1. Let \(f : [0, \infty) \to \mathbb{R} \) be given by \(f(x) = \sqrt{x} \). Prove that \(f \) is uniformly continuous.

 \text{Hint:} First prove that \(|\sqrt{u} - \sqrt{v}| \leq |\sqrt{u} + \sqrt{v}|\) for all \(u, v \in [0, \infty) \), and then use that this implies \(|\sqrt{u} - \sqrt{v}|^2 \leq |\sqrt{u} - \sqrt{v}| |\sqrt{u} + \sqrt{v}| = |u - v|\).

2. Let \(f : D \to \mathbb{R} \) and \(g : D \to \mathbb{R} \) be uniformly continuous functions.

 (a) Give an example showing that \(fg \) need not be uniformly continuous.
 (b) Show that if \(f \) and \(g \) are bounded, then \(fg \) is uniformly continuous.

 \text{Hint:} Write \(f(u)g(u) - f(v)g(v) = f(u)[g(u) - g(v)] + g(v)[f(u) - f(v)] \).

3. For each of the following statements, determine whether it is true or false, you do not need to justify your answer.

 (a) The function \(f : \mathbb{R} \to \mathbb{R} \) given by \(f(x) = 1 \) is uniformly continuous.
 (b) The function \(f : \mathbb{R} \to \mathbb{R} \) given by \(f(x) = x \) is uniformly continuous.
 (c) The function \(f : \mathbb{R} \to \mathbb{R} \) given by \(f(x) = x^2 \) is uniformly continuous.
 (d) The function \(f : \mathbb{R} \to \mathbb{R} \) given by \(f(x) = \sin x \) is uniformly continuous.
 (e) The function \(f : (0, \infty) \to \mathbb{R} \) given by \(f(x) = \frac{1}{x} \) is uniformly continuous.
 (f) The function \(f : [1, \infty) \to \mathbb{R} \) given by \(f(x) = \frac{1}{x} \) is uniformly continuous.
 (g) The function \(f : [-200, 400] \to \mathbb{R} \) given by \(f(x) = x^3 \) is uniformly continuous.
 (h) A function \(f : D \to \mathbb{R} \) is continuous if and only if
 \[
 \forall x_0 \in D \quad \forall \epsilon > 0 \quad \exists \delta > 0 \quad \text{s.t.} \quad |f(x) - f(x_0)| < \epsilon \quad \forall x \in D \text{ with } |x - x_0| < \delta.
 \]
 (i) A function \(f : D \to \mathbb{R} \) is uniformly continuous if and only if
 \[
 \forall \epsilon > 0 \quad \exists \delta > 0 \quad \text{s.t.} \quad \forall x_0 \in D \quad |f(x) - f(x_0)| < \epsilon \quad \forall x \in D \text{ with } |x - x_0| < \delta.
 \]
 (j) A function \(f : D \to \mathbb{R} \) is uniformly continuous if and only if
 \[
 \forall \epsilon > 0 \quad \exists \delta > 0 \quad \text{s.t.} \quad |f(u) - f(v)| < \epsilon \quad \forall u, v \in D \text{ with } |u - v| < \delta.
 \]