Twisted homological stability for groups via functor categories

Steven V Sam
(joint work with Andrew Putman)

A sequence of groups and maps $G_1 \to G_2 \to \cdots$ satisfies **homological stability** if, for each $i \geq 0$, the induced map on homology $H_i(G_n) \to H_i(G_{n+1})$ is an isomorphism for $n \gg i$. Some sequences of groups that satisfy homological stability (the maps are the usual ones):

- Symmetric groups $G_n = S_n$ (Nakaoka [Nak]);
- For any group Γ, the wreath products $G_n = S_n \rtimes \Gamma^n$ (this seems to have been well-known – it is stated explicitly in [HW, Prop. 1.6]);
- For well-behaved rings R (such as commutative noetherian rings of finite Krull dimension), $G_n = GL_n(R)$ (van der Kallen [Va]), and
- the symplectic groups $G_n = Sp_{2n}(R)$ (Mirzaii–van der Kallen [MV]).

More generally, G_n-representations M_n equipped with G_n-equivariant maps $M_n \to M_{n+1}$ satisfy **twisted homological stability** if, for each $i \geq 0$, the induced map $H_i(G_n; M_n) \to H_i(G_{n+1}; M_{n+1})$ is an isomorphism for $n \gg i$.

The problem we consider is to determine which kinds of sequences satisfy twisted homological stability. Wahl [W] gave a general setup using the notion of **homogeneous categories** (they are monoidal categories; we omit the definition since we use a special case below). If $(G, \oplus, 0)$ is a symmetric monoidal groupoid such that $\text{Aut}(0) = \{1\}$ and such that the map $\text{Aut}(A) \to \text{Aut}(A \oplus B)$ given by $f \mapsto f \oplus 1_B$ is injective for all A, B, then there is a minimal homogeneous symmetric monoidal category UG containing G as its underlying groupoid [W, 1.4, 1.5].

Corresponding to the previous examples, we give a few cases of G and UG:

- The groupoid of finite sets under disjoint union gives the category FI, whose objects are finite sets and whose morphisms are injections;
- The groupoid of free Γ-sets under disjoint union gives the category $\text{FI}\Gamma$, whose objects are finite sets and whose morphisms are Γ-injections: an injective function $f : R \to S$ and a function $\rho : R \to \Gamma$; the composition with $(g : S \to T, \sigma)$ is given by (gf, τ) where $\tau(x) = \sigma(f(x)) \cdot \rho(x)$;
- The groupoid of finite rank free R-modules under direct sum gives the category $\text{VIC}(R)$, whose objects are finite rank free R-modules and whose morphisms $V \to W$ are pairs of maps $V \to W \to V$ composing to 1_V;
- The groupoid of finite rank free symplectic R-modules under direct sum gives the category $\text{SI}(R)$, whose objects are finite rank free symplectic R-modules and whose morphisms are linear maps preserving the form (and hence must be injective).

The above examples of UG are in fact complemented categories. A symmetric monoidal category is **complemented** if it satisfies the following properties:

- Every morphism is a monomorphism;
- 0 is an initial object, and so we have canonical maps $V \to V \oplus V'$ and $V' \to V \oplus V'$;
The map \(\text{Hom}(V \oplus V', W) \to \text{Hom}(V, W) \times \text{Hom}(V', W) \) is injective;

- Every subobject \(C \subseteq V \) has a complement, i.e., another subobject \(D \subseteq V \) so that \(V \cong C \oplus D \) and where the isomorphism identifies the inclusion \(C \subseteq V \) with the canonical map \(C \to C \oplus D \), and similarly for \(D \).

Each one has a **generator** \(X \), i.e., every object is isomorphic to \(X^{\oplus n} \).

- Fix a commutative ring \(k \). Given a complemented category \(C \) with generator \(X \), and a functor \(F : C \to k\text{-Mod} \), define \(\Sigma F : C \to k\text{-Mod} \) to be the precomposition with the functor \(Y \mapsto Y \oplus X \). There is a natural transformation \(F \to \Sigma F \), and its kernel and cokernel are denoted \(\ker F \) and \(\text{coker} F \). We can use this to define the **degree** of a functor:
 - If \(F = 0 \), then its degree is \(-1\);
 - If \(\ker F \) and \(\text{coker} F \) have degree \(\leq r - 1 \), then \(F \) has degree \(\leq r \).

Otherwise \(F \) has infinite degree. Also, for each \(n \), define a semisimplicial set \(W_n(X) \) whose \(p \)-simplices are \(\text{Hom}(X^{\oplus p+1}, X^{\oplus n}) \).

Let \(C \) be a complemented category with generator \(X \). Suppose that there is an integer \(k \geq 2 \) so that for all \(n \geq 1 \), \(W_n(X) \) is \((n - 2)/k\)-connected. Then a special case of [W, Theorem 5.6] is that for any functor of finite degree \(r \), the map

\[H_i(\text{Aut}(X^{\oplus n}); F(X^{\oplus n})) \to H_i(\text{Aut}(X^{\oplus n+1}); F(X^{\oplus n+1})) \]

is an isomorphism when \(i \leq (n - r)/k \). Implicitly, we always use the morphisms \(X^{\oplus n} \to X^{\oplus n+1} \) as inclusion via the first \(n \) factors to define all structure maps. We will say that the functor \(F \) satisfies homological stability.

For some purposes, having finite degree is too restrictive of a condition. For example, if \(k \) is a field and \(F \) takes finite-dimensional values, then it implies that the function \(n \mapsto \dim_k F(X^{\oplus n}) \) is a polynomial for \(n \gg 0 \). A basic property of complemented categories \(C \) with generator \(X \) is that for \(n \geq r \), the permutation representation \(k[\text{Hom}(X^{\oplus r}, X^{\oplus n})] \) is isomorphic to the induced representation \(\text{Ind}_{\text{Aut}(X^{\oplus r})}^{\text{Aut}(X^{\oplus n})} k \). So by Shapiro’s lemma, the functor \(P_r : C \to k\text{-Mod} \) defined by \(Y \mapsto k[\text{Hom}(X^{\oplus r}, Y)] \) satisfies homological stability if the same is true for the constant functor, i.e., the groups \(\text{Aut}(X^{\oplus n}) \) satisfy homological stability. **From now on, we will make this assumption about \(\text{Aut}(X^{\oplus n}) \).**

By Yoneda’s lemma, the set of natural transformations \(P_r \to F \) identifies with \(F(X^{\oplus r}) \), and so the \(P_r \) are a set of projective generators for the functor category \([C, k\text{-Mod}]\). In particular, any functor \(F \) admits a projective resolution of the form

\[\cdots \to P_d \to P_{d-1} \to \cdots \to P_1 \to P_0 \to F \to 0 \]

where \(P_d \) is a direct sum of \(P_r \). If we assume that each \(P_d \) has a decomposition as \(\bigoplus_{r \leq d} P_r \) (\(D \) depending on \(d \)), then \(P_d \) also satisfies homological stability. Note that for each \(n \), there is a spectral sequence

\[E^1_{p,q}(n) = H_p(\text{Aut}(X^{\oplus n}); P_q(X^{\oplus n})) \Rightarrow H_{p+q}(\text{Aut}(X^{\oplus n}); F(X^{\oplus n})), \]

and spectral sequence morphisms \(E^1_{p,q}(n) \to E^1_{p,q}(n + 1) \). So with the assumption on \(P_d \) above, we see that for a given diagonal \(p + q \), the map of spectral sequences

\[E_d^1(n) \to 0 \]

for all \(d \). Therefore, the spectral sequence converges to something and we have a decomposition of \(F(X^{\oplus r}) \).
on all relevant terms to calculate H_{p+q} is an isomorphism for $n \gg 0$, and hence F satisfies homological stability.

This motivates the following definitions. Say that F is **finitely generated** if it is a quotient of a finite direct sum $P_{r_1} \oplus \cdots \oplus P_{r_n}$, and say that F is **noetherian** if every subfunctor of F is finitely generated; $[C, k\text{-Mod}]$ is (locally) noetherian if every finitely generated functor is noetherian. This implies that k is a noetherian ring. If $[C, k\text{-Mod}]$ is noetherian, then every finitely generated functor has a projective resolution where each P_d is a finite direct sum of P_r, and hence satisfies homological stability. This is formalized in [PS, Theorem 4.2].

Some examples of when $[C, k\text{-Mod}]$ is noetherian (take k to be any noetherian ring) corresponding to the running examples:

- FI (Church–Ellenberg–Farb–Nagpal [CEFN, Theorem A])
- When Γ is virtually polycyclic, FI$_\Gamma$ (Sam–Snowden [SS, Cor. 1.2.2])
- When R is a finite commutative ring, VIC(R) and SI(R) (Putman–Sam [PS, Theorems C, D])

Finally, a word about cohomology versus homology. Let k be a field of characteristic $p > 0$ and let $h(n) = \{(x_1, \ldots, x_n) \in k^n \mid \sum_i x_i = 0\}$ be the reflection representation of S_n; note that $\{1, \ldots, n\} \mapsto h(n)$ defines a finitely generated functor $FI \to k\text{-Mod}$. For $n \geq 3$ we have $H_0(S_n; h(n)) = 0$, whereas

$$H^0(S_n; h(n)) = h^{S_n} = \begin{cases} 0 & \text{if } p \nmid n \\ k & \text{if } p \mid n \end{cases}.$$

In fact, this periodic behavior is typical: Nagpal shows that if F is a finitely generated FI-module, then for each i, the function $n \mapsto \dim_k H^i(S_n; F(\{1, \ldots, n\}))$ is a periodic function of n for $n \gg 0$ with period a power of p [Nag, Theorem D].

References

