r32 can be solved for x1 and this algebra can be viewed as some-
thing generated by the degree 1 variables x3 and x2:

[r32 :x1 = x3x2 − x2x3]

r31 :x3(x3x2 − x2x3) = (x3x2 − x2x3)x3

x3x3x2 = 2x3x2x3 − x2x3x3
r21 :x2(x3x2 = x2x3) = (x3x2 − x2x3)x2

x3x2x2 = 2x2x3x2 − x2x2x3.

Then A ∼=
K〈x2, x3〉

〈x3x3x2 = 2x3x2x3 − x2x3x3, x3x2x2 = 2x2x3x2 − x2x2x3〉
.

A is generated in degree 1 since it can be expressed as the quotient of a free algebra
with degree 1 variables and it has relation type (3,3) since the ideal of the quotient
is minimally generated by 2 relations, each of degree 3.

Although not necessary to understand my results, it is also worth briefly pre-
senting the background and history of AS-regular algebras.

Let K be an algebraically closed, characteristic 0 field and A =
∞⊕
i=0

Ai. A is

called connected if A0 = K and has Hilbert series hA(t) =
∞∑
i=0

dimk(Ai)t
i.

Definition 1.3. A connected graded K-algebra A is Artin-Schelter (AS) regular
of dimension d if

(1) A has finite global dimension d,
(2) A has finite GK dimension, and

(3) Exti(kA, A) ∼=
{

0 i 6= d
K(l) i = d.

An AS-regular algebra of dimension 2 which is generated in degree 1 is iso-

morphic to either the Jordan plane J =
K〈x1, x2〉

〈x2x1 − x1x2 − x21〉
, or a quantum plane

Oq =
K〈x1, x2〉

〈x2x1 − qx1x2〉
. The possible families of relations of AS-regular algebras of
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dimension 3 which are generated in degree 1 were completely classified by Artin,
Tate, and Ven den Bergh [AS],[ATVdB].

The classification of AS-regular algebras of dimension 4 remains an active area
of research. Restricting to AS-regular algebras which are domains and generated
in degree 1, the possible relation types i.e. the number and degrees of the mini-
mal set of relations generating the ideal are known. If the algebra is assumed to
be Z2-graded, i.e. each generator has degree (1, 0) or (0, 1) and each relation is
Z×Z-homogeneous, then the possible families of relations are known in most cases
[LPWZ], [RZ], [ZZ2].

A number of interesting patterns have arisen for AS-regular algebras. For any
possible relation type of an algebra of dimension 4 or less, the Hilbert series of the
algebra is unique, there is an enveloping algebra of a graded Lie algebra with the
given relation type, and there is a Z2-graded algebra with the given relation type.

Although the classification of AS-regular algebras of dimension 5 is also an active
area of research, progress in the area has been slow. In 2011, Floystad and Vatne
listed the possible relation types of an AS-regular algebra of dimension 5 with 2
degree 1 generators under mild assumptions and provided an example of an AS-
regular algebra with a relation type that could not possibly be realized by an
enveloping algebra [FV]. Building on their work, Wang and Wu used A∞ techniques
to find many families of algebras of dimension 5 with two generators, including an
Ore extension with 3 degree 4 relations and 2 degree 5 relations, i.e. relation type
(4,4,4,5,5) [WW]. This relation type provides another example of something that
cannot be realized by an enveloping algebra and is the first example where algebras
with the same Hilbert series can have different resolution types. There has not yet
been a careful treatment of the classification of dimension 5 algebras with 3 or 4
generators.

2. My Research

My dissertation research has focused on the classification of possible relation
types of dimension 5 AS-regular algebras which are also graded iterated Ore exten-
sions generated in degree 1 and which have all σi automorphisms. For brevity, I
refer to such algebras as AS-Ore extensions. I began by writing a presentation for
graded iterated Ore extensions and then rewrote the possible algebras in terms of
their degree 1 generators in order to study their possible relation types.

Theorem 2.1. If K is a field and P = K[x1][x2, σ2, δ2] · · · [xn, σn, δn] is a graded
iterated Ore extension, then P has presentation

P ∼=
K〈x1 · · ·xn〉
〈{rji}〉

where for each j > i, there is a unique homogeneous relation rji, given by

xjxi = σj(xi)xj + δj(xi), σj(xi) and δj(xi) ∈ K[x1] · · · [xj−1, σj−1, δj−1],

and these relations satisfy the diamond condition.

Here,“satisfying the diamond condition” is equivalent to checking that the mul-
tiplication is well defined, i.e. that the value of overlaps xkxjxi, xk > xj > xi is
independent of which relation is used to simplify the expression.

For an Ore extension with variables of degrees 1, 1, 2, 3, and 5, I used this
presentation to write fully general relations that meet the requirements on the σi
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and δi and then used computer software to compute the overlaps (xkxj)xi−xk(xjxi)
for all xk > xj > xi. Setting each coefficient in these overlaps equal to zero provided
me with a large system of equations. Although this system of equations was too
complex for the computer to solve, I was able to simplify it substantially by focusing
on the most informative equations and later by setting some coefficients equal to
zero. Using this method I was able to prove:

Theorem 2.2. The following relations define an AS-Ore extension which has

h(t) =
1

(1− t)2(1− t2)(1− t3)(1− t5)
, relation type (3,4,7), and variables of de-

grees 1, 1, 2, 3, and 5:

r21 : x2x1 = −x1x2
r32 : x3x2 = x1 + bx2x3

r31 : x3x1 = −x1x3
r43 : x4x3 = x2 + bx3x4

r42 : x4x2 = b2x2x4

r41 : x4x1 = x1x4

r54 : x5x4 = x3 + x4x5

r53 : x5x3 = −x3x5
r52 : x5x2 = −x2x5 − b2x3x3
r51 : x5x1 = x1x5 + cx3x3x3

where b = e
4πi
3 and c = 2b2

1−b+b2 .

This theorem is of interest because this is the Hilbert series of the algebra found
by Floystad and Vatne for which there is no enveloping algebra with the same se-
ries. Together with other results in the field, this means that every known relation
type of AS-regular algebra can be realized by an AS-Ore extension. This lends
some support to the hypothesis that every relation type of AS-regular algebra (or
at least of every AS-regular algebra of dimension at most 5) can be realized by an
AS-Ore extension, although more examples will be required before there is reason
to suspect that such a general statement holds.

I also investigated the classification of relation types of AS-Ore extensions of
dimension 5 with 3 and 4 generators. The free resolution of the trivial module K
for a dimension 5 AS-regular algebra generated in degree 1 is well known and can be
used to find the Hilbert series of the algebra. On the other hand, the Hilbert series of
an iterated Ore extension is the same as that of a weighted commutative polynomial

ring with variables of the same degrees and so is equal to
1∏

(1− tdeg(xi))
. By

comparing these series, I was able to restrict the possible relation types of AS-Ore
extensions. I was able to further restrict the relation types by seeing what happened
to the relations given by Theorem 2.1 after writing everything in terms of the degree
1 generators. These methods allowed me to completely classify the relation types
of AS-Ore extensions of dimension 5 with 3 and 4 generators. The results can be
summarized as:
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Theorem 2.3. An AS-Ore extension of dimension 5 with 3 generators has relation
type (2,2,3), (2,2,3,4), or (2,3,3,3,3,3).

Theorem 2.4. An AS-Ore extension of dimension 5 with 4 generators has relation
type (2,2,2,2,2), (2,2,2,2,2,3), or (2,2,2,2,2,3,3).

Motivated by previous results in the field and the example presented by Floystad
and Vatne, I also investigated the possible relation types of enveloping algebras of
graded Lie algebras, a subset of AS-Ore extensions. For each relation type listed
above, I was either able to construct explicit examples of enveloping algebras or
use a general presentation of enveloping algebras to conclusively show that no such
enveloping algebra could exist. I summarize the results as:

Theorem 2.5. An AS-Ore extension of dimension 5 which has 3 or 4 generators
and which is also the enveloping algebra of a graded Lie algebra has relation type
(2,2,2,2,2), (2,2,2,2,2,3,3), (2,3,3,3,3,3), or (2,2,3,4).

I have also explicitly constructed an example of an AS-Ore algebra for each of
the relation types listed in Theorem 2.3 and Theorem 2.4.

3. Remaining questions and future directions

There are several loose ends from my dissertation research that would be in-
teresting to revisit at a later date. From the work of authors that have looked
at AS-regular algebras of dimension 5 with 2 generators, together with my own
results, we have a complete classification of the possible relation types of AS-Ore
extensions of dimension 5, with just one exception:

Question 3.1. Is there an AS-Ore extension with relation type (4,4,4,5)?

This relation type has variables of degrees 1, 1, 2, 3, and 3. If the variables
(x5, x4, x3, x2, x1) are taken to have degrees (1,1,2,3,3) and if I investigate all pos-
sible AS-Ore extensions of the form K[x1][x2, σ2, δ2][x3, σ3, δ3][x4, σ4, δ4][x5, σ5, δ5]
then my initial computations suggest that the algebra may have relation type (4,4,4)
or (4,4,4,5,5), but not (4,4,4,5). I have also run computations where the variables
are adjoined in different orders, but have not yet checked or exhausted these cases.
It appears likely that, in all cases, there are relations of degrees 4, 4, 4, 5, and 5
(and that the leading terms of these relations are always the same), but that some
of the degree 5 relations may be consequences of overlaps that fail to resolve when
the algebra is written in terms of the degree 1 generators. In this case, these rela-
tions are not part of the minimal generating set of the ideal. It also appears likely
that either none or both of the degree 5 relations are independent of overlaps, so
that (4,4,4,5) is not a possible relation type. Finishing these computations would
be a highly accessible problem, and much of the work would be appropriate for an
undergraduate student interested in the field.

More generally, it is appropriate to ask:

Question 3.2. Is there an AS-regular algebra generated in degree 1 with relation
type (4,4,4,5)?

Such an algebra would be quite interesting as it would represent the first example
of a relation type which cannot be realized by any Z2-graded AS-regular algebra.
(Zhou and Lu found that there is no Z2-graded algebra with this relation type [ZL].)
It would also likely be an example of a relation type which cannot be realized by any
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AS-Ore extension. An algebra with this relation type would still have 3 relations of
degree 4 in the minimal generating set of the ideal, but there would be much greater
flexibility in their leading terms and the number and degrees of additional relations.

A question which has historically been asked about AS-regular algebras of lower
dimensions is whether or not they are PI. An algebra A is called polynomial identity
if there is an N and a nonzero polynomial P in N noncommuting variables with
coefficients in Z such that P (a1, · · · , aN ) = 0 for any a1, · · · , aN ∈ A. Any com-
mutative algebra is PI since it satisfies P = X1X2 −X2X1. Thus, PI algebras are
of interest since they are close generalizations of commutative algebras. In lower
dimensions, the majority of AS-regular algebras are not PI, but every relation type
can be realized by an algebra that is.

It is reasonable to ask:

Question 3.3. For which of the relation types found is there an AS-Ore extension
which is PI? Are there any for which there is no AS-Ore extension which is not PI?

Leroy and Matczuk have proven that, if R is PI, σ injective, and the center of
R[x, σ, δ] ∩ 〈x〉 is not trivial, then R[x, σ, δ] is also PI [LM, Theorem 2.7]. I believe
that this can be used recursively to show that the example of an AS-Ore extension
given in Theorem 2.2 is PI. On the other hand, an enveloping algebra which is gen-
erated in degree 1 and which is not already commutative is not PI [Pas, Theorem
1.3]. Although I have not carefully examined which of the relation types of AS-Ore
extensions with 3 and 4 generators can be realized by algebras which are and are
not PI, this would be another interesting and reasonably accessible question since it
can largely be reduced to examining central elements of the given algebras. Large
portions of this project would be appropriate for a talented undergraduate student,
especially one with interest in programming.

Given the direction that other experts have gone in the field, it is also natural to
ask about AS-regular Ore extensions that are Z2-graded. A first question in this
area could be:

Question 3.4. For which of the relation types found is there an AS-Ore extension
which is also Z2-graded?

The example of an AS-Ore extension with 2 generators in Theorem 2.2 is Z2-
graded, as are many of the enveloping algebras I’ve found. On the other hand, the
example I have found of an Ore extension with relation type (2,2,2,2,2,3) is not. In
fact, I noted that I could get the correct relation type by setting a specific coefficient
from the general relations equal to 1, and this coefficient makes the algebra fail to
be Z2-graded. While I have not exhausted alternate approaches that may give the
correct relation type while maintaining the grading, this first example suggests that
the question is worth investigating and may have a very surprising answer.
Z2-graded algebras are interesting outside of the context of AS-Ore extensions

and are an appropriate starting point for generalizing the results of my dissertation
research. It is natural to ask:

Question 3.5. Is it possible to classify all families of Z2-graded AS-regular alge-
bras which have the same relation types as those that have been found for AS-Ore
extensions?
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In the coming months, I hope to quickly address Question 3.4 before switching
gears to answer Question 3.5. Previous results in the field will prove useful here.
For example, Rogalski and Zhang classified most Z2-graded AS-regular algebras of
dimension 4 with 3 generators. They found that the degree 2 relations must have
grading (2,0) and (1,2), a fact which carries over to algebras of dimension 5 with 3
generators if the authors’ initial assumptions are maintained. The possible degree
2 relations can be specified even further, and a great deal is also known about the
degree 3 relation. In the dimension 5 case however, there are a number of other
potential relations about which very little is known.

Widening the scope even more, one could ask:

Question 3.6. Are there Z2-graded AS-regular algebras with the same Hilbert series
as those found but with different relation types?

Question 3.7. Are there Z2-graded AS-regular algebras of dimension 5 with Hilbert
series different from those found?

Question 3.8. Are there (not necessarily Z2-graded) AS-regular algebras of di-
mension 5 with relation type or Hilbert series different from those found?

Answering Question 3.8 remains an extremely difficult project beyond the scope
of methods that have been developed and used in the field so far, but answering
the preceding questions should help to guide our intuition. Additionally, general-
izations of techniques such as that used to prove [FV, Theorem 5.6] may allow us to
list or restrict the possible relation types of algebras of dimension 5, which would be
a very interesting result in its own right and a helpful tool in answering Question 3.8.

There are several other generalizations that might be of interest in broader ex-
ploration of AS-regular algebras. A question that would generalize my results on
AS-Ore extensions and provide additional examples of dimension 5 AS-regular al-
gebras for us to work with is:

Question 3.9. What are the possible relation types of AS-regular algebras of di-
mension 5 that are double Ore extensions as defined in [ZZ1]?

This could be a long term project appropriate for a group of undergraduate stu-
dents. While understanding the construction of a double Ore extension and the
theory behind it would require a moderate investment of time initially, it would
then be reasonable for a student to find a presentation for double Ore extensions
similar to that given for Ore extensions in Theorem 2.1 and to then use similar
computational methods to explore possible relations.

Alternatively, there are questions that could be asked about iterated Hopf Ore
extensions, which are both iterated Ore extensions and Hopf algebras. Any en-
veloping algebra is automatically an IHOE with 4(xi) = xi

⊗
1 + 1

⊗
xi for every

generator. A starting point for research in this area would be the question:

Question 3.10. Can every relation type found be realized by an IHOE?

This question is especially interesting since we now have many examples in di-
mension 5 of relation types that cannot be realized by enveloping algebras. It made
sense to generalize enveloping algebras to less restrictive objects, but there was no
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clear reason to choose Ore extensions over IHOE’s, which lie between Ore exten-
sions and enveloping algebras. It would be interesting to know if IHOE’s are “as
flexible” as Ore extensions in the possible relation types they can satisfy or if, like
enveloping algebras, they are in some way overly restrictive.

Finally, there is an extensive pool of questions that have historically been of
interest to mathematicians and physicists who study AS-regular algebras and which
have motivated their classification and the search for additional examples.

For example, A point module of an AS-regular algebra A generalizes the concept

of a point in Proj(A) and is an A-module M =
∞∑
i=0

Mi with dim(Mi) = 1 and which

is generated by M0. In lower dimensions, the point modules of an algebra frequently
form a “nice” space which has proven useful to study, as has the ideal which kills all
point modules of A. There is some evidence to suggest that point modules are quite
rare and difficult to compute in higher dimensions and the additional examples of
dimension 5 algebras which I have found would allow us to explore that possibility
further.

As another example, another active area of inquiry deals with the generalization
of classical invariant theory to the noncommutative setting. If A is AS-regular and
G is a finite group which acts on A, let AG = {a ∈ A| g(a) = a ∀g ∈ G}. We
can ask if AG is again AS-regular or at least AS-Gorenstein (where we drop the
condition that global dimension be finite).

Question 3.11. What is Aut(A) for the examples of AS-Ore extensions I have
found?

More generally, we can ask these same questions about AH where H is a Hopf
algebra which acts on A:

Question 3.12. Are there any interesting Hopf-actions on A for the examples
found?

This field provides another motivation for the explicit construction of additional
examples of AS-regular algebras as they are required to test and further refine
existing conjectures about invariant theory.

References

[AS] Michael Artin and William F. Schelter. Graded algebras of global dimension 3. Adv. in
Math., 66(2):171–216, 1987.

[AST] Michael Artin, William Schelter, and John Tate. Quantum deformations of GLn. Comm.

Pure Appl. Math., 44(8-9):879–895, 1991.
[ATVdB] M. Artin, J. Tate, and M. Van den Bergh. Some algebras associated to automorphisms

of elliptic curves. In The Grothendieck Festschrift, Vol. I, volume 86 of Progr. Math.,
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