Definition of derivative: Let $f: \mathbb{R} \to \mathbb{R}$. $\frac{df}{dx}(x_0)$ is a number with the property that for any positive number ε, we can find a positive number δ so that if $0 < |\Delta x| < \delta$, then
\[
\left| \frac{\Delta f}{\Delta x}(x_0, \Delta x) - \frac{df}{dx}(x_0) \right| < \varepsilon.
\] Note that if no number has this property, we say that f is not differentiable at x_0.

(1) Let $f(x) = 4x^2 + 2x$.

(a) Sketch the graph of f. Sketch the tangent line to the graph of f at the point $(-1, f(-1))$.

(b) The slope of the tangent line to the graph of f at the point $(-1, f(-1))$ is -6. This means that on a small interval around -1, the slopes of the secant lines through $(-1, f(-1))$ and $(-1 + \Delta x, f(-1 + \Delta x))$ should be close to -6. How small does $|\Delta x|$ need to be to guarantee that $\frac{\Delta f}{\Delta x}(-1, \Delta x)$ is within 0.01 of -6?

(c) How small does $|\Delta x|$ need to be to guarantee that $\frac{\Delta f}{\Delta x}(-1, \Delta x)$ is within 0.001 of -6?

(d) Use the definition of the derivative to show that $\frac{df}{dx}(-1) = -6$.

(e) Use the definition of the derivative to show that $\frac{df}{dx}(x_0) = 8x_0 + 2$.

(2) Let
\[
h(x) = \begin{cases}
-1 & x \leq -4 \\
-x & x > -4
\end{cases}
\]

(a) Sketch the graph of h. Sketch the tangent lines to the graph of h at the points $(2, h(2))$ and $(-8, h(-8))$.

(b) Use the definition of the derivative to show that $\frac{dh}{dx}(x_0) = 0$ if $x_0 < -4$.

(c) Use the definition of the derivative to show that $\frac{dh}{dx}(x_0) = 1$ if $x_0 > -4$.

(d) Use the definition of the derivative to show that $\frac{dh}{dx}(-4)$ does not exist, i.e. show that $\frac{dh}{dx}(1) \neq A$ for any real number A.

(3) Let
\[
g(x) = \begin{cases}
-5x & x \leq 2 \\
\frac{x}{2} - 11 & x > 2
\end{cases}
\]

(a) Sketch the graph of g.

(b) Use the definition of the derivative to show that $\frac{dg}{dx}(x_0) = -5$ if $x_0 < 2$.

(c) Use the definition of the derivative to show that $\frac{dg}{dx}(x_0) = \frac{1}{2}$ if $x_0 > 2$.

(d) Use the definition of the derivative to show that $\frac{dg}{dx}(2)$ does not exist, i.e. show that $\frac{dg}{dx}(2) \neq A$ for any real number A.

1