Math 121A: The Method Behind the Madness

Laura J. Stevens

Department of Mathematics, UCSD

March 14, 2019
General Goals of the 121 Series:

- Advancing your knowledge of mathematics
- Advancing your knowledge of student learning (i.e., your view and understanding of the process of learning mathematics)
- Advancing your knowledge of pedagogy (i.e., teaching practices)
General Goals of the 121 Series:

- Advancing your knowledge of mathematics
General Goals of the 121 Series:

- Advancing your knowledge of mathematics
- Advancing your knowledge of student learning (i.e. your view and understanding of the process of learning mathematics)
General Goals of the 121 Series:

- Advancing your knowledge of mathematics
- Advancing your knowledge of student learning (i.e. your view and understanding of the process of learning mathematics)
- Advancing your knowledge of pedagogy (i.e. teaching practices)
The Math 121 series was designed in accordance with a theoretical framework called DNR. DNR aims at helping to:

- understand what it means to learn and teach mathematics
- make decisions as to what to teach and how to teach it

To learn more about DNR:
http://www.math.ucsd.edu/~harel
The Math 121 series was designed in accordance with a theoretical framework called DNR. DNR aims at helping to:
The Math 121 series was designed in accordance with a theoretical framework called DNR. DNR aims at helping to:

- understand what it means to learn and teach mathematics
The Math 121 series was designed in accordance with a theoretical framework called DNR. DNR aims at helping to:

- understand what it means to learn and teach mathematics
- make decisions as to what to teach and how to teach it
The Math 121 series was designed in accordance with a theoretical framework called DNR. DNR aims at helping to:

- understand what it means to learn and teach mathematics
- make decisions as to what to teach and how to teach it

To learn more about DNR: http://www.math.ucsd.edu/~harel
What is DNR?

DNR-based instruction in mathematics is a conceptual framework that provides a language and tools to formulate and address critical curricular and instructional concerns. The term DNR refers to three foundational instructional principles:

- The Duality Principle
- The Necessity Principle
- The Repeated Reasoning Principle
What is DNR?

- **DNR-based instruction** in mathematics is a conceptual framework that provides a language and tools to formulate and address critical curricular and instructional concerns.
What is DNR?

- **DNR-based instruction** in mathematics is a conceptual framework that provides a language and tools to formulate and address critical curricular and instructional concerns.
- The term **DNR** refers to three foundational instructional principles:
What is DNR?

- **DNR-based instruction** in mathematics is a conceptual framework that provides a language and tools to formulate and address critical curricular and instructional concerns.
- The term **DNR** refers to three foundational instructional principles:
 - **The Duality Principle**
What is DNR?

- DNR-based instruction in mathematics is a conceptual framework that provides a language and tools to formulate and address critical curricular and instructional concerns.
- The term DNR refers to three foundational instructional principles:
 - The Duality Principle
 - The Necessity Principle
What is DNR?

- **DNR-based instruction** in mathematics is a conceptual framework that provides a language and tools to formulate and address critical curricular and instructional concerns.
- The term **DNR** refers to three foundational instructional principles:
 - The Duality Principle
 - The Necessity Principle
 - The Repeated Reasoning Principle
DNR aims to address

What is the mathematics that we should teach?

How can we teach it effectively?

In DNR, teaching effectively means:

- preserving the mathematical integrity of what we teach
- addressing the intellectual needs of the student
- assuring that students internalize and retain the mathematics they learn
What is the mathematics that we should teach?
DNR aims to address

1. What is the mathematics that we should teach?
2. How can we teach it **effectively**?
DNR aims to address

1. What is the mathematics that we should teach?
2. How can we teach it **effectively**?

In DNR, teaching **effectively** means:
DNR aims to address

1. What is the mathematics that we should teach?
2. How can we teach it effectively?

In DNR, teaching effectively means:
- preserving the mathematical integrity of what we teach
DNR aims to address

1. What is the mathematics that we should teach?
2. How can we teach it effectively?

In DNR, teaching effectively means:
- preserving the mathematical integrity of what we teach
- addressing the intellectual needs of the student
DNR aims to address

1. What is the mathematics that we should teach?
2. How can we teach it effectively?

In DNR, teaching effectively means:
- preserving the mathematical integrity of what we teach
- addressing the intellectual needs of the student
- assuring that students internalize and retain the mathematics they learn
What is the Mathematics that We Should Teach?

Ways of Understanding/Subject Matter (Content):
- definitions, problems and their solutions, algorithms,
- theorems, proofs, and so on

Ways of Thinking: conceptual tools necessary to develop
understanding of subject matter, such as
- algebraic invariance,
- algorithmic reasoning,
- proportional reasoning,
- deductive reasoning
What is the Mathematics that We Should Teach?

- **Ways of Understanding/Subject Matter (Content):**
 definitions, problems and their solutions, algorithms, theorems, proofs, and so on

- **Ways of Thinking:** conceptual tools necessary to develop understanding of subject matter, such as algebraic invariance, algorithmic reasoning, proportional reasoning, and deductive reasoning
What is the Mathematics that We Should Teach?

- **Ways of Understanding/Subject Matter (Content):** definitions, problems and their solutions, algorithms, theorems, proofs, and so on

- **Ways of Thinking:** conceptual tools necessary to develop understanding of subject matter, such as algebraic invariance, algorithmic reasoning, proportional reasoning, and deductive reasoning
What is the Mathematics that We Should Teach?

- **Ways of Understanding/Subject Matter (Content):**
 definitions, problems and their solutions, algorithms, theorems, proofs, and so on

The Duality Principle:

Students acquire desirable ways of thinking by developing desirable understanding of content AND students’ current understanding of content is impacted by the ways of thinking they possess.

- **Ways of Thinking:** conceptual tools necessary to develop understanding of subject matter, such as algebraic invariance, algorithmic reasoning, proportional reasoning, and deductive reasoning
Mental Acts

Human reasoning involves numerous mental acts such as interpreting, conjecturing, inferring, proving, explaining, generalizing, abstracting, predicting, classifying, and problem solving.

Mental acts are basic elements of human cognition. To describe, analyze, and communicate about humans intellectual activities, one must attend to their mental acts.
Human reasoning involves numerous mental acts such as interpreting, conjecturing, inferring, proving, explaining, generalizing, abstracting, predicting, classifying, and problem solving.
Human reasoning involves numerous mental acts such as interpreting, conjecturing, inferring, proving, explaining, generalizing, abstracting, predicting, classifying, and problem solving.

Mental acts are basic elements of human cognition. To describe, analyze, and communicate about humans intellectual activities, one must attend to their mental acts.
Ways of Understanding Versus Ways of Thinking

A way of understanding is a cognitive product of a mental act.

A way of thinking is a cognitive characteristic of a mental act.
Ways of Understanding Versus Ways of Thinking

- A way of understanding is a cognitive product of a mental act.
Ways of Understanding Versus Ways of Thinking

- A way of understanding is a cognitive product of a mental act.
- A way of thinking is a cognitive characteristic of a mental act.
Example One

Consider the mental act of interpreting the string of symbols $y = 2x + 5$.
Different ways of understanding the string of symbols $y = 2x + 5$:

- As an equation (a condition on the variables x and y)
- As a number-valued function: for each number x, there corresponds the number $2x + 5$
- As a proposition-valued function: for every ordered pair (x, y), there corresponds the value "true" or "false"

Ways of thinking manifested by these ways of understanding:

Symbols in mathematics represent quantities and quantitative relationships.
Mathematical symbols can have multiple interpretations (would be manifested by one who exhibits more than one of the ways of understanding).
It is advantageous to attribute different interpretations to a mathematical symbol in the process of solving problems (would be manifested by one who can vary the interpretation of the symbols according to the problem at hand).
Different ways of understanding the string of symbols \(y = 2x + 5 \):
- As an equation (a condition on the variables \(x \) and \(y \))
Different \textit{ways of understanding} the string of symbols $y = 2x + 5$:

- As an equation (a condition on the variables x and y)
- As a number-valued function: for each number x, there corresponds the number $2x + 5$
Different ways of understanding the string of symbols $y = 2x + 5$:

- As an equation (a condition on the variables x and y)
- As a number-valued function: for each number x, there corresponds the number $2x + 5$
- As a proposition-valued function: for every ordered pair (x, y), there corresponds the value “true” or “false”
Different ways of understanding the string of symbols $y = 2x + 5$:

- As an equation (a condition on the variables x and y)
- As a number-valued function: for each number x, there corresponds the number $2x + 5$
- As a proposition-valued function: for every ordered pair (x, y), there corresponds the value “true” or “false”

Ways of thinking manifested by these ways of understanding:
Different ways of understanding the string of symbols $y = 2x + 5$:

- As an equation (a condition on the variables x and y)
- As a number-valued function: for each number x, there corresponds the number $2x + 5$
- As a proposition-valued function: for every ordered pair (x, y), there corresponds the value “true” or “false”

Ways of thinking manifested by these ways of understanding:

- Symbols in mathematics represent quantities and quantitative relationships
Different **ways of understanding** the string of symbols $y = 2x + 5$:

- As an equation (a condition on the variables x and y)
- As a number-valued function: for each number x, there corresponds the number $2x + 5$
- As a proposition-valued function: for every ordered pair (x, y), there corresponds the value “true” or “false”

Ways of thinking manifested by these **ways of understanding**:

- Symbols in mathematics represent quantities and quantitative relationships
- Mathematical symbols can have multiple interpretations (would be manifested by one who exhibits more than one of the ways of understanding)
Different ways of understanding the string of symbols \(y = 2x + 5 \):

- As an equation (a condition on the variables \(x \) and \(y \))
- As a number-valued function: for each number \(x \), there corresponds the number \(2x + 5 \)
- As a proposition-valued function: for every ordered pair \((x, y)\), there corresponds the value “true” or “false”

Ways of thinking manifested by these ways of understanding:

- Symbols in mathematics represent quantities and quantitative relationships
- Mathematical symbols can have multiple interpretations (would be manifested by one who exhibits more than one of the ways of understanding)
- It is advantageous to attribute different interpretations to a mathematical symbol in the process of solving problems (would be manifested by one who can vary the interpretation of the symbols according to the problem at hand)
Consider the mental act of **problem solving**.
Example Two

Consider the mental act of **problem solving**.

- The actual solution that one provides to a problem, whether correct or erroneous, is a **way of understanding** because it is a particular cognitive product of the problem solving act.
Consider the mental act of **problem solving**.

- The actual solution that one provides to a problem, whether correct or erroneous, is a **way of understanding** because it is a particular cognitive product of the problem solving act.
- A problem solving approach is a **way of thinking** because it characterizes the problem solving act.
Consider the mental act of **problem solving**.

- The actual solution that one provides to a problem, whether correct or erroneous, is a **way of understanding** because it is a particular cognitive product of the problem solving act.
- A problem solving approach is a **way of thinking** because it characterizes the problem solving act.

Examples of problem solving approaches:
Consider the mental act of **problem solving**.

- The actual solution that one provides to a problem, whether correct or erroneous, is a **way of understanding** because it is a particular cognitive product of the problem solving act.
- A problem solving approach is a **way of thinking** because it characterizes the problem solving act.

Examples of problem solving approaches:

- Look for a simpler problem
Consider the mental act of problem solving.

- The actual solution that one provides to a problem, whether correct or erroneous, is a way of understanding because it is a particular cognitive product of the problem solving act.
- A problem solving approach is a way of thinking because it characterizes the problem solving act.

Examples of problem solving approaches:
- Look for a simpler problem
- Consider alternative possibilities while attempting to solve the problem
Consider the mental act of **problem solving**.

- The actual solution that one provides to a problem, whether correct or erroneous, is a **way of understanding** because it is a particular cognitive product of the problem solving act.
- A problem solving approach is a **way of thinking** because it characterizes the problem solving act.

Examples of problem solving approaches:

- Look for a simpler problem
- Consider alternative possibilities while attempting to solve the problem
- Just look for key words in the problem statement
Consider the mental act of proving.
Consider the mental act of proving.

- A proof (a particular statement one offers to ascertain for oneself or to convince others) is a way of understanding because it is a particular cognitive product of the proving act.
Consider the mental act of proving.

- A proof (a particular statement one offers to ascertain for oneself or to convince others) is a way of understanding because it is a particular cognitive product of the proving act.

- A proof scheme is a way of thinking because it characterizes the proving act.
Example Three

Consider the mental act of **proving**.

- A proof (a particular statement one offers to ascertain for oneself or to convince others) is a **way of understanding** because it is a particular cognitive product of the proving act.
- A proof scheme is a **way of thinking** because it characterizes the proving act.

Examples of proof schemes:
Consider the mental act of proving.

- A proof (a particular statement one offers to ascertain for oneself or to convince others) is a way of understanding because it is a particular cognitive product of the proving act.
- A proof scheme is a way of thinking because it characterizes the proving act.

Examples of proof schemes:
- Authoritative proof scheme: because the teacher says its true
Example Three

Consider the mental act of proving.

- A proof (a particular statement one offers to ascertain for oneself or to convince others) is a way of understanding because it is a particular cognitive product of the proving act.
- A proof scheme is a way of thinking because it characterizes the proving act.

Examples of proof schemes:

- Authoritative proof scheme: because the teacher says its true
- Empirical proof scheme: reliance on evidence from examples or visual perception
Consider the mental act of proving.

- A proof (a particular statement one offers to ascertain for oneself or to convince others) is a way of understanding because it is a particular cognitive product of the proving act.
- A proof scheme is a way of thinking because it characterizes the proving act.

Examples of proof schemes:

- Authoritative proof scheme: because the teacher says its true
- Empirical proof scheme: reliance on evidence from examples or visual perception
- Deductive proof scheme: one proves an assertion through a finite sequence of steps which follows from premises (and previous conclusions) through the application of rules of inference
What is the Mathematics that We Should Teach?

Ways of Understanding/Subject Matter (Content):
definitions, problems and their solutions, algorithms, theorems, proofs, and so on

The Duality Principle:
Students acquire desirable ways of thinking by developing desirable understanding of content AND students’ current understanding of content is impacted by the ways of thinking they posses.

Ways of Thinking: conceptual tools necessary to develop understanding of subject matter, such as algebraic invariance, algorithmic reasoning, proportional reasoning, and deductive reasoning
Target Instructional Objectives

PGA way of thinking: The ability to fluently connect the physical/perceptual aspects of a problem situation with the geometric aspects (e.g. graph) and the algebraic aspects (e.g. formulas and equations). One who possesses the PGA way of thinking searches for and exploits the correspondences between the physical, geometric, and algebraic aspects of a mathematical topic.
PGA way of thinking:

The ability to fluently connect the physical/perceptual aspects of a problem situation with the geometric aspects (e.g. graph) and the algebraic aspects (e.g. formulas and equations). One who possesses the PGA way of thinking searches for and exploits the correspondences between the physical, geometric, and algebraic aspects of a mathematical topic.
Examples of Advancing the PGA Way of Thinking:

1. Alex runs up a hill and then back down to his starting point for a total distance of 12 kilometers. He runs 9 km/hr uphill and 16 km/hr downhill and uses the same path in both directions. What is Alex's distance from his starting point at any given moment from the time he begins running?

2. Prove that a function \(f: \mathbb{R} \rightarrow \mathbb{R} \) is linear if and only if its average rate of change is the same on any interval.

3. Let \(g(x) = |x| \).

 a. Sketch the graph of the function \(g \) and explain why the graph of \(g \) suggests that \(\frac{dg}{dx}(0) \) does not exist.

 b. Use the \(\varepsilon - \delta \) definition of the derivative to prove that \(\frac{df}{dx}(0) \) does not exist.
Examples of Advancing the PGA Way of Thinking:

- Alex runs up a hill and then back down to his starting point for a total distance of 12 kilometers. He runs 9 km/hr uphill and 16 km/hr downhill and uses the same path in both directions. What is Alex’s distance from his starting point at any given moment from the time begins running?
Examples of Advancing the PGA Way of Thinking:

- Alex runs up a hill and then back down to his starting point for a total distance of 12 kilometers. He runs 9 km/hr uphill and 16 km/hr downhill and uses the same path in both directions. What is Alex’s distance from his starting point at any given moment from the time begins running?

- Prove that a function $f : \mathbb{R} \to \mathbb{R}$ is a linear if and only if its average rate of change is the same on any interval.
Examples of Advancing the PGA Way of Thinking:

- Alex runs up a hill and then back down to his starting point for a total distance of 12 kilometers. He runs 9 km/hr uphill and 16 km/hr downhill and uses the same path in both directions. What is Alex’s distance from his starting point at any given moment from the time begins running?
- Prove that a function \(f : \mathbb{R} \rightarrow \mathbb{R} \) is a linear if and only if its average rate of change is the same on any interval.
 - algebraic proof

Let \(g(x) = |x| \).

1. Sketch the graph of the function \(g \) and explain why the graph of \(g \) suggests that \(\frac{dg}{dx}(0) \) does not exist.

2. Use the \(\varepsilon - \delta \) definition of the derivative to prove that \(\frac{df}{dx}(0) \) does not exist.
Examples of Advancing the PGA Way of Thinking:

- Alex runs up a hill and then back down to his starting point for a total distance of 12 kilometers. He runs 9 km/hr uphill and 16 km/hr downhill and uses the same path in both directions. What is Alex's distance from his starting point at any given moment from the time begins running?
- Prove that a function $f : \mathbb{R} \to \mathbb{R}$ is a linear if and only if its average rate of change is the same on any interval.
 - algebraic proof
 - geometric proof
Examples of Advancing the PGA Way of Thinking:

- Alex runs up a hill and then back down to his starting point for a total distance of 12 kilometers. He runs 9 km/hr uphill and 16 km/hr downhill and uses the same path in both directions. What is Alex’s distance from his starting point at any given moment from the time begins running?

- Prove that a function $f : \mathbb{R} \rightarrow \mathbb{R}$ is a linear if and only if its average rate of change is the same on any interval.
 - algebraic proof
 - geometric proof

- Let $g(x) = |x|$.
 1. Sketch the graph of the function g and explain why the graph of g suggests that $\frac{dg}{dx}(0)$ does not exist.
 2. Use the $\varepsilon - \delta$ definition of the derivative to prove that $\frac{df}{dx}(0)$ does not exist.
Examples of Advancing the PGA Way of Thinking:

Let $f(x) = 3x^2 + 2x$.

1. Sketch the graph of f. Sketch the tangent line to the graph of f at the point $(-1, 1)$.

2. The slope of the tangent line to the graph of f at the point $(-1, 1)$ is -4. This means that on a small interval around -1, the slopes of the secant lines through $(-1, 1)$ and $(-1 + \Delta x, f(-1 + \Delta x))$ should be close to -4. How small does $|\Delta x|$ need to be to guarantee that $\Delta f/\Delta x(-1, \Delta x)$ is within 0.01 of -4?

Let $g(x) = x^2 - 5x + 7$. Verify that the conclusion of the Mean Value Theorem is true for g on the interval $[-1, 3]$. Illustrate your answer with a sketch to demonstrate what is happening geometrically.
 Examples of Advancing the PGA Way of Thinking:

Let $f(x) = 3x^2 + 2x$.

1. Sketch the graph of f. Sketch the tangent line to the graph of f at the point $(-1, 1)$.

2. The slope of the tangent line to the graph of f at the point $(-1, 1)$ is -4. This means that on a small interval around -1, the slopes of the secant lines through $(-1, 1)$ and $(-1 + \Delta x, f(-1 + \Delta x))$ should be close to -4. How small does $|\Delta x|$ need to be to guarantee that $\Delta f/\Delta x(-1, \Delta x)$ is within 0.01 of -4?

Let $g(x) = x^2 - 5x + 7$. Verify that the conclusion of the Mean Value Theorem is true for g on the interval $[-1, 3]$. Illustrate your answer with a sketch to demonstrate what is happening geometrically.
Examples of Advancing the PGA Way of Thinking:

- Let \(f(x) = 3x^2 + 2x \).
 1. Sketch the graph of \(f \). Sketch the tangent line to the graph of \(f \) at the point \((-1, 1)\).
 2. The slope of the tangent line to the graph of \(f \) at the point \((-1, 1)\) is \(-4\). This means that on a small interval around \(-1\), the slopes of the secant lines through \((-1, 1)\) and \((-1 + \Delta x, f(-1 + \Delta x))\) should be close to \(-4\). How small does \(|\Delta x|\) need to be to guarantee that \(\frac{\Delta f}{\Delta x}(-1, \Delta x) \) is within 0.01 of \(-4\)?

- Let \(g(x) = x^2 - 5x + 7 \). Verify that the conclusion of the Mean Value Theorem is true for \(g \) on the interval \([-1, 3]\). Illustrate your answer with a sketch to demonstrate what is happening geometrically.
Examples of Advancing the PGA Way of Thinking:

1. Let \(f(x) = 3x^2 + 2x \).
 - Sketch the graph of \(f \). Sketch the tangent line to the graph of \(f \) at the point \((-1, 1)\).
 - The slope of the tangent line to the graph of \(f \) at the point \((-1, 1)\) is \(-4\). This means that on a small interval around \(-1\), the slopes of the secant lines through \((-1, 1)\) and \((-1 + \Delta x, f(-1 + \Delta x))\) should be close to \(-4\). How small does \(|\Delta x|\) need to be to guarantee that \(\frac{\Delta f}{\Delta x}(-1, \Delta x) \) is within 0.01 of \(-4\)?

2. Let \(g(x) = x^2 - 5x + 7 \). Verify that the conclusion of the Mean Value Theorem is true for \(g \) on the interval \([-1, 3]\). Illustrate your answer with a sketch to demonstrate what is happening geometrically.
Thinking in Terms of Functions as Processes and Models of Reality:

One who possesses this way of thinking understands a function as a dynamic transformation of quantities according to some repeatable means which, given the same original quantity, will always produce the same transformed quantity. In contrast, the most elementary conception of functions involves the ability to plug into an algebraic expression and calculate.
Thinking in Terms of Functions as Processes and Models of Reality:

One who possesses this way of thinking understands a function as a dynamic transformation of quantities according to some repeatable means which, given the same original quantity, will always produce the same transformed quantity. In contrast, the most elementary conception of functions involves the ability to plug into an algebraic expression and calculate.
Examples of Advancing this Way of Thinking:

Jack and Jill each run 10 kilometers. They start at the same point, run 5 kilometers up a hill, and return to the starting point by the same route. Jack has a 10 minute head start and runs at the rate of 10 km/hr uphill and 15 km/hr downhill. Jill runs 12 km/hr uphill and 18 km/hr downhill. What is the distance between Jack and Jill at any given moment during the time they are both running?

You would like to predict the population of your town twenty years from now. How could you do this?

A spherical balloon is expanding. You want to determine the volume of the balloon at any given instant from the moment it started to expand. What do you do?
Examples of Advancing this Way of Thinking:

- Jack and Jill each run 10 kilometers. They start at the same point, run 5 kilometers up a hill, and return to the starting point by the same route. Jack has a 10 minute head start and runs at the rate of 10 km/hr uphill and 15 km/hr downhill. Jill runs 12 km/hr uphill and 18 km/hr downhill.
Examples of Advancing this Way of Thinking:

- Jack and Jill each run 10 kilometers. They start at the same point, run 5 kilometers up a hill, and return to the starting point by the same route. Jack has a 10 minute head start and runs at the rate of 10 km/hr uphill and 15 km/hr downhill. Jill runs 12 km/hr uphill and 18 km/hr downhill.
 - What is the distance between Jack and Jill at any given moment during the time they are both running?
Examples of Advancing this Way of Thinking:

- Jack and Jill each run 10 kilometers. They start at the same point, run 5 kilometers up a hill, and return to the starting point by the same route. Jack has a 10 minute head start and runs at the rate of 10 km/hr uphill and 15 km/hr downhill. Jill runs 12 km/hr uphill and 18 km/hr downhill.
 - What is the distance between Jack and Jill at any given moment during the time they are both running?

- You would like to predict the population of your town twenty years from now. How could you do this?
Examples of Advancing this Way of Thinking:

- Jack and Jill each run 10 kilometers. They start at the same point, run 5 kilometers up a hill, and return to the starting point by the same route. Jack has a 10 minute head start and runs at the rate of 10 km/hr uphill and 15 km/hr downhill. Jill runs 12 km/hr uphill and 18 km/hr downhill.
 - What is the distance between Jack and Jill at any given moment during the time they are both running?

- You would like to predict the population of your town twenty years from now. How could you do this?

- A spherical balloon is expanding. You want to determine the volume of the balloon at any given instant from the moment it started to expand. What do you do?
Examples of Advancing this Way of Thinking:

- Jack and Jill each run 10 kilometers. They start at the same point, run 5 kilometers up a hill, and return to the starting point by the same route. Jack has a 10 minute head start and runs at the rate of 10 km/hr uphill and 15 km/hr downhill. Jill runs 12 km/hr uphill and 18 km/hr downhill.
 - What is the distance between Jack and Jill at any given moment during the time they are both running?

- You would like to predict the population of your town twenty years from now. How could you do this?

- A spherical balloon is expanding. You want to determine the volume of the balloon at any given instant from the moment it started to expand. What do you do?
Deductive proof scheme:
The ability to produce deductive proofs and, in particular, the ability to conjecture, apply mental operations that are goal-oriented, and understand that all justification must be ultimately based on inference rules.
Deductive proof scheme:

The ability to produce deductive proofs and, in particular, the ability to conjecture, apply mental operations that are goal oriented, and understand that all justification must be ultimately based on inference rules.
Examples of Advancing the Deductive Proof Scheme:

Show that a sequence is a quadratic sequence if and only if its sequence of second differences is a constant (non-zero) sequence.

Let $f(x) = |x|$. Use the $\varepsilon-\delta$ definition of the derivative to prove that $\frac{df}{dx}(0)$ does not exist.

Prove Rolle's Theorem.

Prove that if two functions have the same derivative, then the functions differ by a constant.
Examples of Advancing the Deductive Proof Scheme:

- Show that a sequence is a quadratic sequence if and only if its sequence of second differences is a constant (non-zero) sequence.
Examples of Advancing the Deductive Proof Scheme:

- Show that a sequence is a quadratic sequence if and only if its sequence of second differences is a constant (non-zero) sequence.
- Let \(f(x) = |x| \). Use the \(\varepsilon - \delta \) definition of the derivative to prove that \(\frac{df}{dx}(0) \) does not exist.
Examples of Advancing the Deductive Proof Scheme:

- Show that a sequence is a quadratic sequence if and only if its sequence of second differences is a constant (non-zero) sequence.
- Let \(f(x) = |x| \). Use the \(\varepsilon - \delta \) definition of the derivative to prove that \(\frac{df}{dx}(0) \) does not exist.
- Prove Rolle’s Theorem.
Examples of Advancing the Deductive Proof Scheme:

- Show that a sequence is a quadratic sequence if and only if its sequence of second differences is a constant (non-zero) sequence.
- Let \(f(x) = |x| \). Use the \(\varepsilon - \delta \) definition of the derivative to prove that \(\frac{df}{dx}(0) \) does not exist.
- Prove Rolle’s Theorem.
- Prove that if two functions have the same derivative, then the functions differ by a constant.
Definitional Reasoning:
A way of thinking by which one defines objects and proves assertions in terms of mathematical definitions. A mathematical definition is a description that applies to all objects to be defined and only to them. A crucial feature of this way of thinking is that, with it, one is compelled to conclude logically that there can be only one mathematical definition for a concept within a given theory; namely, if D_1 and D_2 are such definitions for a concept C, then D_1 is a logical consequence of D_2, and vice versa; otherwise, C is not well defined.
Definitional Reasoning:

A way of thinking by which one defines objects and proves assertions in terms of mathematical definitions. A mathematical definition is a description that applies to all objects to be defined and only to them. A crucial feature of this way of thinking is that, with it, one is compelled to conclude logically that there can be only one mathematical definition for a concept within a given theory; namely, if D_1 and D_2 are such definitions for a concept C, then D_1 is a logical consequence of D_2, and vice versa; otherwise, C is not well defined.
Examples of Advancing Definitional Reasoning:

Let \(f(x) = \begin{cases} x^2 \sin(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases} \)

Use the \(\varepsilon - \delta \) definition of the derivative to show that \(\frac{df}{dx}(0) = 0 \).

Prove that if \(f : \mathbb{R} \to \mathbb{R} \) is a differentiable function and \(f'(x_0) > 0 \), then there exists some number \(r > 0 \) so that if \(x \in (x_0, x_0 + r) \), then \(f(x) > f(x_0) \), and if \(x \in (x_0 - r, x_0) \), then \(f(x) < f(x_0) \).

Prove the FTC II.
Examples of Advancing Definitional Reasoning:

Let

\[f(x) = \begin{cases}
 x^2 \sin(1/x) & x \neq 0 \\
 0 & x = 0
\end{cases} \]

Use the \(\varepsilon - \delta \) definition of the derivative to show that \(\frac{df}{dx}(0) = 0. \)
Examples of Advancing Definitional Reasoning:

- Let

 \[f(x) = \begin{cases}
 x^2 \sin(1/x) & x \neq 0 \\
 0 & x = 0
 \end{cases} \]

 Use the \(\varepsilon - \delta \) definition of the derivative to show that \(\frac{df}{dx}(0) = 0 \).

- Prove that if \(f : \mathbb{R} \rightarrow \mathbb{R} \) is a differentiable function and \(f'(x_0) > 0 \), then there exists some number \(r > 0 \) so that if \(x \in (x_0, x_0 + r) \), then \(f(x) > f(x_0) \), and if \(x \in (x_0 - r, x_0) \), then \(f(x) < f(x_0) \).
Examples of Advancing Definitional Reasoning:

- Let
 \[f(x) = \begin{cases}
 x^2 \sin(1/x) & x \neq 0 \\
 0 & x = 0
 \end{cases} \]

 Use the \(\varepsilon - \delta \) definition of the derivative to show that \(\frac{df}{dx}(0) = 0 \).

- Prove that if \(f : \mathbb{R} \to \mathbb{R} \) is a differentiable function and \(f'(x_0) > 0 \), then there exists some number \(r > 0 \) so that if \(x \in (x_0, x_0 + r) \), then \(f(x) > f(x_0) \), and if \(x \in (x_0 - r, x_0) \), then \(f(x) < f(x_0) \).

- Prove the FTC II.
In 1989, the National Council of Teachers of Mathematics (NCTM) released the "Curriculum and Evaluation Standards for School Mathematics" updated in 2000; the updated version "Principles and Standards for School Mathematics" includes content standards and process standards (problem solving, reasoning and proof, communication, connections, representation).

In 1997, the California State Board of Education adopted its own state "Mathematics Content Standards."
In 1989, the National Council of Teachers of Mathematics (NCTM) released the “Curriculum and Evaluation Standards for School Mathematics”.

JMR-LS Conference
In 1989, the National Council of Teachers of Mathematics (NCTM) released the “Curriculum and Evaluation Standards for School Mathematics”. Updated in 2000; the updated version “Principles and Standards for School Mathematics” includes content standards and process standards (problem solving, reasoning and proof, communication, connections, representation).
In 1989, the National Council of Teachers of Mathematics (NCTM) released the “Curriculum and Evaluation Standards for School Mathematics”.

- updated in 2000; the updated version “Principles and Standards for School Mathematics” includes content standards and process standards (problem solving, reasoning and proof, communication, connections, representation)

- In 1997, the California State Board of Education adopted its own state “Mathematics Content Standards”.

DNR and the Standards

JMR-LS Conference
Criticisms of both NCTM and California state standards include:

- "a mile wide and an inch deep" – On average, the United States grade 4 curricula cover 83% of TIMMS (Trends in International Mathematics and Science Study) grade 4 topics compared with an average of 60% over all comparison countries.
- Uneven, i.e. no difficult content in one grade and too much difficult content in another.
Criticisms of both NCTM and California state standards include:
Criticisms of both NCTM and California state standards include:

- “a mile wide and an inch deep” – On average, the United States grade 4 curricula cover 83% of TIMMS (Trends in International Mathematics and Science Study) grade 4 topics compared with an average of 60% over all comparison countries.
Criticisms of both NCTM and California state standards include:

- “a mile wide and an inch deep” – On average, the United States grade 4 curricula cover 83% of TIMMS (Trends in International Mathematics and Science Study) grade 4 topics compared with an average of 60% over all comparison countries.
- uneven, i.e. no difficult content in one grade and too much difficult content in another
2010 saw the introduction of the “Common Core State Standards” (a state-led effort coordinated by the National Governors Association Center for Best Practices and the Council of Chief State School Officers). The Common Core State Standards (available at http://www.corestandards.org) are designed to be focused and coherent. They comprise two types of standards: 1 content standards 2 mathematical practice standards 42 states have adopted the Common Core State Standards (Mathematics).
2010 saw the introduction of the “Common Core State Standards” (a state-led effort coordinated by the National Governors Association Center for Best Practices and the Council of Chief State School Officers).
2010 saw the introduction of the “Common Core State Standards” (a state-led effort coordinated by the National Governors Association Center for Best Practices and the Council of Chief State School Officers).

The Common Core State Standards (available at http://www.corestandards.org) are designed to be focused and coherent. They comprise two types of standards:

1. content standards
2. mathematical practice standards
2010 saw the introduction of the “Common Core State Standards” (a state-led effort coordinated by the National Governors Association Center for Best Practices and the Council of Chief State School Officers).

The Common Core State Standards (available at http://www.corestandards.org) are designed to be focused and coherent. They comprise two types of standards:

1. content standards
2. mathematical practice standards

42 states have adopted the Common Core State Standards (Mathematics).
DNR and the Standards

Mathematical practice standards:

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
Mathematical practice standards:
Mathematical practice standards:

1. Make sense of problems and persevere in solving them.
Mathematical practice standards:

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
Mathematical practice standards:

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
Mathematical practice standards:

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
DNR and the Standards

Mathematical practice standards:
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
Mathematical practice standards:

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
Mathematical practice standards:

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
Mathematical practice standards:

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
Paying attention to both ways of understanding (such as definitions, theorems, proofs, problems and their solutions, and so on) and ways of thinking as well as to the developmental interdependency between these two categories of knowledge.

Structuring lessons to allow repeated reasoning about concepts and ideas, to allow for internalization – a conceptual state where one is able to apply knowledge autonomously and spontaneously – and organization of knowledge.

Expecting the process of learning to often involve confusion, adjusting the trajectory of learning based on estimations of the learners' background knowledge.

Recognizing and taking steps to help surmount the difficulty involved in conceptualizing particular mathematical concepts and ideas (e.g. the difficulty of transitioning from empirical reasoning to deductive reasoning, etc.).
Paying attention to both ways of understanding (such as definitions, theorems, proofs, problems and their solutions, and so on) and ways of thinking as well as to the developmental interdependency between these two categories of knowledge.
• Paying attention to both ways of understanding (such as definitions, theorems, proofs, problems and their solutions, and so on) and ways of thinking as well as to the developmental interdependency between these two categories of knowledge.

• Structuring lessons to allow repeated reasoning about concepts and ideas, to allow for internalization – a conceptual state where one is able to apply knowledge autonomously and spontaneously – and organization of knowledge.
Exportable Teaching Practices for Your Consideration

- Paying attention to both ways of understanding (such as definitions, theorems, proofs, problems and their solutions, and so on) and ways of thinking as well as to the developmental interdependency between these two categories of knowledge.
- Structuring lessons to allow repeated reasoning about concepts and ideas, to allow for internalization – a conceptual state where one is able to apply knowledge autonomously and spontaneously – and organization of knowledge.
- Expecting the process of learning to often involve confusion, adjusting the trajectory of learning based on estimations of the learners’ background knowledge.
Paying attention to both ways of understanding (such as definitions, theorems, proofs, problems and their solutions, and so on) and ways of thinking as well as to the developmental interdependency between these two categories of knowledge.

Structuring lessons to allow repeated reasoning about concepts and ideas, to allow for internalization – a conceptual state where one is able to apply knowledge autonomously and spontaneously – and organization of knowledge.

Expecting the process of learning to often involve confusion, adjusting the trajectory of learning based on estimations of the learners’ background knowledge.

Recognizing and taking steps to help surmount the difficulty involved in conceptualizing particular mathematical concepts and ideas (e.g. the difficulty of transitioning from empirical reasoning to deductive reasoning, etc.).