Slow Fibonacci Walks

Sam Spiro, UC San Diego.

INSERT DATE
What is Food for Thought?

Food for thought is the graduate student seminar at UCSD. Talks are fairly casual. Food is always provided!
Food for thought is the graduate student seminar at UCSD. Talks are fairly casual.
What is Food for Thought?

Food for thought is the graduate student seminar at UCSD. Talks are fairly casual.
What is Food for Thought?

Food for thought is the graduate student seminar at UCSD. Talks are fairly casual.

Food is always provided!
What ISN’T Food for Thought?

Talks shouldn’t require too much background (at least for most of the talk).
Talks need not be related to your research (or even your research area); anything semi-mathematical that you think is neat will work.
Talks need not be done via beamer.
Talks need not include memes.
What ISN’T Food for Thought?

- Talks shouldn’t require too much background (at least for most of the talk).
What ISN’T Food for Thought?

- Talks shouldn’t require too much background (at least for most of the talk).
- Talks need not be related to your research (or even your research area); anything semi-mathematical that you think is neat will work.
What ISN’T Food for Thought?

- Talks shouldn’t require too much background (at least for most of the talk).
- Talks need not be related to your research (or even your research area); anything semi-mathematical that you think is neat will work.
- Talks need not be done via beamer.
What ISN’T Food for Thought?

- Talks shouldn’t require too much background (at least for most of the talk).
- Talks need not be related to your research (or even your research area); anything semi-mathematical that you think is neat will work.
- Talks need not be done via beamer.
- Talks need not include memes.
Why should I give a Food for Thought Talk?

I'm glad you asked!

It gives you an excuse to make slides for a talk.

It gives you the chance to practice giving talks, especially ones geared towards a general mathematical audience (e.g. job talks).

It gives you an excuse to (better) learn a topic (e.g. for a qual class, or on a research topic you might want to explore).

It fosters comradery amongst the department.

It lets us give you guys snacks!

Just let Vaki or I know if you'd like to give a talk on some specific day, or if you'd just like to be on the "reserve list."
Why should I give a Food for Thought Talk?

I’m glad you asked!
I’m glad you asked!

- It gives you an excuse to make slides for a talk.
I’m glad you asked!

- It gives you an excuse to make slides for a talk.
- It gives you the chance to practice giving talks, especially ones geared towards a general mathematical audience (e.g. job talks).
Why should I give a Food for Thought Talk?

I’m glad you asked!

- It gives you an excuse to make slides for a talk.
- It gives you the chance to practice giving talks, especially ones geared towards a general mathematical audience (e.g. job talks).
- It gives you an excuse to (better) learn a topic (e.g. for a qual class, or on a research topic you might want to explore).
Why should I give a Food for Thought Talk?

I’m glad you asked!

- It gives you an excuse to make slides for a talk.
- It gives you the chance to practice giving talks, especially ones geared towards a general mathematical audience (e.g. job talks).
- It gives you an excuse to (better) learn a topic (e.g. for a qual class, or on a research topic you might want to explore).
- It fosters comradery amongst the department.
Why should I give a Food for Thought Talk?

I’m glad you asked!

- It gives you an excuse to make slides for a talk.
- It gives you the chance to practice giving talks, especially ones geared towards a general mathematical audience (e.g. job talks).
- It gives you an excuse to (better) learn a topic (e.g. for a qual class, or on a research topic you might want to explore).
- It fosters comradery amongst the department.
- It lets us give you guys snacks!
Why should I give a Food for Thought Talk?

I’m glad you asked!

- It gives you an excuse to make slides for a talk.
- It gives you the chance to practice giving talks, especially ones geared towards a general mathematical audience (e.g. job talks).
- It gives you an excuse to (better) learn a topic (e.g. for a qual class, or on a research topic you might want to explore).
- It fosters comradery amongst the department.
- It lets us give you guys snacks!

Just let Vaki or I know if you’d like to give a talk on some specific day, or if you’d just like to be on the “reserve list.”
Given positive integers a_1, a_2, we define the (a_1, a_2)-Fibonacci walk to be the sequence $w = w(a_1, a_2)$ satisfying $w_1 = a_1, w_2 = a_2, w_k+2 = w_k+1 + w_k$.

For example, if $w = w(10, 2)$, this gives the sequence $10, 2, 12, 14, 26, 40, 66, ...$

We say that w is an n-Fibonacci walk if $w_s = n$ for some s. For example, the above w is a 40-Fibonacci walk.
Given positive integers a_1, a_2, we define the (a_1, a_2)-Fibonacci walk to be the sequence $w_k = w_k(a_1, a_2)$ satisfying

$$w_1 = a_1, \quad w_2 = a_2, \quad w_{k+2} = w_{k+1} + w_k.$$
Given positive integers a_1, a_2, we define the (a_1, a_2)-Fibonacci walk to be the sequence $w_k = w_k(a_1, a_2)$ satisfying

$$w_1 = a_1, \; w_2 = a_2, \; w_{k+2} = w_{k+1} + w_k.$$

For example, if $w_k = w_k(10, 2)$, this gives the sequence

$$10, 2, 12, 14, 26, 40, 66\ldots$$
Given positive integers a_1, a_2, we define the (a_1, a_2)-Fibonacci walk to be the sequence $w_k = w_k(a_1, a_2)$ satisfying

$$w_1 = a_1, \ w_2 = a_2, \ w_{k+2} = w_{k+1} + w_k.$$

For example, if $w_k = w_k(10, 2)$, this gives the sequence

$$10, 2, 12, 14, 26, 40, 66\ldots$$

We say that w_k is an n-Fibonacci walk if $w_s = n$ for some s. For example, the above w_k is a 40-Fibonacci walk.
Observe that \(w_k(x, n) \) is an \(n \)-Fibonacci walk for all \(x \), which is kind of boring.
Observe that $w_k(x, n)$ is an n-Fibonacci walk for all x, which is kind of boring. One way to make things interesting is to make our walk “faster.”
Observe that $w_k(x, n)$ is an n-Fibonacci walk for all x, which is kind of boring. One way to make things interesting is to make our walk “faster.”
While that does look pretty interesting, we’ll instead make our walk “slower.”
While that does look pretty interesting, we’ll instead make our walk “slower.” To this end, we will say that a sequence w_k is an n-slow Fibonacci walk if $w_s = n$ and s is as large as possible.
Slow Fibonacci Walks

While that does look pretty interesting, we’ll instead make our walk “slower.” To this end, we will say that a sequence w_k is an n-slow Fibonacci walk if $w_s = n$ and s is as large as possible. For example, the following are all 40-Fibonacci walks.

- $1024, 40, 1064 \ldots$
- $8, 8, 16, 24, 40, 64 \ldots$
- $5, 5, 10, 15, 25, 40, 65 \ldots$
- $10, 2, 12, 14, 26, 40, 66 \ldots$
While that does look pretty interesting, we’ll instead make our walk “slower.” To this end, we will say that a sequence \(w_k \) is an \(n \)-slow Fibonacci walk if \(w_s = n \) and \(s \) is as large as possible. For example, the following are all 40-Fibonacci walks.

\[
\begin{align*}
1024, & \quad 40, \quad 1064 \\
8, & \quad 8, \quad 16, \quad 24, \quad 40, \quad 64 \\
5, & \quad 5, \quad 10, \quad 15, \quad 25, \quad 40, \quad 65 \\
10, & \quad 2, \quad 12, \quad 14, \quad 26, \quad 40, \quad 66
\end{align*}
\]

However, the first two can’t be slow (since the next two achieve 40 with \(s = 6 \)), and one can verify that \(w_k(5, 5) \) and \(w_k(10, 2) \) are (the unique) 40-slow Fibonacci walks.
We will say that a pair of positive integers \((b, a)\) is \(n\)-good if \(w_k(b, a)\) is an \(n\)-slow Fibonacci walks.
Slow Fibonacci Walks

We will say that a pair of positive integers \((b, a)\) is \(n\)-good if \(w_k(b, a)\) is an \(n\)-slow Fibonacci walks. Thus understanding \(n\)-good pairs is equivalent to understanding slow Fibonacci walks. So what can we say about these pairs?
We will say that a pair of positive integers \((b, a)\) is \(n\)-good if \(w_k(b, a)\) is an \(n\)-slow Fibonacci walks. Thus understanding \(n\)-good pairs is equivalent to understanding slow Fibonacci walks. So what can we say about these pairs? Define \(s(n)\) to be the length of any \(n\)-slow walk.
We will say that a pair of positive integers \((b, a)\) is \(n\)-good if \(w_k(b, a)\) is an \(n\)-slow Fibonacci walks. Thus understanding \(n\)-good pairs is equivalent to understanding slow Fibonacci walks. So what can we say about these pairs? Define \(s(n)\) to be the length of any \(n\)-slow walk.

Lemma

\[s(n) = 2 \text{ iff } n = 1, \text{ in which case } (x, a) \text{ is a } 1\text{-good pair for all } x. \]
Slow Fibonacci Walks

We will say that a pair of positive integers \((b, a)\) is \(n\)-good if \(w_k(b, a)\) is an \(n\)-slow Fibonacci walks. Thus understanding \(n\)-good pairs is equivalent to understanding slow Fibonacci walks. So what can we say about these pairs? Define \(s(n)\) to be the length of any \(n\)-slow walk.

Lemma

\[s(n) = 2 \text{ iff } n = 1, \text{ in which case } (x, a) \text{ is a } 1\text{-good pair for all } x. \]

Lemma

Assume \(s(n) = s > 2\). If \((b, a)\) is \(n\)-good, then \(a \leq b\).
Slow Fibonacci Walks

We will say that a pair of positive integers \((b, a)\) is \(n\)-good if \(w_k(b, a)\) is an \(n\)-slow Fibonacci walks. Thus understanding \(n\)-good pairs is equivalent to understanding slow Fibonacci walks. So what can we say about these pairs? Define \(s(n)\) to be the length of any \(n\)-slow walk.

Lemma

\[s(n) = 2 \text{ iff } n = 1, \text{ in which case } (x, a) \text{ is a 1-good pair for all } x. \]

Lemma

Assume \(s(n) = s > 2\). If \((b, a)\) is \(n\)-good, then \(a \leq b\).

Proof.

Otherwise \(b - a \geq 1\) and \(w_{s+1}(a - b, b) = w_s(b, a) = n\), a contradiction to the definition of \(s\).
Slow Fibonacci Walks

Lemma

\[w_k(b, a) = af_{k-1} + bf_{k-2}, \text{ where } f_k \text{ denotes the } k\text{th Fibonacci number.} \]
Lemma

\[w_k(b, a) = af_{k-1} + bf_{k-2}, \text{ where } f_k \text{ denotes the } k\text{th Fibonacci number.} \]

Lemma

Let \(s = s(n) > 2 \). If \((b, a)\) is \(n\)-good, then \((b', a')\) is \(n\)-good iff \(a' = a + kf_{s-2} \geq 1 \) and \(b' = b - kf_{s-1} \geq 1 \) for some \(k \).
Lemma

\[w_k(b, a) = af_{k-1} + bf_{k-2}, \] where \(f_k \) denotes the \(k \)th Fibonacci number.

Lemma

Let \(s = s(n) > 2 \). If \((b, a) \) is \(n \)-good, then \((b', a') \) is \(n \)-good iff \(a' = a + kf_{s-2} \geq 1 \) and \(b' = b - kf_{s-1} \geq 1 \) for some \(k \).

Proof.

By the above lemma, every \(n \)-good pair is a solution to the diophantine equation \(xf_{s-1} + yf_{s-2} = n \), and the result follows since \(\gcd(f_{s-1}, f_{s-2}) = 1 \) for \(s > 2 \). \(\square \)
Slow Fibonacci Walks

<table>
<thead>
<tr>
<th>Theorem (Jones, Kiss (1998); Chung, Graham, S. (2019))</th>
</tr>
</thead>
<tbody>
<tr>
<td>For $n > 1$ with $s = s(n)$, there exist unique integers $a = a(n)$, $b = b(n)$ such that $n = af_{s-1} + bf_{s-2}$ and $1 \leq a \leq b \leq f_{s-1}$. Moreover, $w_{s+1}(b, a) = \lfloor \phi n \rfloor$ if s is odd and $w_{s+1}(b, a) = \lceil \phi n \rceil$ if s is even.</td>
</tr>
</tbody>
</table>
Theorem (Jones, Kiss (1998); Chung, Graham, S. (2019))

For \(n > 1 \) with \(s = s(n) \), there exist unique integers \(a = a(n), \ b = b(n) \) such that \(n = af_{s-1} + bf_{s-2} \) and \(1 \leq a \leq b \leq f_{s-1} \). Moreover, \(w_{s+1}(b, a) = \lfloor \phi n \rfloor \) if \(s \) is odd and \(w_{s+1}(b, a) = \lceil \phi n \rceil \) if \(s \) is even.

Because \(w_k(x, y) = yf_{k-1} + xf_{k-2} \), by definition of \(s \) there exist \(a', b' \) such that \(n = w_s(b', a') = a'f_{s-1} + b'f_{s-2} \).
Slow Fibonacci Walks

Theorem (Jones, Kiss (1998); Chung, Graham, S. (2019))

For \(n > 1 \) with \(s = s(n) \), there exist unique integers \(a = a(n) \), \(b = b(n) \) such that \(n = af_{s-1} + bf_{s-2} \) and \(1 \leq a \leq b \leq f_{s-1} \). Moreover, \(w_{s+1}(b, a) = \lfloor \phi n \rfloor \) if \(s \) is odd and \(w_{s+1}(b, a) = \lceil \phi n \rceil \) if \(s \) is even.

Because \(w_k(x, y) = yf_{k-1} + xf_{k-2} \), by definition of \(s \) there exist \(a', b' \) such that \(n = w_s(b', a') = a'f_{s-1} + b'f_{s-2} \). Let \(k \) be such that \(1 \leq b' - kf_{s-1} \leq f_{s-1} \).
Slow Fibonacci Walks

Theorem (Jones, Kiss (1998); Chung, Graham, S. (2019))

For $n > 1$ with $s = s(n)$, there exist unique integers $a = a(n)$, $b = b(n)$ such that $n = af_{s-1} + bf_{s-2}$ and $1 \leq a \leq b \leq f_{s-1}$. Moreover, $w_{s+1}(b, a) = \lceil \phi n \rceil$ if s is odd and $w_{s+1}(b, a) = \lfloor \phi n \rfloor$ if s is even.

Because $w_k(x, y) = yf_{k-1} + xf_{k-2}$, by definition of s there exist a', b' such that $n = w_s(b', a') = a'f_{s-1} + b'f_{s-2}$. Let k be such that $1 \leq b' - kf_{s-1} \leq f_{s-1}$. Then $(b, a) := (b' - kf_{s-1}, a' + kf_{s-2})$ is n-good, and hence $a \leq b$, and we have $b \leq f_{s-1}$ by construction.
Theorem (Jones, Kiss (1998); Chung, Graham, S. (2019))

For \(n > 1 \) with \(s = s(n) \), there exist unique integers \(a = a(n) \), \(b = b(n) \) such that \(n = af_{s-1} + bf_{s-2} \) and \(1 \leq a \leq b \leq f_{s-1} \). Moreover,
\[
w_{s+1}(b, a) = \left\lfloor \phi n \right\rfloor \text{ if } s \text{ is odd and } w_{s+1}(b, a) = \left\lceil \phi n \right\rceil \text{ if } s \text{ is even.}
\]

Because \(w_k(x, y) = yf_{k-1} + xf_{k-2} \), by definition of \(s \) there exist \(a', b' \) such that \(n = w_s(b', a') = a'f_{s-1} + b'f_{s-2} \). Let \(k \) be such that \(1 \leq b' - kf_{s-1} \leq f_{s-1} \). Then \((b, a) := (b' - kf_{s-1}, a' + kf_{s-2}) \) is \(n \)-good, and hence \(a \leq b \), and we have \(b \leq f_{s-1} \) by construction. Thus such integers exist, and it’s not too hard to prove uniqueness.
Theorem (Jones, Kiss (1998); Chung, Graham, S. (2019))

For $n > 1$ with $s = s(n)$, there exist unique integers $a = a(n), \ b = b(n)$ such that $n = af_{s-1} + bf_{s-2}$ and $1 \leq a \leq b \leq f_{s-1}$. Moreover, $w_{s+1}(b, a) = \lfloor \phi n \rfloor$ if s is odd and $w_{s+1}(b, a) = \lceil \phi n \rceil$ if s is even.

Because $w_k(x, y) = yf_{k-1} + xf_{k-2}$, by definition of s there exist a', b' such that $n = w_s(b', a') = a'f_{s-1} + b'f_{s-2}$. Let k be such that $1 \leq b' - kf_{s-1} \leq f_{s-1}$. Then $(b, a) := (b' - kf_{s-1}, a' + kf_{s-2})$ is n-good, and hence $a \leq b$, and we have $b \leq f_{s-1}$ by construction. Thus such integers exist, and it’s not too hard to prove uniqueness. Observe that $w_{s+1}(b, a) = \lfloor \phi n \rfloor$ is equivalent to $\phi n - w_{s+1}(b, a)$ being a positive number less than 1.
Slow Fibonacci Walks

Theorem (Jones, Kiss (1998); Chung, Graham, S. (2019))

For \(n > 1 \) with \(s = s(n) \), there exist unique integers \(a = a(n), b = b(n) \) such that \(n = af_{s-1} + bf_{s-2} \) and \(1 \leq a \leq b \leq f_{s-1} \). Moreover, \(w_{s+1}(b, a) = \lfloor \phi n \rfloor \) if \(s \) is odd and \(w_{s+1}(b, a) = \lceil \phi n \rceil \) if \(s \) is even.

Because \(w_k(x, y) = yf_{k-1} + xf_{k-2} \), by definition of \(s \) there exist \(a', b' \) such that \(n = w_s(b', a') = a'f_{s-1} + b'f_{s-2} \). Let \(k \) be such that \(1 \leq b' - kf_{s-1} \leq f_{s-1} \). Then \((b, a) := (b' - kf_{s-1}, a' + kf_{s-2}) \) is \(n \)-good, and hence \(a \leq b \), and we have \(b \leq f_{s-1} \) by construction. Thus such integers exist, and it’s not too hard to prove uniqueness. Observe that \(w_{s+1}(b, a) = \lfloor \phi n \rfloor \) is equivalent to \(\phi n - w_{s+1}(b, a) \) being a positive number less than 1. By using \(w_s(b, a) = n \) and writing \(w_k \) in terms of Fibonacci numbers, this is equivalent to

\[
0 < (\phi)^{-s+1}(\phi b - a) < 1,
\]

which is true when \(s \) is odd for \(1 \leq a \leq b \leq f_t \).
Let $p(n)$ denote the number of n-good pairs. Corollary $p(n) \leq 2$, with equality iff $a(n) > fs - 2$.

Proof. Let $1 \leq a \leq b \leq fs - 1$ be as in the previous theorem. Recall that every n-good pair is of the form $(b', a') = (b + kf, a - kf)$ for some k such that $b', a' \geq 1$.

Because $b \leq fs - 1$, we need $k \geq 0$ to have $b' \geq 1$. Because $a \leq fs - 1 \leq 2fs - 2$, we need $k \leq 1$.

Thus only the pairs with $k = 0, 1$ can work, and these both work iff $a > fs - 2$.
Let $p(n)$ denote the number of n-good pairs.
Let \(p(n) \) denote the number of \(n \)-good pairs.

Corollary

\[p(n) \leq 2, \text{ with equality iff } a(n) > f_{s-2} \]
Let $p(n)$ denote the number of n-good pairs.

Corollary

$p(n) \leq 2$, with equality iff $a(n) > f_{s-2}$

Proof.

Let $1 \leq a \leq b \leq f_{s-1}$ be as in the previous theorem.
Let $p(n)$ denote the number of n-good pairs.

Corollary

$p(n) \leq 2$, with equality iff $a(n) > f_{s-2}$

Proof.

Let $1 \leq a \leq b \leq f_{s-1}$ be as in the previous theorem. Recall that every n-good pair is of the form $(b', a') = (b + kf_{s-1}, a - kf_{s-2})$ for some k such that $b', a' \geq 1$.
Let $p(n)$ denote the number of n-good pairs.

Corollary

$p(n) \leq 2$, with equality iff $a(n) > f_{s-2}$

Proof.

Let $1 \leq a \leq b \leq f_{s-1}$ be as in the previous theorem. Recall that every n-good pair is of the form $(b', a') = (b + kf_{s-1}, a - kf_{s-2})$ for some k such that $b', a' \geq 1$. Because $b \leq f_{s-1}$, we need $k \geq 0$ to have $b' \geq 1$.
Let $p(n)$ denote the number of n-good pairs.

Corollary

$p(n) \leq 2$, with equality iff $a(n) > f_{s-2}$

Proof.

Let $1 \leq a \leq b \leq f_{s-1}$ be as in the previous theorem. Recall that every n-good pair is of the form $(b', a') = (b + kf_{s-1}, a - kf_{s-2})$ for some k such that $b', a' \geq 1$. Because $b \leq f_{s-1}$, we need $k \geq 0$ to have $b' \geq 1$. Because $a \leq f_{s-1} \leq 2f_{s-2}$, we need $k \leq 1$.
Let $p(n)$ denote the number of n-good pairs.

Corollary

$p(n) \leq 2$, with equality iff $a(n) > f_{s-2}$

Proof.

Let $1 \leq a \leq b \leq f_{s-1}$ be as in the previous theorem. Recall that every n-good pair is of the form $(b', a') = (b + kf_{s-1}, a - kf_{s-2})$ for some k such that $b', a' \geq 1$. Because $b \leq f_{s-1}$, we need $k \geq 0$ to have $b' \geq 1$. Because $a \leq f_{s-1} \leq 2f_{s-2}$, we need $k \leq 1$. Thus only the pairs with $k = 0, 1$ can work, and these both work iff $a > f_{s-2}$. □
Let $T(n) = n^{-1} | \{ m \leq n : m \text{ has two } m\text{-slow Fibonacci walks} \}$.
Let $T(n) = n^{-1} | \{ m \leq n : m \text{ has two } m\text{-slow Fibonacci walks} \} |$.

Theorem (Chung, Graham, S. (2019))

Given n, let c, p be such that $n = \frac{1}{\sqrt{5}} c \phi^p$ with $\frac{1}{\sqrt{5}} \leq c < \frac{1}{\sqrt{5}} \phi$. Then

$T(n) = \begin{cases}
\frac{1}{2\sqrt{5} \phi^4 c} + O(n^{-1/2}) & p \equiv 1 \mod 2, \\
\frac{\sqrt{5}}{2} c + \frac{1+\phi^{-5}}{2\sqrt{5}c} - 1 + O(n^{-1/2}) & p \equiv 0 \mod 2, c \leq \frac{1+\phi^{-3}}{\sqrt{5}}, \\
1 - \frac{\sqrt{5}}{2} \phi^{-1} c - \frac{1+\phi^{-2}}{2\sqrt{5}c} + O(n^{-1/2}) & p \equiv 0 \mod 2, c \geq \frac{1+\phi^{-3}}{\sqrt{5}}.
\end{cases}$
Let $T(n) = n^{-1}|\{m \leq n : m \text{ has two } m\text{-slow Fibonacci walks}\}|$.

Theorem (Chung, Graham, S. (2019))

Given n, let c, p be such that $n = \frac{1}{\sqrt{5}} c \phi^p$ with $\frac{1}{\sqrt{5}} \leq c < \frac{1}{\sqrt{5}} \phi$.

Then

$$T(n) = \begin{cases}
\frac{1}{2\sqrt{5}\phi^4c} + O(n^{-1/2}) & p \equiv 1 \mod 2, \\
\frac{\sqrt{5}}{2} c + \frac{1+\phi^{-5}}{2\sqrt{5}c} - 1 + O(n^{-1/2}) & p \equiv 0 \mod 2, \ c \leq \frac{1+\phi^{-3}}{\sqrt{5}}, \\
1 - \frac{\sqrt{5}}{2} \phi^{-1} c - \frac{1+\phi^{-2}}{2\sqrt{5}c} + O(n^{-1/2}) & p \equiv 0 \mod 2, \ c \geq \frac{1+\phi^{-3}}{\sqrt{5}}.
\end{cases}$$
“Applications”

(a) Data plot of $T(n)$.

(b) Theory plot of $T(n)$.
(a) Data plot of $T(n)$.
(b) Theory plot of $T(n)$.

“Applications”
“Applications”

\[T(n) = \begin{cases}
\frac{1}{2\sqrt{5}\phi^4c} + O(n^{-1/2}) & p \equiv 1 \mod 2, \\
\frac{\sqrt{5}}{2}c + \frac{1+\phi^{-5}}{2\sqrt{5}c} - 1 + O(n^{-1/2}) & p \equiv 0 \mod 2, \ c \leq \frac{1+\phi^{-3}}{\sqrt{5}}, \\
1 - \frac{\sqrt{5}}{2}\phi^{-1}c - \frac{1+\phi^{-2}}{2\sqrt{5}c} + O(n^{-1/2}) & p \equiv 0 \mod 2, \ c \geq \frac{1+\phi^{-3}}{\sqrt{5}}.
\end{cases} \]
"Applications"

\[T(n) = \begin{cases}
\frac{1}{2\sqrt{5}\phi c} + O(n^{-1/2}) & p \equiv 1 \mod 2, \\
\frac{\sqrt{5}}{2} c + \frac{1+\phi^{-5}}{2\sqrt{5}c} - 1 + O(n^{-1/2}) & p \equiv 0 \mod 2, \quad c \leq \frac{1+\phi^{-3}}{\sqrt{5}}, \\
1 - \frac{\sqrt{5}}{2} \phi^{-1} c - \frac{1+\phi^{-2}}{2\sqrt{5}c} + O(n^{-1/2}) & p \equiv 0 \mod 2, \quad c \geq \frac{1+\phi^{-3}}{\sqrt{5}}.
\end{cases} \]

Proof

Don't count \(m \leq n \) which have two pairs, instead count triples \((s(m), a(m), b(m)) = (s, a, b)\). These satisfy \(af_s - 1 + bf_s - 2 \leq n\), \(1 \leq a \leq b \leq f_s - 1\), and \(a > f_s - 2\).

If \(s \) is such that \(n < f_s - 2 (f_s - 1 + f_s - 2) \approx \frac{1}{5} \phi^{2s - 2} \) then no such \(a, b \) exist.

If \(n \geq f_s - 1 (f_s - 1 + f_s - 2) \approx \frac{1}{5} \phi^{2s - 1} \) then every \((a, b)\) works (which is easy to count).

If \(n \) is in between these two values then things are annoying but doable.
“Applications”

\[T(n) = \begin{cases}
\frac{1}{2\sqrt{5}\phi^4c} + O(n^{-1/2}) & p \equiv 1 \mod 2, \\
\frac{\sqrt{5}}{2}c + \frac{1+\phi^{-5}}{2\sqrt{5}c} - 1 + O(n^{-1/2}) & p \equiv 0 \mod 2, \\
1 - \frac{\sqrt{5}}{2}\phi^{-1}c - \frac{1+\phi^{-2}}{2\sqrt{5}c} + O(n^{-1/2}) & p \equiv 0 \mod 2.
\end{cases} \]

Proof Sketch

Don’t count \(m \leq n \) which have two pairs, instead count triples \((s(m), a(m), b(m)) = (s, a, b)\). These satisfy

\[af s - 1 + bf s - 2 \leq n, \]

\[1 \leq a \leq b \leq f s - 1, \]

and \(a > f s - 2 \).

If \(s \) is such that \(n < f s - 2 \left(f s - 1 + f s - 2 \right) \approx \frac{1+\phi^{-3}}{\sqrt{5}} \), then no such \(a, b \) exist. If \(n \geq f s - 1 \left(f s - 1 + f s - 2 \right) \approx \frac{1+\phi^{-3}}{\sqrt{5}} \), then every \((a, b)\) works (which is easy to count). If \(n \) is in between these two values then things are annoying but doable.
“Applications”

\[
T(n) = \begin{cases}
\frac{1}{2\sqrt{5}\phi^4 c} + O(n^{-1/2}) & p \equiv 1 \mod 2, \\
\frac{\sqrt{5}}{2} c + \frac{1+\phi^{-5}}{2\sqrt{5}c} - 1 + O(n^{-1/2}) & p \equiv 0 \mod 2, \ c \leq \frac{1+\phi^{-3}}{\sqrt{5}}, \\
1 - \frac{\sqrt{5}}{2} \phi^{-1} c - \frac{1+\phi^{-2}}{2\sqrt{5}c} + O(n^{-1/2}) & p \equiv 0 \mod 2, \ c \geq \frac{1+\phi^{-3}}{\sqrt{5}}.
\end{cases}
\]

Proof Sketch (Thank God)
“Applications”

\[
T(n) = \begin{cases}
\frac{1}{2\sqrt{5}\phi^4c} + O(n^{-1/2}) & p \equiv 1 \mod 2, \\
\frac{\sqrt{5}}{2}c + \frac{1+\phi^{-5}}{2\sqrt{5}c} - 1 + O(n^{-1/2}) & p \equiv 0 \mod 2, \; c \leq \frac{1+\phi^{-3}}{\sqrt{5}}, \\
1 - \frac{\sqrt{5}}{2}\phi^{-1}c - \frac{1+\phi^{-2}}{2\sqrt{5}c} + O(n^{-1/2}) & p \equiv 0 \mod 2, \; c \geq \frac{1+\phi^{-3}}{\sqrt{5}}.
\end{cases}
\]

Proof Sketch (Thank God).

Don’t count \(m \leq n \) which have two pairs, instead count triples \((s(m), a(m), b(m)) = (s, a, b)\).
“Applications”

\[T(n) = \begin{cases}
\frac{1}{2\sqrt{5}\phi^4c} + O(n^{-1/2}) & p \equiv 1 \mod 2, \\
\frac{\sqrt{5}}{2} c + \frac{1+\phi^{-5}}{2\sqrt{5}c} - 1 + O(n^{-1/2}) & p \equiv 0 \mod 2, \quad c \leq \frac{1+\phi^{-3}}{\sqrt{5}}, \\
1 - \frac{\sqrt{5}}{2} \phi^{-1} c - \frac{1+\phi^{-2}}{2\sqrt{5}c} + O(n^{-1/2}) & p \equiv 0 \mod 2, \quad c \geq \frac{1+\phi^{-3}}{\sqrt{5}}.
\end{cases} \]

Proof Sketch (Thank God).

Don’t count \(m \leq n \) which have two pairs, instead count triples \((s(m), a(m), b(m)) = (s, a, b)\). These satisfy \(af_{s-1} + bf_{s-2} \leq n \), \(1 \leq a \leq b \leq f_{s-1} \), and \(a > f_{s-2} \).
“Applications”

\[T(n) = \begin{cases}
\frac{1}{2\sqrt{5}\phi^4 c} + O(n^{-1/2}) & p \equiv 1 \mod 2, \\
\frac{\sqrt{5}}{2} c + \frac{1+\phi^{-5}}{2\sqrt{5}c} - 1 + O(n^{-1/2}) & p \equiv 0 \mod 2, \ c \leq \frac{1+\phi^{-3}}{\sqrt{5}}, \\
1 - \frac{\sqrt{5}}{2} \phi^{-1} c - \frac{1+\phi^{-2}}{2\sqrt{5}c} + O(n^{-1/2}) & p \equiv 0 \mod 2, \ c \geq \frac{1+\phi^{-3}}{\sqrt{5}}.
\end{cases} \]

Proof Sketch (Thank God).

Don’t count \(m \leq n \) which have two pairs, instead count triples \((s(m), a(m), b(m)) = (s, a, b)\). These satisfy \(af_{s-1} + bf_{s-2} \leq n\), \(1 \leq a \leq b \leq f_{s-1}\), and \(a > f_{s-2}\).

If \(s \) is such that \(n < f_{s-2}(f_{s-1} + f_{s-2}) \approx \frac{1}{5} \phi^{2s-2} \) then no such \(a, b \) exist.
“Applications”

\[T(n) = \begin{cases}
\frac{1}{2\sqrt{5}\phi^4c} + O(n^{-1/2}) & p \equiv 1 \mod 2, \\
\frac{\sqrt{5}}{2} c + \frac{1+\phi^{-5}}{2\sqrt{5}c} - 1 + O(n^{-1/2}) & p \equiv 0 \mod 2, \quad c \leq \frac{1+\phi^{-3}}{\sqrt{5}}, \\
1 - \frac{\sqrt{5}}{2} \phi^{-1} c - \frac{1+\phi^{-2}}{2\sqrt{5}c} + O(n^{-1/2}) & p \equiv 0 \mod 2, \quad c \geq \frac{1+\phi^{-3}}{\sqrt{5}}.
\end{cases} \]

Proof Sketch (Thank God).

Don’t count \(m \leq n \) which have two pairs, instead count triples \((s(m), a(m), b(m)) = (s, a, b)\). These satisfy \(af_{s-1} + bf_{s-2} \leq n, \ 1 \leq a \leq b \leq f_{s-1}, and \ a > f_{s-2}\).

If \(s \) is such that \(n < f_{s-2}(f_{s-1} + f_{s-2}) \approx \frac{1}{5}\phi^{2s-2} \) then no such \(a, b \) exist. If \(n \geq f_{s-1}(f_{s-1} + f_{s-2}) \approx \frac{1}{5}\phi^{2s-1} \) then every \((a, b)\) works (which is easy to count).
"Applications"

\[T(n) = \begin{cases}
\frac{1}{2\sqrt{5}\phi^4c} + O(n^{-1/2}) & p \equiv 1 \mod 2, \\
\frac{\sqrt{5}}{2} c + \frac{1+\phi^{-5}}{2\sqrt{5}c} - 1 + O(n^{-1/2}) & p \equiv 0 \mod 2, \ c \leq \frac{1+\phi^{-3}}{\sqrt{5}}, \\
1 - \frac{\sqrt{5}}{2} \phi^{-1} c - \frac{1+\phi^{-2}}{2\sqrt{5}c} + O(n^{-1/2}) & p \equiv 0 \mod 2, \ c \geq \frac{1+\phi^{-3}}{\sqrt{5}}.
\end{cases} \]

Proof Sketch (Thank God).

Don’t count \(m \leq n \) which have two pairs, instead count triples \((s(m), a(m), b(m)) = (s, a, b)\). These satisfy \(af_{s-1} + bf_{s-2} \leq n, \ 1 \leq a \leq b \leq f_{s-1}, \) and \(a > f_{s-2}. \)

If \(s \) is such that \(n < f_{s-2}(f_{s-1} + f_{s-2}) \approx \frac{1}{5} \phi^{2s-2} \) then no such \(a, b \) exist. If \(n \geq f_{s-1}(f_{s-1} + f_{s-2}) \approx \frac{1}{5} \phi^{2s-1} \) then every \((a, b)\) works (which is easy to count). If \(n \) is in between these two values then things are annoying but doable.
From now on whenever I write w_k I’m assuming it’s the n-slow Fibonacci walk $w_k(b(n), a(n))$.
From now on whenever I write w_k I’m assuming it’s the n-slow Fibonacci walk $w_k(b(n), a(n))$. We say that n is a down-integer if $w_{s+1} = \lfloor \phi n \rfloor$, and we define D to be the set of down-integers.

Theorem (Chung, Graham, S. (2019))

Let $D(n) = n - 1 \mid D \cap [n]$. Then $D(n) =$ \begin{align*}
\begin{cases}
\frac{1}{5} \phi q + 1 + \phi q + 1 / 10 \sqrt{5} n + O\left(\frac{n}{2}\right) & \text{if } q \equiv 1 \mod 4, \\
\frac{1}{5} \phi q + 2 & \text{if } q \equiv 3 \mod 4,
\end{cases}
\end{align*}

where $1 - \sqrt{5} n^2 \phi q + 1 - \phi q + 1 / 10 \sqrt{5} n + O\left(\frac{n}{2}\right)$.

$q \leq n < \frac{1}{5} \phi q + 2$.
From now on whenever I write w_k I’m assuming it’s the n-slow Fibonacci walk $w_k(b(n), a(n))$. We say that n is a down-integer if $w_{s+1} = \lfloor \phi n \rfloor$, and we define D to be the set of down-integers.

Theorem (Chung, Graham, S. (2019))

Let $D(n) = n^{-1}|D \cap [n]|$. Then

$$D(n) = \begin{cases} \frac{\sqrt{5}n}{2\phi + 1} + \frac{\phi^{q+1}}{10\sqrt{5}n} + O(n^{-1/2}) & \frac{1}{5}\phi^q \leq n < \frac{1}{5}\phi^{q+2}, q \equiv 1 \mod 4, \\ 1 - \frac{\sqrt{5}n}{2\phi + 1} - \frac{\phi^{q+1}}{10\sqrt{5}n} + O(n^{-1/2}) & \frac{1}{5}\phi^q \leq n < \frac{1}{5}\phi^{q+2}, q \equiv 3 \mod 4. \end{cases}$$
“Applications”

(a) Data plot of $D(n)$.

(b) Theory plot of $D(n)$.
This says that roughly half the integers have \(w_{s+1} \) rounding down and half have them rounding up.
This says that roughly half the integers have w_{s+1} rounding down and half have them rounding up. How many n can you have in a row with all of them rounding down?
This says that roughly half the integers have w_{s+1} rounding down and half have them rounding up. How many n can you have in a row with all of them rounding down?
To this end, write the elements of D in increasing order as d_1, d_2, \ldots. The above is equivalent to asking how large $d_{k+1} - d_k$ can be.
This says that roughly half the integers have \(w_{s+1} \) rounding down and half have them rounding up. How many \(n \) can you have in a row with all of them rounding down? To this end, write the elements of \(D \) in increasing order as \(d_1, d_2, \ldots \). The above is equivalent to asking how large \(d_{k+1} - d_k \) can be.

Theorem (Chung, Graham, S. (2019))

\[
\{d_{k+1} - d_k : k \geq 1\} = \{1, 2, 3, 5\}.
\]
This says that roughly half the integers have w_{s+1} rounding down and half have them rounding up. How many n can you have in a row with all of them rounding down? To this end, write the elements of D in increasing order as d_1, d_2, \ldots. The above is equivalent to asking how large $d_{k+1} - d_k$ can be.

Theorem (Chung, Graham, S. (2019))

\[
\{d_{k+1} - d_k : k \geq 1\} = \{1, 2, 3, 5\}.
\]

\[
\{d_{k+2} - d_k : k \geq 1\} = \{2, 3, 4, 5, 6, 8, 10\}.
\]
We know that \(w_{s+1} = \lfloor \phi n \rfloor \) or \(w_{s+1} = \lceil \phi n \rceil \). Intuitively, the smaller \(\phi n - \lfloor \phi n \rfloor \) is, the more likely it is that \(w_{s+1} = \lfloor \phi n \rfloor \).
We know that $w_{s+1} = \lfloor \phi n \rfloor$ or $w_{s+1} = \lceil \phi n \rceil$. Intuitively, the smaller $\phi n - \lfloor \phi n \rfloor$ is, the more likely it is that $w_{s+1} = \lfloor \phi n \rfloor$. To this end, we say that n is d-paradoxical if $|\phi n - w_{s+1}| > 1 - d$.
We know that \(w_{s+1} = \lfloor \phi n \rfloor \) or \(w_{s+1} = \lceil \phi n \rceil \). Intuitively, the smaller \(\phi n - \lfloor \phi n \rfloor \) is, the more likely it is that \(w_{s+1} = \lfloor \phi n \rfloor \). To this end, we say that \(n \) is \(d \)-paradoxical if \(|\phi n - w_{s+1}| > 1 - d \).

Theorem (Chung, Graham, S. (2019))

For \(d \leq \frac{1}{2} \), let \(P(n, d) = n^{-1}|\{m \leq n : m \text{ is } d-\text{paradoxical}\}| \).

Given \(n \), let \(c, p \) be such that \(n = \frac{1}{\sqrt{5}} c \phi^p \) with \(\frac{1}{\sqrt{5}} \leq c < \frac{1}{\sqrt{5}} \phi \). We have \(P(n, d) = 0 \) if \(d \leq \frac{1}{\sqrt{5}} \phi^{-1} \), and otherwise \(P(n, d) \) satisfies

\[
\begin{align*}
-\frac{1}{2} \phi^{-1} c + d + \left(d^2 - d + \frac{1}{2\sqrt{5}} \phi^{-1} \right) c^{-1} + O(n^{-1/2}) & \quad p \text{ odd, } c \leq \phi d, \\
\frac{\sqrt{5}}{2} \phi \left(d - \frac{1}{\sqrt{5}} \phi^{-1} \right)^2 c^{-1} + O(n^{-1/2}) & \quad p \text{ odd, } c \geq \phi d, \\
-\frac{1}{2} c + d + \left(\phi^{-1} d^2 - \phi^{-1} d + \frac{1}{2\sqrt{5}} \phi^{-2} \right) c^{-1} + O(n^{-1/2}) & \quad p \text{ even, } c \leq d, \\
\frac{\sqrt{5}}{2} \left(d - \frac{1}{\sqrt{5}} \phi^{-1} \right)^2 c^{-1} + O(n^{-1/2}) & \quad p \text{ even, } d \leq c \leq 1 - d \\
\frac{1}{2} c + d - 1 + \left(\phi d^2 - \phi d + \frac{1}{2\sqrt{5}} \phi^2 \right) c^{-1} + O(n^{-1/2}) & \quad p \text{ even, } c \geq 1 - d.
\end{align*}
\]
“Applications”

(a) Data plot of $P(n, .5)$.
(b) Theory plot of $P(n, .5)$.
(c) Data plot of $P(n, .4)$.
(d) Theory plot of $P(n, .4)$.
(e) Data plot of $P(n, .3)$.
(f) Theory plot of $P(n, .3)$.
Generalized Walks: $w_{k+2} = \alpha w_{k+1} + \beta w_k$
Generalized Walks: $w_{k+2} = \alpha w_{k+1} + \beta w_k$

The Fibonacci sequence isn’t special.
Generalized Walks: \(w_{k+2} = \alpha w_{k+1} + \beta w_k \)

The Fibonacci sequence isn’t special. To this end, we define an \(n \)-slow \((\alpha, \beta)\)-walks to be a sequence with \(w_{k+2} = \alpha w_{k+1} + \beta w_k \) such that \(w_s = n \) with \(s \) as large as possible.
Generalized Walks: \(w_{k+2} = \alpha w_{k+1} + \beta w_k \)

The Fibonacci sequence isn’t special. To this end, we define an \(n \)-slow \((\alpha, \beta)\)-walks to be a sequence with \(w_{k+2} = \alpha w_{k+1} + \beta w_k \) such that \(w_s = n \) with \(s \) as large as possible. Throughout we assume \(\alpha, \beta \geq 1 \) and that \(\gcd(\alpha, \beta) = 1 \).
Generalized Walks: \(w_{k+2} = \alpha w_{k+1} + \beta w_k \)

The Fibonacci sequence isn’t special. To this end, we define an \(n \)-slow \((\alpha, \beta)\)-walks to be a sequence with \(w_{k+2} = \alpha w_{k+1} + \beta w_k \) such that \(w_s = n \) with \(s \) as large as possible. Throughout we assume \(\alpha, \beta \geq 1 \) and that \(\gcd(\alpha, \beta) = 1 \).
Define \(g_k \) to be the sequence with

\[
g_1 = 1, \ g_2 = \alpha, \ g_{k+2} = \alpha g_{k+1} + \beta g_k.
\]

Also define

\[
\gamma = \frac{1}{2}(\alpha + \sqrt{\alpha^2 + 4\beta}), \ \lambda = \frac{1}{2}(\alpha - \sqrt{\alpha^2 + 4\beta}).
\]
Generalized Walks: $w_{k+2} = \alpha w_{k+1} + \beta w_k$

The Fibonacci sequence isn’t special. To this end, we define an n-slow (α, β)-walks to be a sequence with $w_{k+2} = \alpha w_{k+1} + \beta w_k$ such that $w_s = n$ with s as large as possible. Throughout we assume $\alpha, \beta \geq 1$ and that $\gcd(\alpha, \beta) = 1$.

Define g_k to be the sequence with

$$g_1 = 1, \quad g_2 = \alpha, \quad g_{k+2} = \alpha g_{k+1} + \beta g_k.$$

Also define

$$\gamma = \frac{1}{2}(\alpha + \sqrt{\alpha^2 + 4\beta}), \quad \lambda = \frac{1}{2}(\alpha - \sqrt{\alpha^2 + 4\beta}).$$

Note that when $\alpha = \beta = 1$ we have $g_k = f_k$, $\gamma = \phi$, $\lambda = -\phi^{-1}$.
Generalized Walks: \(w_{k+2} = \alpha w_{k+1} + \beta w_k \)

When \(\beta = 1 \), almost all our proofs from before carry over.
Generalized Walks: \(w_{k+2} = \alpha w_{k+1} + \beta w_k \)

When \(\beta = 1 \), almost all our proofs from before carry over. Let \(s(n) = s^{\alpha,\beta}(n) \) be the number of steps it takes an \(n \)-slow \((\alpha, \beta) \)-walk to hit \(n \).
Generalized Walks: \(w_{k+2} = \alpha w_{k+1} + \beta w_k \)

When \(\beta = 1 \), almost all our proofs from before carry over. Let \(s(n) = s^{\alpha,\beta}(n) \) be the number of steps it takes an \(n \)-slow \((\alpha, \beta)\)-walk to hit \(n \).

Theorem (S. (2019+))

If \(s(n) > 2 \) and \(\beta = 1 \), there exist unique integers \(a = a(n), \ b = b(n) \) such that \(n = ag_{s-1} + bg_{s-2} \) and \(1 \leq a \leq \alpha b \leq \alpha g_{s-1} \). Moreover, \((b, a)\) is \(n \)-good and \(w_{s+1}(b, a) \) is either \(\lfloor \gamma n \rfloor \) or \(\lceil \gamma n \rceil \).
Generalized Walks: \(w_{k+2} = \alpha w_{k+1} + \beta w_k \)

When \(\beta = 1 \), almost all our proofs from before carry over. Let \(s(n) = s^{\alpha,\beta}(n) \) be the number of steps it takes an \(n \)-slow \((\alpha, \beta)\)-walk to hit \(n \).

Theorem (S. (2019+))

If \(s(n) > 2 \) and \(\beta = 1 \), there exist unique integers \(a = a(n), \ b = b(n) \) such that \(n = ag_{s-1} + bg_{s-2} \) and \(1 \leq a \leq \alpha b \leq \alpha g_{s-1} \). Moreover, \((b, a)\) is \(n \)-good and \(w_{s+1}(b, a) \) is either \(\lfloor \gamma n \rfloor \) or \(\lceil \gamma n \rceil \).

When \(\beta = 1 \) things get a bit more complicated.
Generalized Walks: \(w_{k+2} = \alpha w_{k+1} + \beta w_k \)

When \(\beta = 1 \), almost all our proofs from before carry over. Let \(s(n) = s^{\alpha, \beta}(n) \) be the number of steps it takes an \(n \)-slow \((\alpha, \beta)\)-walk to hit \(n \).

Theorem (S. (2019+))

If \(s(n) > 2 \) and \(\beta = 1 \), there exist unique integers \(a = a(n), \ b = b(n) \) such that \(n = ag_{s-1} + bg_{s-2} \) and \(1 \leq a \leq \alpha b \leq \alpha g_{s-1} \). Moreover, \((b, a)\) is \(n \)-good and \(w_{s+1}(b, a) \) is either \(\lfloor \gamma n \rfloor \) or \(\lceil \gamma n \rceil \).

When \(\beta = 1 \) things get a bit more complicated.

Theorem (S. (2019+))

If \(s(n) > 2 \), there exist unique integers \(a = a(n), \ b = b(n) \) such that \(n = ag_{s-1} + \beta bg_{s-2} \), \(b \leq g_{s-1} \), \(1 \leq a \leq (\beta - 1)gs + \alpha b \), and \(a - \alpha b - \ell gs \) is not a positive multiple of \(\beta \) for any \(\ell \geq 0 \). Moreover, \((b, a)\) is \(n \)-good and \(|w_{s+1}(b, a) - \gamma n| \leq 2\beta^s \).
Generalized Walks: \(w_{k+2} = \alpha w_{k+1} + \beta w_k \)

As before we can use this theorem to prove a number of results about slow walks.
Generalized Walks: $w_{k+2} = \alpha w_{k+1} + \beta w_k$

As before we can use this theorem to prove a number of results about slow walks. Define $p(n)$ to be the number of n-slow (α, β)-walks.
Generalized Walks: \(w_{k+2} = \alpha w_{k+1} + \beta w_k \)

As before we can use this theorem to prove a number of results about slow walks. Define \(p(n) \) to be the number of \(n \)-slow \((\alpha, \beta)\)-walks.

Theorem (S. (2019+))

- If \(s(n) > 2 \), then
 \[p(n) \leq \alpha^2 + 2\beta - 1. \]

 Moreover, there always exists an \(n \) achieving this.
Generalized Walks: \(w_{k+2} = \alpha w_{k+1} + \beta w_k \)

As before we can use this theorem to prove a number of results about slow walks. Define \(p(n) \) to be the number of \(n \)-slow \((\alpha, \beta)\)-walks.

Theorem (S. (2019+))

- *If* \(s(n) > 2 \), *then*
 \[
 p(n) \leq \alpha^2 + 2\beta - 1.
 \]

 Moreover, there always exists an \(n \) achieving this.

- *There exist infinitely many* \(n \) *with*
 \[
 p(n) = \lceil \gamma^2 \rceil - 1 = \alpha^2 + \beta + \lceil \alpha \beta \gamma^{-1} \rceil - 1,
 \]

 and only finitely many \(n \) *with*
 \[
 p(n) \geq \lceil \gamma^2 \rceil = \alpha^2 + \beta + \lceil \alpha \beta \gamma^{-1} \rceil.
 \]
Generalized Walks: $w_{k+2} = \alpha w_{k+1} + \beta w_k$

Let S_p denote the set of n with $p(n) > p$.
Generalized Walks: $w_{k+2} = \alpha w_{k+1} + \beta w_k$

Let S_p denote the set of n with $p(n) > p$. A natural question to ask at this point is “given how ugly the Fibonacci density results were, surely Sam didn’t try and prove a generalized version of them?”
Generalized Walks: \(w_{k+2} = \alpha w_{k+1} + \beta w_k \)

Let \(S_p \) denote the set of \(n \) with \(p(n) > p \). A natural question to ask at this point is “given how ugly the Fibonacci density results were, surely Sam didn’t try and prove a generalized version of them?” Unfortunately, this conjecture is false.
Let S_p denote the set of n with $p(n) > p$. A natural question to ask at this point is “given how ugly the Fibonacci density results were, surely Sam didn’t try and prove a generalized version of them?” Unfortunately, this conjecture is false.

Theorem (S. (2019+))

Given an integer p, let d denote the smallest integer such that

$$\delta := \beta \gamma^{-1} p - \gamma d \leq \alpha.$$

If $\beta \leq p \leq \lceil \gamma^2 \rceil - 2$ and

$1 \leq c \leq (p - \beta + 1)\gamma / \alpha$,

then $n_{c,r}^{-1} | S_p \cap [n_{c,r}] | =$

$$c^{-1} \left(\frac{(2\beta - 2d - 1)\gamma (\alpha - 2\delta + \alpha^{-1}\delta^2)}{2\beta^2(\gamma^2 - 1)} + \frac{\gamma^2}{\gamma^2 - 1} \sum_{q=d+1}^{\beta-1} \frac{\beta - q}{\beta^2} \right) + O(\gamma^{-r} + (\beta \gamma^{-2})^r).$$
Generalized Walks: \(w_{k+2} = \alpha w_{k+1} + \beta w_k \)
Slowest Slow Walks

How slow is the slowest slow walk?

Define $s(n) = \max(\alpha, \beta) s_{\alpha,\beta}(n)$, as well as the pairs achieving this $S(n) = \{ (\alpha, \beta) : s_{\alpha,\beta}(n) = s(n) \}$.

A priori, any pair (α, β) could be an element of $S(n)$ for some n. However, it turns out that only a finite number of pairs have this property.

Theorem (S. (2019+))

Let $R = \{ (1,1), (2,1), (1,2), (1,3), (1,4) \}$.

For all $n > 1$, we have $S(n) \subseteq R$.

For all $(\alpha, \beta) \in R$, there exists an n with $(\alpha, \beta) \in S(n)$ (possibly as large as $n = 10^{15}$ for the first appearance!).

The set of n with $S(n) = \{ (1,1) \}$ has density 1.
How slow is the slowest slow walk?
How slow is the slowest slow walk? Define $s(n) = \max_{(\alpha, \beta)} s^{\alpha, \beta}(n)$, as well as the pairs achieving this $S(n) = \{(\alpha, \beta) : s^{\alpha, \beta}(n) = s(n)\}$. A priori, any pair (α, β) could be an element of $S(n)$ for some n. However, it turns out that only a finite number of pairs have this property.

Theorem (S. (2019+)) Let $R = \{(1, 1), (2, 1), (1, 2), (1, 3), (1, 4)\}$. For all $n > 1$, we have $S(n) \subseteq R$. For all $(\alpha, \beta) \in R$, there exists an n with $(\alpha, \beta) \in S(n)$. (possibly as large as $n = 10^{15}$ for the first appearance!). The set of n with $S(n) = \{(1, 1)\}$ has density 1.
How slow is the slowest slow walk? Define $s(n) = \max_{(\alpha,\beta)} s^\alpha,\beta(n)$, as well as the pairs achieving this $S(n) = \{(\alpha, \beta) : s^\alpha,\beta(n) = s(n)\}$. A priori, any pair (α, β) could be an element of $S(n)$ for some n. However, it turns out that only a finite number of pairs have this property.
How slow is the slowest slow walk? Define $s(n) = \max_{(\alpha, \beta)} s^{\alpha, \beta}(n)$, as well as the pairs achieving this $S(n) = \{(\alpha, \beta) : s^{\alpha, \beta}(n) = s(n)\}$. A priori, any pair (α, β) could be an element of $S(n)$ for some n. However, it turns out that only a finite number of pairs have this property.

Theorem (S. (2019+))

Let $R = \{(1, 1), (2, 1), (1, 2), (1, 3), (1, 4)\}$.

How slow is the slowest slow walk? Define $s(n) = \max_{(\alpha, \beta)} s^{\alpha, \beta}(n)$, as well as the pairs achieving this $S(n) = \{(\alpha, \beta) : s^{\alpha, \beta}(n) = s(n)\}$. A priori, any pair (α, β) could be an element of $S(n)$ for some n. However, it turns out that only a finite number of pairs have this property.

Theorem (S. (2019+))

Let $R = \{(1, 1), (2, 1), (1, 2), (1, 3), (1, 4)\}$.

- For all $n > 1$, we have $S(n) \subseteq R$.

How slow is the slowest slow walk? Define $s(n) = \max_{(\alpha, \beta)} s^{\alpha, \beta}(n)$, as well as the pairs achieving this $S(n) = \{(\alpha, \beta) : s^{\alpha, \beta}(n) = s(n)\}$. A priori, any pair (α, β) could be an element of $S(n)$ for some n. However, it turns out that only a finite number of pairs have this property.

Theorem (S. (2019+))

Let $R = \{(1, 1), (2, 1), (1, 2), (1, 3), (1, 4)\}$.

- For all $n > 1$, we have $S(n) \subseteq R$.
- For all $(\alpha, \beta) \in R$, there exists an n with $(\alpha, \beta) \in S(n)$ (possibly as large as $n = 10^{15}$ for the first appearance!).
How slow is the slowest slow walk? Define \(s(n) = \max_{(\alpha, \beta)} s^{\alpha, \beta}(n) \), as well as the pairs achieving this \(S(n) = \{(\alpha, \beta) : s^{\alpha, \beta}(n) = s(n)\} \). A priori, any pair \((\alpha, \beta)\) could be an element of \(S(n) \) for some \(n \). However, it turns out that only a finite number of pairs have this property.

Theorem (S. (2019+))

Let \(R = \{(1, 1), (2, 1), (1, 2), (1, 3), (1, 4)\} \).

- For all \(n > 1 \), we have \(S(n) \subseteq R \).
- For all \((\alpha, \beta) \in R\), there exists an \(n \) with \((\alpha, \beta) \in S(n)\) (possibly as large as \(n = 10^{15} \) for the first appearance!).
- The set of \(n \) with \(S(n) = \{(1, 1)\} \) has density 1.
More generally, given a set of pairs T, define $s_T(n) = \max_{(\alpha, \beta) \in T} s^{\alpha, \beta}(n)$, $S_T(n) = \{(\alpha, \beta) : s^{\alpha, \beta}(n) = s_T(n)\}$.
More generally, given a set of pairs T, define

$$s_T(n) = \max_{(\alpha, \beta) \in T} s^{\alpha,\beta}(n), \quad S_T(n) = \{(\alpha, \beta) : s^{\alpha,\beta}(n) = s_T(n)\}.$$

Theorem

There exists a finite set R_T and number n_T such that $S_T(n) \subseteq R_T$ for all $n \geq n_T$. Under certain conditions, $S_T(n)$ is almost always one specific pair.
Can you say anything more about how often each set appears in $S_T(n)$?
Can you say anything with α, β negative?
What happens with slow Tribonacci walks, i.e. $w_{k+3} = w_{k+2} + w_{k+1} + w_k$.

This was the greatest talk I've ever seen and the snacks were delightful. When can I give my own FFT talk and dazzle my friends and colleagues?

Proposition (Nikitopoulos, S. (2019)) Whenever you'd like!! +O(it's Friday at 12 and no one else has signed up yet).
Open Problems

- Can you say anything more about how often each set appears in $S_T(n)$?
Open Problems

- Can you say anything more about how often each set appears in $S_T(n)$?
- Can you say anything with α, β negative?
Open Problems

- Can you say anything more about how often each set appears in $S_T(n)$?
- Can you say anything with α, β negative?
- What happens with slow Tribonacci walks, i.e.
 \[w_{k+3} = w_{k+2} + w_{k+1} + w_k. \]
Open Problems

- Can you say anything more about how often each set appears in $S_T(n)$?
- Can you say anything with α, β negative?
- What happens with slow Tribonacci walks, i.e.
 \[w_{k+3} = w_{k+2} + w_{k+1} + w_k.\]
- This was the greatest talk I’ve ever seen and the snacks were delightful. When can I give my own FFT talk and dazzle my friends and colleagues?
Open Problems

- Can you say anything more about how often each set appears in $S_T(n)$?
- Can you say anything with α, β negative?
- What happens with slow Tribonacci walks, i.e.
 \[w_{k+3} = w_{k+2} + w_{k+1} + w_k. \]
- This was the greatest talk I’ve ever seen and the snacks were delightful. When can I give my own FFT talk and dazzle my friends and colleagues?

Proposition (Nikitopoulos, S. (2019))

Whenever you’d like!!
Open Problems

- Can you say anything more about how often each set appears in $S_T(n)$?
- Can you say anything with α, β negative?
- What happens with slow Tribonacci walks, i.e.
 $$w_{k+3} = w_{k+2} + w_{k+1} + w_k.$$
- This was the greatest talk I’ve ever seen and the snacks were delightful. When can I give my own FFT talk and dazzle my friends and colleagues?

Proposition (Nikitopoulos, S. (2019))

Whenever you’d like!! + O(it’s Friday at 12 and no one else has signed up yet).
The End

Thank You!