Math 18 Written Homework Five
Note that this homework is three pages long!

1. Construct a geometric figure that illustrates why a line in \mathbb{R}^2 which does not pass through the origin is not closed under vector addition. Note that here the “vectors” are the points on your line.

2. Let S be the set of all polynomials of the form $p(t) = at^2$, where a is a real number. Is S a subspace of \mathbb{P}_2? Carefully justify your answer. (Recall from class that \mathbb{P}_2 is the set of all polynomials of degree less than or equal to two).

3. Let H be the set of all polynomials of the form $p(t) = k + t^3$, where k is a real number. Is H a subspace of \mathbb{P}_3? Carefully justify your answer. (Recall from class that \mathbb{P}_3 is the set of all polynomials of degree less than or equal to three).
4. Let K be the set of all matrices of the form
\[
\begin{bmatrix}
a & b \\
0 & d
\end{bmatrix}
\]. Is K a subspace of the set of all 2×2 matrices? Carefully justify your answer.

5. Let A be an $m \times n$ matrix. Show that $\text{Col} \ A$ is a subspace of \mathbb{R}^m by demonstrating that the zero vector is in $\text{Col} \ A$, that $\text{Col} \ A$ is closed under addition, and that $\text{Col} \ A$ is closed under scalar multiplication.

6. Let A be an $m \times n$ matrix. Show that $\text{Nul} \ A$ is a subspace of \mathbb{R}^n by demonstrating that the zero vector is in $\text{Nul} \ A$, that $\text{Nul} \ A$ is closed under addition, and that $\text{Nul} \ A$ is closed under scalar multiplication.
7. Let \(S = \{ \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p \} \) be a set of \(p \) vectors in \(\mathbb{R}^n \) with \(p < n \). Show that \(S \) cannot be a basis for \(\mathbb{R}^n \).

8. Let \(S = \{ \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p \} \) be a set of \(p \) vectors in \(\mathbb{R}^n \) with \(p > n \). Show that \(S \) cannot be a basis for \(\mathbb{R}^n \).

9. If the given statement is true, write “True” below the statement. If the given statement is false, write “False” below the statement. No explanation is required.

 (a) \(\mathbb{R}^2 \) is a subspace of \(\mathbb{R}^3 \).

 (b) A subset \(H \) of a vector space \(V \) is a subspace of \(V \) if the zero vector is in \(H \) and if \(H \) is closed under addition.

 (c) The null space of a matrix \(A \) is the set of solutions of the equation \(A\vec{x} = \vec{0} \).

 (d) The null space of an \(m \times n \) matrix is in \(\mathbb{R}^m \).

 (e) If \(A \) is an \(m \times n \) matrix and the equation \(A\vec{x} = \vec{b} \) is consistent for some \(\vec{b} \) in \(\mathbb{R}^m \), then \(\text{Col} \ A \) is \(\mathbb{R}^m \).

 (f) If \(A \) is a matrix, then \(\text{Col} \ A \) is the set of all vectors that can be written in the form \(A\vec{x} \) for some \(\vec{x} \).

 (g) A linearly independent set in a subspace \(H \) is a basis for \(H \).

 (h) If a finite set \(S \) of nonzero vectors spans a vector space \(V \), then some subset of \(S \) is a basis for \(V \).

 (i) A basis for a subspace \(H \) must be a linearly independent set.

 (j) If \(B \) is an echelon form of a matrix \(A \), then the pivot columns of \(B \) are a basis for \(\text{Col} \ A \).