Math 121B Theorem “Cheat Sheet”

Please print or hand-write a copy of this cheat sheet well in advance of next Tuesday’s midterm. In your exam solutions, you may use any of the following theorems without proof:

• Given a line \(t \) and a point \(P \) on \(t \), there exists exactly one line containing \(P \) which is perpendicular to \(t \).
• Given a line \(s \) and a point \(M \) which is not on \(s \), there exists exactly one line containing \(M \) which is perpendicular to \(s \).
• Vertical angles are congruent.
• If two parallel lines are cut by a transversal, then corresponding angles are congruent.
• Congruence conditions for triangles: SAS, ASA, SSS (note that SSA does NOT guarantee congruence except in the case of two right triangles)
• Pythagorean theorem: Suppose a triangle has leg lengths \(a \), \(b \), \(c \). Then the triangle is a right triangle with the right angle opposite the leg of length \(c \) if and only if \(a^2 + b^2 = c^2 \).
• The measures of the interior angles of a triangle add up to \(\pi \).
• Inscribed Angle Theorem: The measure of an inscribed angle in a circle is half the measure of its intercepted arc.
• A line is tangent to a circle or an ellipse if and only if it intersects the circle or the ellipse in exactly one point.
• In \(\triangle EPF \), if \(K \) is a point on the line segment \(EF \), then \(\overrightarrow{PK} \) is the angle bisector of \(\angle EPF \) if and only if \(\frac{EK}{EP} = \frac{FK}{FP} \).
• Sum and difference formulas for tangents of angles:
 \[
 \tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)} \quad \tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}
 \]
• Suppose an ellipse has foci \(F_1 = (-c, 0) \) and \(F_2 = (c, 0) \) where \(c > 0 \), length of major axis \(2a \), and equation \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \), where \(b^2 = a^2 - c^2 \). Then if \(P = (x_0, y_0) \) is any point on the ellipse:
 \[
 PF_1 = a + \frac{cx_0}{a} \quad \text{and} \quad PF_2 = a - \frac{cx_0}{a}
 \]