1. (a) Is there a linear transformation $S : \mathbb{R}^2 \to \mathbb{R}^2$ such that
\[
S \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad S \left(\begin{bmatrix} 1 \\ -1 \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \quad \text{and} \quad S \left(\begin{bmatrix} 2 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.
\]
If so, give an example of such an S; if not, explain why not.

(b) Let $T : \mathbb{R}^2 \to \mathbb{R}^4$ be the linear transformation such that
\[
T \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \quad \text{and} \quad T \left(\begin{bmatrix} 1 \\ -1 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 5 \end{bmatrix}.
\]
Find the standard matrix of T.

2. Let P_2 denote the vector space of polynomials of degree ≤ 2
\[
P_2 = \{ a_0 + a_1 t + a_2 t^2 : a_0, a_1, a_2 \in \mathbb{R} \}.
\]
Let W be the subspace of P_2 spanned by $\{1 - t, 1 - t^2, t^2 - t\}$. Find a basis B for W. What is the dimension of W?

3. For this entire problem, let $A = \left\{ \begin{bmatrix} 2 \\ 4 \\ 6 \\ 10 \end{bmatrix}, \begin{bmatrix} -4 \\ 6 \\ 2 \\ 8 \end{bmatrix}, \begin{bmatrix} 10 \\ -6 \\ 8 \\ 0 \end{bmatrix} \right\}$. Note that A is a basis for \mathbb{R}^4.

(a) Suppose $[\bar{x}]_A = \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix}$. Find \bar{x}.

(b) Let $B = \left\{ \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix} \right\}$ Note that B is a basis for \mathbb{R}^4. Find the change of coordinate matrix from A to B.

4. (a) Let $A = \begin{bmatrix} 6 & -2 \\ -2 & 3 \end{bmatrix}$ Find the eigenvalues of A as well as the corresponding eigenspaces.

(b) Let A be the matrix from part (a). Find a diagonal matrix D and an invertible matrix P so that $A = PDP^{-1}$. You don’t have to calculate P^{-1}.

5. (a) Let H be the set of all matrices of the form $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & k \end{bmatrix}$, with the property that $a + e + k = 0$. Is H a subspace of the space of all 3×3 matrices? Please justify your answer.

(b) Let K be the set of all 2×2 matrices with determinant equal to 0. Is K a subspace of the set of all 2×2 matrices? Please justify your answer.

6. (a) Give an example of a set S which spans \mathbb{R}^3 but is not a basis for \mathbb{R}^3. Briefly explain why your set S is not a basis.

(b) Suppose that M is a 5×8 matrix. Can the null space of M be two-dimensional? Please explain.

(c) Suppose that A is a 4×6 matrix and that $Ax = b$ is consistent for every b in \mathbb{R}^4. Is $A^T x = c$ consistent for every c in \mathbb{R}^6? Please explain.

(d) Suppose B is a square matrix and that v and w are eigenvectors of B with the eigenvalue of v equalling 6 and the eigenvalue of w equalling 5. Show that v and w must be linearly independent.