Explanations should be given for your solutions. Use complete sentences. Some hints are on the last page.

(1) Evaluate the following sums:
 (a) \(\sum_{i=0}^{n} \binom{n}{i} \frac{1}{2^i} \)
 (b) \(\sum_{i=0}^{n} i \binom{n}{i} 3^i \)

(2) Fix positive integers \(n, m, k \). Prove that
 \[
 \sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i} = \binom{n+m}{k}.
 \]

(3) Let \(n \geq 2 \) be an integer.
 (a) Prove that
 \[
 \sum_{i=0}^{n} i \binom{n}{i} (-1)^{i-1} = 0.
 \]
 (b) Deduce from (a) that
 \[
 \sum_{0 \leq i \leq n} i \binom{n}{i} = \sum_{0 \leq i \leq n} i \binom{n}{i}
 \]
 and compute the common value.

(4) (a) Using the multinomial theorem, compare the coefficients of both sides of the equation \((x + y + z)(x + y + z)^n = (x + y + z)^{n+1} \) to get a generalization of Pascal’s identity for multinomial coefficients.
 (b) Do the same thing with \(k \) variables for general \(k \).

(5) A “forward path” in the plane is a sequence of steps of the form \((1, 0)\) and \((0, 1)\).
 (a) How many forward paths are there from \((0, 0)\) to \((a, b)\) where \(a, b\) are non-negative integers?
 (b) Let \(S_{a,b} \) be the set of integer partitions \(\lambda \) such that \(\ell(\lambda) \leq b \) and \(\lambda_1 \leq a \). Find a bijection between \(S_{a,b} \) and the set of forward paths from \((0, 0)\) to \((a, b)\).
 (c) Generalize this definition to \(d \) dimensions by only allowing steps which increase one of the coordinates by 1 (so \((1, 0, 0, \ldots, 0), (0, 1, 0, \ldots, 0), \ldots, (0, 0, 0, \ldots, 1))\). How many forward paths are there from \((0, 0, \ldots, 0)\) to \((a_1, a_2, \ldots, a_d)\) where \(a_1, \ldots, a_d\) are non-negative integers?
Hints:
5b: Draw a rectangle with endpoints (0,0), (a,0), (a,b), (0,b). Think of a forward path as splitting this rectangle into two pieces and consider the portion above the path.