Coherent Algebraic Sheaves

Jean-Pierre Serre

translated by
Piotr Achinger
pt@students.mimuw.edu.pl

(received October 8, 1954)
Introduction

We know that the cohomological methods, in particular sheaf theory, play an increasing role not only in the theory of several complex variables ([5]), but also in classical algebraic geometry (let me recall the recent works of Kodaira-Spencer on the Riemann-Roch theorem). The algebraic character of these methods suggested that it is possible to apply them also to abstract algebraic geometry; the aim of this paper is to demonstrate that this is indeed the case.

The content of the particular chapters is as follows:

Chapter I is dedicated to general sheaf theory. It contains proofs of the results of this theory needed for the two other chapters. Various algebraic operations one might perform on sheaves are described in paragraph 1; we follow quite exactly the exposition of Cartan ([2], [5]). In paragraph 2 we study coherent sheaves of modules; these generalize analytic coherent sheaves (cf. [3], [5]), admitting almost the same properties. Paragraph 3 contains the definition of cohomology groups of a space X with values in a sheaf F. In subsequent applications, X is an algebraic variety, equipped with the Zariski topology, so it is not topologically separated\(^1\) and the methods used by Leray [10] and Cartan [3] (basing on "partitions of unity" or "fine" sheaves) do not apply; so one is led to follow the method of Čech and define the cohomology groups $H(X, F)$ by passing to the limit with finer and finer open coverings. Another difficulty arising from the non-separatedness of X regards the "cohomology exact sequence" (cf. n^o24 and 25): we could construct this exact sequence only for particular cases, yet sufficient for the purposes we had in mind.

Chapter II starts with the definition of an algebraic variety, analogous to that of Weil ([17], Chapter VII), but including the case of reducible varieties (note that, contrary to Weil’s usage, we reserved the word variety only for irreducible ones); we define the structure of an algebraic variety using the data consisting of the topology (Zariski topology) and a sub-sheaf of the sheaf of germs of functions (a sheaf of local rings). An algebraic coherent sheaf on an algebraic variety V is simply a coherent sheaf of \mathcal{O}_V-modules, \mathcal{O}_V being the sheaf of local rings on V; we give various examples in paragraph 2. The results obtained are in fact similar to related facts concerning Stein manifolds (cf. [3], [5]): if F is a coherent algebraic sheaf on an affine variety V, then $H^q(V, F) = 0$ for all $q > 0$ and F_x is generated by $H^0(V, F)$ for all $x \in V$. Moreover (paragraph 4), F is determined by $H^0(V, F)$ considered as a module over the ring of coordinates on V.

Chapter III, concerning projective varieties, contains the results which are essential for this paper. We start with establishing a correspondence between coherent algebraic sheaves F on a projective space $X = \mathbb{P}_r(K)$ and graded S-modules satisfying the condition (TF) of n^o56 (S denotes the polynomial

\(^1\)i.e. Hausdorff
algebra $K[t_0, \ldots, t_r]$; this correspondence is bijective if one identifies two S-modules whose homogenous components differ only in low degrees (for precise statements, see $n^\circ 57, 59$ and 65). In consequence, every question concerning \mathcal{F} could be translated into a question concerning the associated S-module M. This way we obtain a method allowing an algebraic determination of $H^q(X, \mathcal{F})$ starting from M, which in particular lets us study the properties of $H^q(X, \mathcal{F}(n))$ for n going to $+\infty$ (for the definition of $\mathcal{F}(n)$, see $n^\circ 54$); the results obtained are stated in $n^\circ 65$ and 66. In paragraph 4, we relate the groups $H^q(X, \mathcal{F})$ to the functors Ext^q_{S} introduced by Cartan-Eilenberg [6]; this allows us, in paragraph 5, to study the behavior of $H^q(X, \mathcal{F}(n))$ for n tending to $-\infty$ and give a homological characterization of k-fois de première espèce varieties. Paragraph 6 exposes certain properties of the Euler-Poincaré characteristic of a projective variety with values in a coherent algebraic sheaf.

Moreover, we demonstrate how one can apply the general results of this paper in diverse particular problems, and notably extend to the abstract case the "duality theorem" of [15], thus a part of the results of Kodaira-Spencer on the Riemann-Roch theorem; in these applications, the theorems of $n^\circ 66, 75$ and 76 play an essential role. We also show that, if the base field is the field of complex numbers, the theory of coherent algebraic sheaves is essentially identical to that of coherent analytic sheaves (cf. [4]).
Contents

Introduction

1. Sheaves

1.1 Operations on sheaves ... 5
 1.1.1 Definition of a sheaf 5
 1.1.2 Sections of a sheaf 5
 1.1.3 Construction of sheaves 6
 1.1.4 Glueing sheaves 7
 1.1.5 Extension and restriction of a sheaf 8
 1.1.6 Sheaves of rings and sheaves of modules 9
 1.1.7 Subsheaf and quotient sheaf 9
 1.1.8 Homomorphisms 10
 1.1.9 The direct sum of two sheaves 11
 1.1.10 The tensor product of two sheaves 11
 1.1.11 The sheaf of germs of homomorphisms 13

1.2 Coherent sheaves of modules 14
 1.2.12 Definitions 14
 1.2.13 Main properties of coherent sheaves 15
 1.2.14 Operations on coherent sheaves 16
 1.2.15 Coherent sheaves of rings 17
 1.2.16 Change of ring 18
 1.2.17 Extension and restriction of a coherent sheaf ... 19

1.3 Cohomology with values in a sheaf 20
1.3.18 Cochains of a covering 20
1.3.19 Simplicial operations 20
1.3.20 Complexes of cochains 21
1.3.21 Passing to a finer covering 22
1.3.22 Cohomology groups of X with values in a sheaf \mathcal{F} 23
1.3.23 Homomorphisms of sheaves 24
1.3.24 Exact sequence of sheaves: the general case 25
1.3.25 Exact sequence of sheaves: the case of X paracompact . 26
1.3.26 Cohomology of a closed subspace 27
1.4 Comparison of cohomology groups of different coverings 29
1.4.27 Double complexes ... 29
1.4.28 The double complex defined by two coverings 30
1.4.29 Applications ... 31
2 Affine Varieties ... 33
2.1 Algebraic varieties ... 34
2.1.30 Spaces satisfying condition (A) 34
2.1.31 Locally closed subsets of an affine space 35
2.1.32 Regular functions .. 36
2.1.33 Products ... 37
2.1.34 Definition of the structure of an algebraic variety .. 37
2.1.35 Regular mappings, induced structures, products 39
2.1.36 The field of rational functions on an irreducible variety 40
2.2 Cohherent algebraic sheaves 43
2.2.37 The sheaf of local rings on an algebraic variety 43
2.2.38 Cohherent algebraic sheaves 44
2.2.39 Sheaf of ideals defined by a closed subvariety 44
2.2.40 Sheaves of fractional ideals 45
2.2.41 Sheaf associated to the total space of a vector bundle (???) 45
2.3 Cohherent algebraic sheaves on affine varieties 47
2.3.42 Affine varieties .. 47
2.3.43 Some preliminary properties of irreducible varieties .. 48
Chapter 1

Sheaves
1.1 Operations on sheaves

1.1.1 Definition of a sheaf

Let \(X \) be a topological space. A sheaf of abelian groups on \(X \) (or simply a sheaf) consists of:

(a) a function \(x \to \mathcal{F}_x \), giving for all \(x \in X \) an abelian group \(\mathcal{F}_x \),
(b) a topology on the set \(\mathcal{F} \), the sum of the sets \(\mathcal{F}_x \).

If \(f \) is an element of \(\mathcal{F}_x \), we put \(\pi(f) = x \); we call the mapping of \(\pi \) the projection of \(\mathcal{F} \) onto \(X \); the family in \(\mathcal{F} \times \mathcal{F} \) consisting of pairs \((f, g) \) such that \(\pi(f) = \pi(g) \) is denoted by \(\mathcal{F} + \mathcal{F} \).

Having stated the above definitions, we impose two axioms on the data (a) and (b):

(I) for all \(f \in \mathcal{F} \) there exist open neighbourhoods \(V \) of \(f \) and \(U \) of \(\pi(f) \) such that the restriction of \(\pi \) to \(V \) is a homeomorphism of \(V \) and \(U \).

(In other words, \(\pi \) is a local homeomorphism).

(II) the mapping \(f \mapsto -f \) is a continuous mapping from \(\mathcal{F} \) to \(\mathcal{F} \), and the mapping \((f, g) \mapsto f + g \) is a continuous mapping from \(\mathcal{F} + \mathcal{F} \) to \(\mathcal{F} \).

We shall see that, even when \(X \) is separated (which we do not assume), \(\mathcal{F} \) is not necessarily separated, which is shown by the example of the sheaf of germs of functions (cf. \(n^\circ 3 \)).

Example of a sheaf. For \(G \) an abelian group, set \(\mathcal{F}_x = G \) for all \(x \in X \); the set \(\mathcal{F} \) can be identified with the product \(X \times G \) and, if it is equipped with the product topology of the topology of \(X \) by the discrete topology on \(G \), one obtains a sheaf, called the constant sheaf isomorphic with \(G \), often identified with \(G \).

1.1.2 Sections of a sheaf

Let \(\mathcal{F} \) be a sheaf on a space \(X \), and let \(U \) be a subset of \(X \). By a section of \(\mathcal{F} \) over \(U \) we mean a continuous mapping \(s : U \to \mathcal{F} \) for which \(\pi \circ s \) coincides with the identity on \(U \). We therefore have \(s(x) \in \mathcal{F}_x \) for all \(x \in U \). The set of sections of \(\mathcal{F} \) over \(U \) is denoted by \(\Gamma(U, \mathcal{F}) \); axiom (II) implies that \(\Gamma(U, \mathcal{F}) \) is an abelian group. If \(U \subset V \), and if \(s \) is a section over \(V \), the restriction of \(s \) to \(U \) is a section over \(U \); hence we have a homomorphism \(\rho^U_V : \Gamma(V, \mathcal{F}) \to \Gamma(U, \mathcal{F}) \).

If \(U \) is open in \(X \), \(s(U) \) is open in \(\mathcal{F} \), and if \(U \) runs over a base of the topology of \(X \), then \(s(U) \) runs over a base of the topology of \(\mathcal{F} \); this is only another wording of axiom (I).

Note also one more consequence of axiom (I): for all \(f \in \mathcal{F}_x \), there exists a section \(s \) over an open neighbourhood of \(x \) for which \(s(x) = f \), and two sections with this property coincide on an open neighbourhood of \(x \). In other words, \(\mathcal{F}_x \) is an inductive limit of \(\Gamma(U, \mathcal{F}) \) for \(U \) running over all open neighbourhoods of \(x \).
1.1.3 Construction of sheaves

Given for all open \(U \subset X \) an abelian group \(\mathcal{F}_U \) and for all pairs of open \(U \subset V \) a homomorphism \(\phi_U^V : \mathcal{F}_V \rightarrow \mathcal{F}_U \), satisfying the transitivity condition \(\phi_U^V \circ \phi_W^U = \phi_V^W \) whenever \(U \subset V \subset W \).

The collection \((\mathcal{F}_U, \phi_U^V) \) allows us to define a sheaf \(\mathcal{F} \) in the following way:

(a) Put \(\mathcal{F}_x = \lim \mathcal{F}_U \) (inductive limit of the system of open neighbourhoods of \(x \)). If \(x \) belongs to an open subset \(U \), we have a canonical morphism \(\iota \) (by the system \(x \)) \(U \rightarrow \mathcal{F}_U \) therefore an open covering of \(x \), therefore \(\phi \) which means that \(\iota \) element \(f \) \(V \) \(\mathcal{F} \) therefore bijective) if and only if the following condition is satisfied:

(b) Let \(t \in \mathcal{F}_U \) and denote by \([t, U] \) the set of \(\phi_U^V(t) \) for \(x \) running over \(U \); we have \([t, U] \subset \mathcal{F} \) and we give \(\mathcal{F} \) the topology generated by \([t, U] \). Moreover, an element \(f \in \mathcal{F}_x \) has a base of neighbourhoods consisting of the sets \([t, U] \) for \(x \in U \) and \(\phi_U^V(t) = f \).

One verifies immediately that the data (a) and (b) satisfy the axioms (I) and (II), in other words, that \(\mathcal{F} \) is a sheaf. We say that this is the sheaf defined by the system \((\mathcal{F}_U, \phi_U^V) \).

If \(f \in \mathcal{F}_U \), the mapping \(x \mapsto \phi_U^V(t) \) is a section of \(\mathcal{F} \) over \(U \); hence we have a canonical morphism \(\iota : \mathcal{F}_U \rightarrow \Gamma(U, \mathcal{F}) \).

Proposition 1. \(\iota : \mathcal{F}_U \rightarrow \Gamma(U, \mathcal{F}) \) is injective \(^1\) if and only if the following condition holds:

If an element \(t \in \mathcal{F}_U \) is such that there exists an open covering \(\{U_i\} \) of \(U \) with \(\phi_{U_i}^U(t) = 0 \) for all \(i \), then \(t = 0 \).

If \(t \in \mathcal{F}_U \) satisfies the condition above, we have

\[
\phi_{U_i}^V(t) = \phi_{U_j}^V \circ \phi_{U_i}^V(t) = 0 \quad \text{if} \quad x \in U_i,
\]

which means that \(\iota(t) = 0 \). Conversely, suppose that \(\iota(t) = 0 \) with \(t \in \mathcal{F}_U \); since \(\phi_U^V(t) = 0 \) for \(x \in U \), there exists an open neighbourhood \(U(x) \) of \(x \) such that \(\phi_{U(x)}^U(t) = 0 \), by the definition of an inductive limit. The sets \(U(x) \) form therefore an open covering of \(U \) satisfying the condition stated above.

Proposition 2. Let \(U \) be an open subset of \(X \), and let \(\iota : \mathcal{F}_U \rightarrow \Gamma(V, \mathcal{F}) \) be injective for all open \(V \subset U \). Then \(\iota : \mathcal{F}_U \rightarrow \Gamma(U, \mathcal{F}) \) is surjective \(^1\) (and therefore bijective) if and only if the following condition is satisfied:

For all open coverings \(\{U_i\} \) of \(U \), and all systems \(\{t_i\}, t_i \in \mathcal{F}_{U_i} \) such that \(\phi_{U_i \cap U_j}^U(t_i) = \phi_{U_i \cap U_j}^U(t_j) \) for all pairs \((i, j) \), there exists a \(t \in \mathcal{F}_U \) with \(\phi_{U_i}^U(t) = t_i \) for all \(i \).

The condition is necessary: every \(t_i \) defines a section \(s_i = \iota(t_i) \) over \(U_i \), and we have \(s_i = s_j \) over \(U_i \cap U_j \); so there exists a section \(s \) over \(U \) which coincides with \(s_i \) over \(U_i \) for all \(i \); if \(\iota : \mathcal{F}_U \rightarrow \Gamma(U, \mathcal{F}) \) is surjective, there exists \(t \in \mathcal{F}_U \)

\(^1\)Recall (cf. [1]) that a function \(f : E \rightarrow E' \) is injective if \(f(e_1) = f(e_2) \) implies \(e_1 = e_2 \), surjective if \(f(E) = E' \), bijective when it is both injective and surjective. An injective (resp. surjective, bijective) mapping is called an injection (resp. a surjection, a bijection).
such that \(t(t) = s \). If we put \(t' = \phi_{U_i}(t) \), the section defined by \(t' \) over \(U_i \) does not differ from \(s_i \); since \(t(t) - t'(t) = 0 \), which implies \(t = t' \) for \(t \) was supposed injective.

The condition is sufficient: if \(s \) is a section of \(F \) over \(U \), there exists an open covering \(\{U_i\} \) of \(U \) and elements \(t_i \in F_{U_i} \) such that \(t(t_i) \) coincides with the restriction of \(s \) to \(U_i \); it follows that the elements \(\phi_{U_i \cap U_j}(t_i) \) and \(\phi_{U_i \cap U_j}(t_j) \) define the same section over \(U_i \cap U_j \), so, by the assumption made on \(t \), they are equal. If \(t \in F_U \) satisfies \(\phi_{U_i}(t) = t_i \), \(t(t) \) coincides with \(s \) over each \(U_i \), so also over \(S \), q.e.d.

Proposition 3. If \(F \) is a sheaf of abelian groups on \(X \), the sheaf defined by the system \((\Gamma(U, F), \rho_U^V) \) is canonically isomorphic with \(F \).

This is an immediate result of properties of sections stated in \(n^2 \).

Proposition 3 shows that every sheaf can be defined by an appropriate system \((F_U, \phi_U^V) \). We will see that different systems can define the same sheaf; however, if we impose on \((F_U, \phi_U^V) \) the conditions of Propositions 1 and 2, we shall have only one (up to isomorphism) possible system: the one given by \((\Gamma(U, F), \rho_U^V) \).

Example. Let \(G \) be an abelian group and denote by \(F_U \) the set of functions on \(U \) with values in \(G \); define \(\phi_U^V : F_V \to F_U \) by restriction of such functions. We thus obtain a system \((F_U, \phi_U^V) \), and hence a sheaf \(F \), called the sheaf of germs of functions with values in \(G \). One checks immediately that the system \((F_U, \phi_U^V) \) satisfies the conditions of Propositions 1 and 2; we thus can identify sections of \(F \) over an open \(U \) with the elements of \(F_U \).

1.1.4 Glueing sheaves

Let \(F \) be a sheaf on \(X \), and let \(U \) be a subset of \(X \); the set \(\pi^{-1}(U) \subset F \), with the topology induced from \(F \), forms a sheaf over \(U \), called a sheaf induced by \(F \) on \(U \), end denoted by \(F(U) \) (or just \(F \), when it does not cause confusion).

We see that conversely, we can define a sheaf on \(X \) by means of sheaves on open subsets covering \(X \):

Proposition 4. Let \(\mathcal{U} = \{U_i\}_{i \in I} \) be an open covering of \(X \) and, for all \(i \in I \), let \(F_i \) be a sheaf over \(U_i \); for all pairs \((i, j) \) let \(\theta_{ij} \) be an isomorphism from \(F_i(U_i \cap U_j) \) to \(F_j(U_i \cap U_j) \); suppose that we have \(\theta_{ij} \circ \theta_{jk} = \theta_{ik} \) at each point of \(U_i \cap U_j \cap U_k \) for all triples \((i, j, k) \).

Then there exists a sheaf \(F \) and for all \(i \) an isomorphism \(\eta_i \) from \(F(U_i) \) to \(F_i \), such that \(\theta_{ij} = \eta_i \circ \eta_j^{-1} \) at each point of \(U_i \cap U_j \). Moreover, \(F \) and \(\eta_i \) are determined up to isomorphism by the preceding conditions.

The uniqueness of \(\{F, \eta_i\} \) is evident; for the proof of existence, we could define \(F \) as a quotient space of the sum of \(F_i \), but we will rather use the methods of \(n^3 \): if \(U \) is an open subset of \(X \), let \(F_U \) be the group whose elements are
systems \(\{ s_k \}_{k \in I} \) with \(s_k \in \Gamma(U \cap U_k, \mathcal{F}_k) \) and \(s_k = \theta_{kij}(s_j) \) on \(U \cap U_j \cap U_k \); if \(U \subset V \), we define \(\phi_U^V \) in an obvious way. The sheaf defined by the system \((\mathcal{F}_U, \phi_U^V)\) is the sheaf \(\mathcal{F} \) we look for; moreover, if \(U \in U_i \), the mapping sending a system \(\{ s_k \} \in \mathcal{F}_U \) to the element \(s_i \in \Gamma(U_i, \mathcal{F}_i) \) is an isomorphism from \(\mathcal{F}_U \) to \(\Gamma(U, \mathcal{F}) \), because of the transitivity condition; we so obtain an isomorphism \(\eta_i: \mathcal{F}(U_i) \to \mathcal{F}_i \), which obviously satisfies the stated condition.

We say that the sheaf \(\mathcal{F} \) is obtained by glueing the sheaves \(\mathcal{F}_i \) by means of the isomorphisms \(\theta_{ij} \).

1.1.5 Extension and restriction of a sheaf

Let \(X \) be a topological space, \(Y \) its closed subspace and \(\mathcal{F} \) a sheaf on \(X \). We say that \(\mathcal{F} \) is concentrated on \(Y \), or that it is zero outside of \(Y \) if we have \(\mathcal{F}_x = 0 \) for all \(x \in X - Y \).

Proposition 5. If a sheaf \(\mathcal{F} \) is concentrated on \(Y \), the homomorphism

\[
\rho^X_Y: \Gamma(X, \mathcal{F}) \to \Gamma(Y, \mathcal{F}(Y))
\]

is bijective.

If a section of \(\mathcal{F} \) over \(X \) is zero over \(Y \), it is zero everywhere since \(\mathcal{F}_x = 0 \) if \(x \notin Y \), which shows that \(\rho^X_Y \) is injective. Conversely, let \(s \) be a section of \(\mathcal{F}(Y) \) over \(Y \), and extend \(s \) onto \(X \) by putting \(s(x) = 0 \) for \(x \notin Y \); the mapping \(x \mapsto s(x) \) is obviously continuous on \(X - Y \); on the other hand, if \(x \in Y \), there exists a section \(s' \) of \(\mathcal{F} \) over an open neighbourhood \(U \) of \(x \) for which \(s'(x) = s(x) \); since \(s \) is continuous on \(Y \) by assumption, there exists an open neighbourhood \(V \) of \(x \), contained in \(U \) and such that \(s'(y) = s(y) \) for all \(y \in V \cap Y \); since \(\mathcal{F}_y = 0 \) if \(y \notin Y \), we also have that \(s'(y) = s(y) \) for \(y \in V - (V \cap Y) \); hence \(s \) and \(s' \) coincide on \(V \), which proves that \(s \) is continuous in a neighbourhood of \(Y \), so it is continuous everywhere. This shows that \(\rho^X_Y \) is surjective, which ends the proof.

We shall now prove that the sheaf \(\mathcal{F}(Y) \) determines the sheaf \(\mathcal{F} \) uniquely:

Proposition 6. Let \(Y \) be a closed subspace of \(X \), and let \(\mathcal{G} \) be a sheaf on \(Y \). Put \(\mathcal{F}_x = \mathcal{G}_x \) if \(x \in Y \), \(\mathcal{F}_x = 0 \) if \(x \notin Y \), and let \(\mathcal{F} \) be the sum of the sets \(\mathcal{F}_x \). Then \(\mathcal{F} \) admits a unique structure of a sheaf over \(X \) such that \(\mathcal{F}(Y) = \mathcal{G} \).

Let \(U \) be an open subset of \(X \); if \(s \) is a section of \(\mathcal{G} \) on \(U \cap Y \), extend \(s \) by \(0 \) on \(U - (U \cap Y) \); when \(s \) runs over \(\Gamma(U \cap Y, \mathcal{G}) \), we obtain this way a group \(\mathcal{F}_U \) of mappings from \(U \) to \(\mathcal{F} \). Proposition 5 then shows that if \(\mathcal{F} \) is equipped a structure of a sheaf such that \(\mathcal{F}(Y) = \mathcal{G} \), we have \(\mathcal{F}_U = \Gamma(U, \mathcal{F}) \), which proves the uniqueness of the structure in question. The existence is proved using the methods of \(n \times 3 \) applied to \(\mathcal{F}_U \) and the restriction homomorphisms \(\phi_U^V: \mathcal{F}_U \to \mathcal{F}_V \).

We say that a sheaf \(\mathcal{F} \) is obtained by extension of the sheaf \(\mathcal{G} \) by \(0 \) outside \(Y \); we denote this sheaf by \(\mathcal{G}^X \), or simply \(\mathcal{G} \) if it does not cause confusion.
1.1.6 Sheaves of rings and sheaves of modules

The notion of a sheaf defined in n^1 is that of a sheaf of abelian groups. It is clear that there exist analogous definitions for all algebraic structures (we could even define "sheaves of rings", where F_x would not admit an algebraic structure, and we only require axiom (I)). From now on, we will encounter mainly sheaves of rings and sheaves of modules:

A sheaf of rings \mathcal{A} is a sheaf of abelian groups \mathcal{A}_x, $x \in X$, where each \mathcal{A}_x has a structure of a ring such that the mapping $(f, g) \mapsto f \cdot g$ is a continuous mapping from $\mathcal{A} + \mathcal{A}$ to \mathcal{A} (the notation being that of n^1). We shall always assume that \mathcal{A}_x has a unity element, varying continuously with x.

If \mathcal{A} is a sheaf of rings satisfying the preceding condition, $\Gamma(U, \mathcal{A})$ is a ring with unity, and $\rho^U_V : \Gamma(V, \mathcal{A}) \to \Gamma(U, \mathcal{A})$ is a homomorphism of rings preserving unity if $U \subset V$. Conversely, given rings \mathcal{A}_U with unity and homomorphisms $\phi^U_V : \mathcal{A}_V \to \mathcal{A}_U$ preserving unity and satisfying $\phi^W_V \circ \phi^U_W = \phi^U_V$, the sheaf \mathcal{A} defined by the system $(\mathcal{A}_U, \phi^U_V)$ is a sheaf of rings. For example, if G is a ring with unity, the ring of germs of functions with values in G (defined in n^3) is a sheaf of rings.

Let \mathcal{A} be a sheaf of rings. A sheaf \mathcal{F} is called a sheaf of \mathcal{A}-modules if every \mathcal{F}_x carries a structure of a left unitary $^2\mathcal{A}_x$-module, varying "continuously" with x, in the following sense: if $\mathcal{A} + \mathcal{F}$ is the subspace of $\mathcal{A} \times \mathcal{F}$ consisting of the pairs (a, f) with $\pi(a) = \pi(f)$, the mapping $(a, f) \mapsto a \cdot f$ is a continuous mapping from $\mathcal{A} + \mathcal{F}$ to \mathcal{F}.

If \mathcal{F} is a sheaf of \mathcal{A}-modules, $\Gamma(U, \mathcal{F})$ is a unitary module over $\Gamma(U, \mathcal{A})$. Conversely, if \mathcal{A} is defined by the system $(\mathcal{A}_U, \phi^U_V)$ as above, and let \mathcal{F} be a sheaf defined by the system (\mathcal{F}, ψ^U_V), where every \mathcal{F}_U is a unitary \mathcal{A}_U-module, with $\psi^U_V(a \cdot f) = \phi^U_V(a) \cdot \psi^U_V(f)$; then \mathcal{F} is a sheaf of \mathcal{A}-modules.

Every sheaf of abelian groups can be considered a sheaf of \mathbb{Z}-modules, \mathbb{Z} being the constant sheaf isomorphic to the ring of integers. This will allow us to narrow our study to sheaves of modules from now on.

1.1.7 Subsheaf and quotient sheaf

Let \mathcal{A} be a sheaf of rings, \mathcal{F} a sheaf of \mathcal{A}-modules. For all $x \in X$, let \mathcal{G}_x be a subset of \mathcal{F}_x. We say that $\mathcal{G} = \bigcup \mathcal{G}_x$ is a subsheaf of \mathcal{F} if:

(a) \mathcal{G}_x is a sub-\mathcal{A}_x-module of \mathcal{F}_x for all $x \in X$,

(b) \mathcal{G} is an open subset of \mathcal{F}.

Condition (b) can be also expressed as:

(b') If x is a point of X, and if s is a section of \mathcal{F} over a neighbourhood of x such that $s(x) \in \mathcal{G}_x$, we have $s(y) \in \mathcal{G}_y$ for all y close enough to x.

It is clear that, if these conditions are satisfied, \mathcal{G} is a sheaf of \mathcal{A}-modules.

\footnote{i.e. with the unity acting as identity}
1.1. Operations on sheaves

Let \mathcal{G} be a subsheaf of \mathcal{F} and put $\mathcal{K}_x = \mathcal{F}_x / \mathcal{G}_x$ for all $x \in X$. Give $\mathcal{K} = \bigcup \mathcal{K}_x$ the quotient topology of \mathcal{F}; we see easily that we also obtain a sheaf of \mathcal{A}-modules, called the quotient sheaf of \mathcal{F} by \mathcal{G}, and denoted by \mathcal{F}/\mathcal{G}. We can give another definition, using the methods of \mathcal{A}-modules, called the quotient sheaf F the quotient topology of $(\mathcal{F}, \mathcal{G})$ and let ϕ^V_U a homomorphism obtained by passing to the quotient with $\rho^V_U : \Gamma(V, \mathcal{F}) \to \Gamma(U, \mathcal{F})$; the sheaf defined by the system $(\mathcal{K}_U, \phi^V_U)$ coincides with \mathcal{K}.

The second definition of \mathcal{K} shows that, if s is a section of \mathcal{K} over a neighborhood of x, there exists a section t of \mathcal{F} over a neighborhood of x such that the class of $t(y) \mod \mathcal{G}_y$ is equal to $s(y)$ for all y close enough to x. Of course, this does not hold globally in general: if U is an open subset of X we only have an exact sequence

$$0 \to \Gamma(U, \mathcal{G}) \to \Gamma(U, \mathcal{F}) \to \Gamma(U, \mathcal{K}),$$

the homomorphism $\Gamma(U, \mathcal{F}) \to \Gamma(U, \mathcal{K})$ not being surjective in general (cf. $n^\circ 24$).

1.1.8 Homomorphisms

Let \mathcal{A} be a sheaf of rings, \mathcal{F} and \mathcal{G} two sheaves of \mathcal{A}-modules. An \mathcal{A}-homomorphism (or an \mathcal{A}-linear homomorphism, or simply a homomorphism) from \mathcal{F} to \mathcal{G} is given by, for all $x \in X$, an \mathcal{A}_x-homomorphism $\phi_x : \mathcal{F}_x \to \mathcal{G}_x$, such that the mapping $\phi : \mathcal{F} \to \mathcal{G}$ defined by the ϕ_x is continuous. This condition can also be expressed by saying that, if s is a section of \mathcal{F} over U, $x \mapsto \phi_x(s(x))$ is a section of \mathcal{G} over U (we denote this section by $\phi(s)$, or $\phi \circ s$). For example, if \mathcal{G} is a subsheaf of \mathcal{F}, the injection $\mathcal{G} \hookrightarrow \mathcal{F}$ and the projection $\mathcal{F} \twoheadrightarrow \mathcal{F}/\mathcal{G}$ both are homomorphisms.

Proposition 7. Let ϕ be a homomorphisms from \mathcal{F} to \mathcal{G}. For all $x \in X$, let \mathcal{N}_x be the kernel of ϕ_x and let \mathcal{I}_x be the image of ϕ_x. Then $\mathcal{N} = \bigcup \mathcal{N}_x$ is a subsheaf of \mathcal{F}, $\mathcal{I} = \bigcup \mathcal{I}_x$ is a subsheaf of \mathcal{G} and ϕ defines an isomorphism of \mathcal{F}/\mathcal{N} and \mathcal{I}.

Since ϕ_x is an \mathcal{A}_x-homomorphism, \mathcal{N}_x and \mathcal{I}_x are submodules of \mathcal{F} and \mathcal{G} respectively, and ϕ_x defines an isomorphism of $\mathcal{F}_x/\mathcal{N}_x$ with \mathcal{I}_x. If on the other hand s is a local section of \mathcal{F}, such that $s(x) \in \mathcal{N}_x$, we have $\phi \circ s(x) = 0$, hence $\phi \circ s(y) = 0$ for y close enough to x, so $s(y) \in \mathcal{N}_y$, which shows that \mathcal{N} is a subsheaf of \mathcal{F}. If t is a local section of \mathcal{G}, such that $t(x) \in \mathcal{I}_x$, there exists a local section $s \in \mathcal{F}$, such that $\phi \circ s(x) = t(x)$, hence $\phi \circ s = t$ in the neighborhood of x, showing that \mathcal{I} is a subsheaf of \mathcal{G}, isomorphic with \mathcal{F}/\mathcal{N}.

The sheaf \mathcal{N} is called the kernel of ϕ and denoted by $\text{Ker}(\phi)$; the sheaf \mathcal{I} is called the image of ϕ and denoted by $\text{Im}(\phi)$; the sheaf \mathcal{G}/\mathcal{I} is called the cokernel of ϕ and denoted by $\text{Coker}(\phi)$. A homomorphism ϕ is called injective, or one-to-one, if each ϕ_x is injective, or equivalently if $\text{Ker}(\phi) = 0$; it is called surjective if each ϕ_x is surjective, or equivalently if $\text{Coker}(\phi) = 0$; it is called
1.1. Operations on sheaves

bijective if it is both injective and surjective, and Proposition 7 shows that it is an isomorphism of \mathcal{F} and \mathcal{G} and that ϕ^{-1} is a homomorphism. All the definitions related to homomorphisms of modules translate naturally to sheaves of modules; for example, a sequence of homomorphisms is called **exact** if the image of each homomorphisms coincides with the kernel of the homomorphism following it. If $\phi : \mathcal{F} \to \mathcal{G}$ is a homomorphism, the sequences:

$$0 \to \operatorname{Ker}(\phi) \to \mathcal{F} \to \operatorname{Im}(\phi) \to 0$$

$$0 \to \operatorname{Im}(\phi) \to \mathcal{G} \to \operatorname{Coker}(\phi) \to 0$$

are exact.

If ϕ is a homomorphism from \mathcal{F} to \mathcal{G}, the mapping $s \mapsto \phi \circ s$ is a $\Gamma(U, \mathcal{A})$-homomorphism from $\Gamma(U, \mathcal{F})$ to $\Gamma(U, \mathcal{G})$. Conversely, if \mathcal{A}, \mathcal{F}, \mathcal{G} are defined by the systems $(\mathcal{A}_U, \phi^U_V)$, $(\mathcal{F}_U, \psi^U_V)$, $(\mathcal{G}_U, \chi^U_V)$ as in n^g6, and take for every open $U \subset X$ an \mathcal{A}_U-homomorphism $\phi_U : \mathcal{F}_U \to \mathcal{G}_U$ such that $\chi^V_U \circ \phi_U = \phi_V \circ \psi^V_U$; by passing to the inductive limit, the ϕ_U define a homomorphism $\phi : \mathcal{F} \to \mathcal{G}$.

1.1.9 The direct sum of two sheaves

Let \mathcal{A} be a sheaf of rings, \mathcal{F} and \mathcal{G} two sheaves of \mathcal{A}-modules; for all $x \in X$, form the module $\mathcal{F}_x + \mathcal{G}_x$, the **direct sum** of \mathcal{F}_x and \mathcal{G}_x; an element of $\mathcal{F}_x + \mathcal{G}_x$ is a pair (f, g) with $f \in \mathcal{F}_x$ and $g \in \mathcal{G}_x$. Let \mathcal{K} be the sum of the sets $\mathcal{F}_x + \mathcal{G}_x$ for $x \in X$; we can identify \mathcal{K} with the subset of $\mathcal{F} \times \mathcal{G}$ consisting of the pairs (f, g) with $\pi(f) = \pi(g)$. We give \mathcal{K} the topology induced from $\mathcal{F} \times \mathcal{G}$ and verify immediately that \mathcal{K} is a sheaf of \mathcal{A}-modules; we call this sheaf the **direct sum** of \mathcal{F} and \mathcal{G}, and denote it by $\mathcal{F} + \mathcal{G}$. A section of $\mathcal{F} + \mathcal{G}$ is of the form $x \mapsto (s(x), t(x))$, where s and t are sections of \mathcal{F} and \mathcal{G} over U; in other words, $\Gamma(U, \mathcal{F} + \mathcal{G})$ is isomorphic to the direct sum $\Gamma(U, \mathcal{F}) + \Gamma(U, \mathcal{G})$.

The definition of the direct sum extends by recurrence to a finite number of \mathcal{A}-modules. In particular, a direct sum of p sheaves isomorphic to one sheaf \mathcal{F} is denoted by \mathcal{F}^p.

1.1.10 The tensor product of two sheaves

Let \mathcal{A} be a sheaf of rings, \mathcal{F} a sheaf right of \mathcal{A}-modules, \mathcal{G} a sheaf of left \mathcal{A}-modules. For all $x \in X$ we set $\mathcal{K}_x = \mathcal{F}_x \otimes \mathcal{G}_x$, the tensor product being taken over the ring \mathcal{A}_x (cf. for example [6], Chapter II, paragraph 2); let \mathcal{K} be the sum of the sets \mathcal{K}_x.

Proposition 8. There exists a structure of a sheaf on \mathcal{K}, unique with the property that if s and t are sections of \mathcal{F} and \mathcal{G} over an open subset U, the mapping $x \mapsto s(x) \otimes t(x) \in \mathcal{K}_x$ gives a section of \mathcal{K} over U.

13
The sheaf K thus defined is called the tensor product (over A) of F and G, and denoted by $F \otimes_A G$; if the rings A_x are commutative, it is a sheaf of A-modules.

If K has a structure of a sheaf satisfying the above condition, and if f_i and g_i are sections of F and G over an open $U \subset X$, the mapping $x \mapsto \sum s_i(x) \otimes t_i(x)$ is a section of K on U. In fact, all $h \in K_x$ can be expressed in the form $h = \sum f_i \otimes g_i$, $f_i \in F_x$, $g_i \in G_x$, therefore also the form $\sum s_i(x) \otimes t_i(x)$, where s_i and t_i are defined in an open neighbourhood U of x; in result, every section of K can be locally expressed in the preceding form, which shows the uniqueness of the structure of a sheaf on K.

Now we show the existence. We might assume that A, F, G are defined by the systems (A_U, ϕ_U^V), (F_U, ψ_U^V), (G_U, χ_U^V) as in 6. Now set $K_U = F_U \otimes G_U$, the tensor product being taken over A_U; the homomorphisms ψ_U^V and χ_U^V define, by passing to the tensor product, a homomorphism $\eta_U^V : K_U \to K_V$; besides, we have $\lim_{x \in U} K_U = \lim_{x \in U} F_U \otimes \lim_{x \in U} G_U = K_x$, the tensor product being taken over A_x (for the commutativity of the tensor product with inductive limits, see for example [6], Chapter VI, Exercise 18). The sheaf defined by the system (K_U, η_U^V) can be identified with K, and K is thus given a structure of a sheaf obviously satisfying the imposed condition. Finally, if the A_x are commutative, we can suppose that the A_U are also commutative (it suffices to take for A_U the ring $\Gamma(U, A)$), so K_U is a A_U-module, and K is a sheaf of A-modules.

Now let ϕ be an A-homomorphism from F to F' and let ψ be an A-homomorphism form G to G'; in that case $\phi \otimes \psi$ is a homomorphism of (abelian groups in general – of A_x-modules, if A_x is commutative) and the definition of $F \otimes_A G$ shows that the collection of $\phi \otimes \psi$ is a homomorphism from $F \otimes_A G$ to $F' \otimes_A G'$; this homomorphism is denoted by $\phi \otimes \psi$; if ψ is the identity, we write ϕ instead of $\phi \otimes 1$.

All of the usual properties of the tensor product of two modules translate to the tensor product of two sheaves of modules. For example, all exact sequences:

$$F \to F' \to F'' \to 0$$

give rise to an exact sequence:

$$F \otimes_A G \to F' \otimes_A G \to F'' \otimes_A G \to 0.$$

We have the canonical isomorphisms:

$$F \otimes_A (G_1 + G_2) \approx F \otimes_A G_1 + F \otimes_A G_2, \quad F \otimes_A A \approx F,$$

and (supposing that A_x are commutative, to simplify the notation):

$$F \otimes_A G \approx G \otimes_A F, \quad F \otimes_A (G \otimes_A K) \approx (F \otimes_A G) \otimes_A K.$$
1.1.11 The sheaf of germs of homomorphisms from one sheaf to another

Let A be a sheaf of rings, \mathcal{F} and \mathcal{G} two sheaves of A-modules. If U is an open subset of X, let \mathcal{K}_U be the group of homomorphisms from $\mathcal{F}(U)$ to $\mathcal{G}(U)$ (we also write “homomorphism from \mathcal{F} to \mathcal{G} over U” in place of “homomorphism from $\mathcal{F}(U)$ to $\mathcal{G}(U)$”). The operation of restricting a homomorphism defines $\phi_U^V : \mathcal{K}_V \to \mathcal{K}_U$; the sheaf defined by $(\mathcal{K}_U, \phi_U^V)$ is called the sheaf of germs of homomorphisms from \mathcal{F} to \mathcal{G} and denoted by $\text{Hom}_A(\mathcal{F}, \mathcal{G})$. If A_x are commutative, $\text{Hom}_A(\mathcal{F}, \mathcal{G})$ is a sheaf of A-modules.

An element of $\text{Hom}_A(\mathcal{F}, \mathcal{G})$, being a germ of a homomorphism from \mathcal{F} to \mathcal{G} in a neighbourhood of x, defines an A_x-homomorphism from \mathcal{F}_x to \mathcal{G}_x; hence a canonical homomorphism

$$\rho : \text{Hom}_A(\mathcal{F}, \mathcal{G})_x \to \text{Hom}_{A_x}(\mathcal{F}_x, \mathcal{G}_x).$$

But, contrary to what happened with the operations studied up to now, the homomorphism ρ is not a bijection in general; we will give in §14 a sufficient condition for that.

If $\phi : \mathcal{F}' \to \mathcal{F}$ and $\psi : \mathcal{G} \to \mathcal{G}'$ are homomorphisms, we define in an obvious way a homomorphism

$$\text{Hom}_A(\phi, \psi) : \text{Hom}_A(\mathcal{F}, \mathcal{G}) \to \text{Hom}_A(\mathcal{F}', \mathcal{G}').$$

Every exact sequence $0 \to \mathcal{G} \to \mathcal{G}' \to \mathcal{G}''$ gives rise to an exact sequence:

$$0 \to \text{Hom}_A(\mathcal{F}, \mathcal{G}) \to \text{Hom}_A(\mathcal{F}, \mathcal{G}') \to \text{Hom}_A(\mathcal{F}, \mathcal{G}'').$$

We also have the canonical isomorphisms: $\text{Hom}_A(\mathcal{A}, \mathcal{G}) \approx \mathcal{G}$,

$$\text{Hom}_A(\mathcal{F}, \mathcal{G}_1 + \mathcal{G}_2) \approx \text{Hom}_A(\mathcal{F}, \mathcal{G}_1) + \text{Hom}_A(\mathcal{F}, \mathcal{G}_2)$$

$$\text{Hom}_A(\mathcal{F}_1 + \mathcal{F}_2, \mathcal{G}) \approx \text{Hom}_A(\mathcal{F}_1, \mathcal{G}) + \text{Hom}_A(\mathcal{F}_2, \mathcal{G}).$$
1.2 Coherent sheaves of modules

In this paragraph, \(X\) denotes a topological space and \(\mathcal{A}\) a sheaf of rings on \(X\). We suppose that all the rings \(\mathcal{A}_x, \ x \in X\) are commutative and have a unity element varying continuously with \(x\). All sheaves considered until now are sheaves of \(\mathcal{A}\)-modules and all homomorphisms are \(\mathcal{A}\)-homomorphisms.

1.2.12 Definitions

Let \(\mathcal{F}\) be a sheaf of \(\mathcal{A}\)-modules, and let \(s_1, \ldots, s_p\) be sections of \(\mathcal{F}\) over an open \(U \subset X\). If we assign to any family \(f_1, \ldots, f_p\) of elements of \(\mathcal{A}_x\) the element \(\sum_{j=1}^{p} f_j \cdot s_j(x)\) of \(\mathcal{F}_x\), we obtain a homomorphism \(\phi: \mathcal{A}^p \to \mathcal{F}\), defined over an open subset \(U\) (being precise, \(\phi\) is a homomorphism from \(\mathcal{A}^p(U)\) to \(\mathcal{F}(U)\), with the notations from \(\ref{4}\)). The kernel \(R(s_1, \ldots, s_p)\) of the homomorphism \(\phi\) is a subsheaf of \(\mathcal{A}^p\), called the sheaf of relations between the \(s_i\); the image of \(\phi\) is a subsheaf of \(\mathcal{F}\) generated by \(s_i\). Conversely, any homomorphism \(\phi: \mathcal{A}^p \to \mathcal{F}\) defines the sections \(s_1, \ldots, s_p\) by the formulas

\[
s_1(x) = \phi_x(1,0,\ldots,0), \quad \ldots \quad s_p(x) = \phi_x(0,\ldots,0,1).
\]

Definition 1. A sheaf of \(\mathcal{A}\)-modules \(\mathcal{F}\) is said to be of finite type if it is locally generated by a finite number of its sections.

In another words, for every point \(x \in X\), there exists an open neighbourhood \(U\) of \(x\) and a finite number of sections \(s_1, \ldots, s_p\) of \(\mathcal{F}\) over \(U\) such that every element of \(\mathcal{F}_y, y \in U\) is a linear combination, with coefficients in \(\mathcal{A}_y\), of \(s_i(y)\). According to the preceding statements, it is another way of saying that the restriction of \(\mathcal{F}\) to \(U\) is isomorphic to a quotient sheaf of \(\mathcal{A}^p\).

Proposition 1. Let \(\mathcal{F}\) be a sheaf of finite type. If \(s_1, \ldots, s_p\) are sections of \(\mathcal{F}\), defined over a neighbourhood of a point \(x \in X\) and generating \(\mathcal{F}_x\), then they also generate \(\mathcal{F}_y\) for all \(y\) close enough to \(x\).

Because \(\mathcal{F}\) is of finite type, there is a finite number of sections of \(\mathcal{F}\) in a neighbourhood of \(x\), say \(t_1, \ldots, t_q\), which generate \(\mathcal{F}_y\) for \(y\) close enough to \(x\). Since \(s_i(x)\) generate \(\mathcal{F}_x\), there exist sections \(f_{ij}\) of \(\mathcal{A}\) in a neighbourhood of \(x\) such that \(t_i(x) = \sum_{j=1}^{p} f_{ij}(x) \cdot s_j(x)\); it follows that, for \(y\) close enough to \(x\), we have:

\[
t_i(y) = \sum_{j=1}^{p} f_{ij}(y) \cdot s_j(y),
\]

which implies that \(s_j(y)\) generate \(\mathcal{F}_y\), q.e.d.

Definition 2. A sheaf of \(\mathcal{A}\)-modules \(\mathcal{F}\) is said to be coherent if:

(a) \(\mathcal{F}\) is of finite type,

(b) If \(s_1, \ldots, s_p\) are sections of \(\mathcal{F}\) over an open \(U \subset X\), the sheaf of relations between the \(s_i\) is of finite type (over the open set \(U\)).
We will observe the local character of definitions 1 and 2.

Proposition 2. Locally, every coherent sheaf is isomorphic to the cokernel of a homomorphism \(\phi : \mathcal{A}^q \to \mathcal{A}^p \).

This is an immediate result of the definitions and the remarks preceding definition 1.

Proposition 3. Any subsheaf of finite type of a coherent sheaf is coherent.

In effect, if a sheaf \(\mathcal{F} \) satisfies the condition (b) of definition 2, then any subsheaf of \(\mathcal{F} \) satisfies it also.

1.2.13 Main properties of coherent sheaves

Theorem 1. Let \(0 \rightarrow \mathcal{F} \xrightarrow{\alpha} \mathcal{G} \xrightarrow{\beta} \mathcal{K} \rightarrow 0 \) be an exact sequence of homomorphisms. If two of the sheaves \(\mathcal{F}, \mathcal{G}, \mathcal{K} \) are coherent, so is the third.

Suppose that \(\mathcal{G} \) and \(\mathcal{K} \) are coherent. Locally, there exists a homomorphism \(\gamma : \mathcal{A}^p \to \mathcal{G} \); let \(\mathcal{I} \) be the kernel of \(\beta \circ \gamma \); since \(\mathcal{K} \) is coherent, \(\mathcal{I} \) is a sheaf of finite type (condition (b)); thus \(\gamma(\mathcal{I}) \) is a sheaf of finite type, thus coherent by Proposition 3; since \(\alpha \) is an isomorphism from \(\mathcal{F} \) to \(\gamma(\mathcal{I}) \), it follows that \(\mathcal{F} \) is also coherent.

Suppose that \(\mathcal{F} \) and \(\mathcal{G} \) are coherent. Because \(\mathcal{G} \) is of finite type, \(\mathcal{K} \) is also of finite type, so it remains to prove that \(\mathcal{K} \) satisfies the condition (b) of definition 2. Let \(s_1, \ldots, s_p \) be a finite number of sections of \(\mathcal{K} \) in a neighbourhood of a point \(x \in X \). The question being local, we can assume that there exist sections \(s'_1, \ldots, s'_p \) of \(\mathcal{G} \) such that \(s_i = \beta(s'_i) \). Let \(n_1, \ldots, n_q \) be a finite number of sections of \(\mathcal{F} \) in a neighbourhood of \(x \), generating \(\mathcal{F}_y \) for \(y \) close enough to \(x \). A family \(f_1, \ldots, f_p \) of elements of \(\mathcal{A}_y \) belongs to \(R(s_1, \ldots, s_p)_y \) if and only if one can find \(g_1, \ldots, g_q \in \mathcal{A}_y \) such that

\[
\sum_{i=1}^{i=p} f_i \cdot s'_i = \sum_{j=1}^{j=q} g_j \cdot \alpha(n_j) \quad \text{in } y.
\]

Now the sheaf of relations between the \(s'_i \) and the \(\alpha(n_j) \) is of finite type, because \(\mathcal{G} \) is coherent. The sheaf \(R(s_1, \ldots, s_p) \), the image of the preceding by the canonical projection from \(\mathcal{A}^{p+q} \) to \(\mathcal{A}^p \) is thus of finite type, which shows that \(\mathcal{K} \) is coherent.

Suppose that \(\mathcal{F} \) and \(\mathcal{K} \) are coherent. The question being local, we might assume that \(\mathcal{F} \) (resp. \(\mathcal{K} \)) is generated by a finite number of sections \(n_1, \ldots, n_q \) (resp. \(s_1, \ldots, s_p \)); furthermore we might assume that there exist sections \(s'_i \) of \(\mathcal{G} \) such that \(s_i = \beta(s'_i) \). It is clear that the sections \(s'_i \) and \(\alpha(n_j) \) generate \(\mathcal{G} \), which proves that \(\mathcal{G} \) is a sheaf of finite type. Now let \(t_1, \ldots, t_r \) be a finite number of sections of \(\mathcal{G} \) in a neighbourhood of a point \(x \); since \(\mathcal{K} \) is coherent, there exist
sections \(f^i_j \) or \(A^r \) (\(1 \leq i \leq r, 1 \leq j \leq s \)), defined in the neighbourhood of \(x \), which generate the sheaf of relations between the \(\beta(t_i) \). Put \(u_j = \sum_{i=1}^{r} f^i_j \beta(t_i) \); since \(\sum_{i=1}^{r} f^i_j \beta(t_i) = 0 \), the \(u_j \) are contained in \(\alpha(F) \) and, since \(F \) is coherent, the sheaf of relations between the \(u_j \) is generated, in a neighbourhood of \(x \), by a finite number of sections, say \(g^j_k \) (\(1 \leq j \leq s, 1 \leq k \leq t \)). I say that the \(\sum_{j=1}^{s} g^j_k \cdot f^i_j \) generate the sheaf \(R(t_1, \ldots, t_r) \) in a neighbourhood of \(x \); in effect, if \(\sum_{i=1}^{r} f^i \cdot t_i = 0 \) on \(y \), with \(f^i \in A_y \), we have \(\sum_{i=1}^{r} f^i \cdot \beta(t_i) = 0 \) and there exist \(g^j \in A_y \) with \(f^i = \sum_{j=1}^{s} g^j f^i_j \); noting that \(\sum_{i=1}^{r} f^i \cdot t_i = 0 \), one obtains \(\sum_{j=1}^{s} g^j \cdot u_j = 0 \), thus making the system \(g^j \) a linear combination of the systems \(g^j_k \) and showing our assertion. It follows that \(\mathcal{G} \) satisfies condition (b), which ends the proof.

Corollary. A direct sum of a finite family of coherent sheaves is coherent.

Theorem 2. Let \(\phi \) be a homomorphism from a coherent sheaf \(F \) to a coherent sheaf \(\mathcal{G} \). The kernel, the cokernel and the image of \(\phi \) are also coherent sheaves.

Because \(F \) is coherent, \(\exists(\phi) \) is of finite type, thus coherent by Proposition 3. We apply Theorem 1 to the exact sequences

\[
0 \rightarrow \text{Ker}(\phi) \rightarrow F \rightarrow \text{Im}(\phi) \rightarrow 0
\]

\[
0 \rightarrow \text{Im}(\phi) \rightarrow \mathcal{G} \rightarrow \text{Coker}(\phi) \rightarrow 0
\]

seeing that \(\text{Ker}(\phi) \) and \(\text{Coker}(\phi) \) are also coherent.

Corollary. Let \(F \) and \(\mathcal{G} \) be two coherent subsheaves of a coherent sheaf \(K \). The sheaves \(F + \mathcal{G} \) and \(F \cap \mathcal{G} \) are coherent.

For \(F + \mathcal{G} \), this follows from Proposition 3; and for \(F \cap \mathcal{G} \), this is the kernel of \(F \rightarrow K/\mathcal{G} \).

1.2.14 Operations on coherent sheaves

We have just seen that a direct sum of a finite number coherent sheaves is a coherent sheaf. We will now show analogous results for the functors \(\otimes \) and \(\text{Hom} \).

Proposition 4. If \(F \) and \(\mathcal{G} \) are two coherent sheaves, \(F \otimes_A \mathcal{G} \) is a coherent sheaf.

By Proposition 2, \(F \) is locally isomorphic to the cokernel of a homomorphism \(\phi : A^r \rightarrow A^p \); thus \(F \otimes_A \mathcal{G} \) is locally isomorphic to the cokernel of \(\phi : A^r \otimes_A \mathcal{G} \rightarrow A^p \otimes_A \mathcal{G} \). But \(A^r \otimes_A \mathcal{G} \) and \(A^p \otimes_A \mathcal{G} \) are isomorphic to \(\mathcal{G}^r \) and \(\mathcal{G}^p \) respectively, which are coherent (Corollary of Theorem 1). Thus \(F \otimes_A \mathcal{G} \) is coherent (Theorem 2).

Proposition 5. Let \(F \) and \(\mathcal{G} \) be two sheaves, \(F \) being coherent. For all \(x \in X \), the module \(\text{Hom}_A(F_x, \mathcal{G}_x) \) is isomorphic to \(\text{Hom}_{A_x}(F_x, \mathcal{G}_x) \).
Precisely, we prove that the homomorphism

$$\rho: \text{Hom}_A(F, G)_x \to \text{Hom}_A(F, G)_x,$$

defined in \(n^{11} \), is bijective. First of all, let \(\psi: F \to G \) be a homomorphism defined in a neighbourhood of \(x \), being zero in \(F_x \); since \(F \) is of finite type, we conclude immediately that \(\psi \) is zero in a neighbourhood of \(x \), which proves that \(\rho \) is injective. We will show that \(\rho \) is surjective, or in other words, that if \(\phi \) is a \(A_x \)-homomorphism from \(F_x \) to \(G_x \), there exists a homomorphism \(\psi: F \to G \), defined in a neighbourhood of \(x \) and such that \(\psi_x = \phi \). Let \(m_1, \ldots, m_p \) be a finite number of sections of \(F \) in a neighbourhood of \(x \), generating \(F_y \) for all \(y \) close enough to \(x \), and let \(f_{ij}^1 (1 \leq i \leq p, 1 \leq j \leq q) \) be sections of \(A^p \) generating \(R(m_1, \ldots, m_p) \) in a neighbourhood of \(x \). There exist local sections of \(G \), say \(n_1, \ldots, n_p \), such that \(n_i(x) = \phi(m_i(x)) \). Put \(p_j = \sum_{i=1}^{i=p} f_{ij} \cdot n_i \), \(1 \leq j \leq q \); the \(p_j \) are local sections of \(G \) being zero in \(x \), so in every point of a neighbourhood \(U \) of \(x \). It follows that for \(y \in U \), the formula \(\sum f_i \cdot m_i(y) = 0 \) with \(f_i \in A_y \), implies \(\sum f_i \cdot n_i(y) = 0 \); for any element \(m = \sum f_i \cdot m_i(y) \in F_y \), we thus can put:

$$\psi_y(m) = \sum_{i=1}^{i=p} f_i \cdot n_i(y) \in G_y.$$

The collection of \(\psi_y, y \in U \) constitutes a homomorphism \(\psi: F \to G \), defined over \(U \) and such that \(\psi_x = \phi \), which ends the proof.

Proposition 6. If \(F \) and \(G \) are two coherent sheaves, then \(\text{Hom}_A(F, G) \) is a coherent sheaf.

The question being local, we might assume, by Proposition 2, that we have an exact sequence \(A^q \to A^p \to F \to 0 \). From the preceding Proposition it follows that the sequence:

$$0 \to \text{Hom}_A(F, G) \to \text{Hom}_A(A^p, G) \to \text{Hom}_A(A^q, G)$$

is exact. Now the sheaf \(\text{Hom}_A(A^p, G) \) is isomorphic to \(G^p \), thus is coherent, the same for \(\text{Hom}_A(A^q, G) \). Theorem 2 then shows that \(\text{Hom}_A(F, G) \) is coherent.

1.2.15 Coherent sheaves of rings

A sheaf of rings \(A \) can be regarded as a sheaf of \(A \)-modules; if this sheaf of \(A \)-modules is coherent, we say that \(A \) is a **coherent sheaf of rings**. Since \(A \) is clearly of finite type, this means that \(A \) satisfies condition (b) of Proposition 2. In other words:

Definition 3. A sheaf \(A \) is a coherent sheaf of rings if the sheaf of relations between a finite number of sections of \(A \) over an open subset \(U \) is a sheaf of finite type on \(U \).
Examples. (1) If X is a complex analytic variety, the sheaf of germs of holomorphic functions on X is a coherent sheaf of rings, by a theorem of K. Oka (cf. [3], statement XV, or [5], paragraph 5).

(2) If X is an algebraic variety, the sheaf of local rings of X is a coherent sheaf of rings (cf. n°37, Proposition 1).

When \mathcal{A} is a coherent sheaf of rings, we have the following results:

Proposition 7. For a sheaf of \mathcal{A}-modules, being coherent is equivalent to being locally isomorphic to the cokernel of a homomorphism $\phi : \mathcal{A}^q \to \mathcal{A}^p$.

The necessity part is Proposition 2; the sufficiency follows from the coherence of \mathcal{A}^p and \mathcal{A}^q and from Theorem 2.

Proposition 8. A subsheaf of \mathcal{A} is coherent if and only if it is of finite type.

This is a special case of proposition 3.

Corollary. The sheaf of relations between a finite number of sections of a coherent sheaf is coherent.

In fact, this sheaf is of finite type, from the definition of a coherent sheaf.

Proposition 9. Let \mathcal{F} be a coherent sheaf of \mathcal{A}-modules. For all $x \in X$, let I_x be an ideal of \mathcal{A}_x consisting of those $a \in \mathcal{A}_x$ for which $a \cdot f = 0$ for all $f \in \mathcal{F}_x$. Then the I_x form a coherent sheaf of ideals (called the annihilator of \mathcal{F}).

In fact, I_x is the kernel of the homomorphism $\mathcal{A}_x \to \text{Hom}_{\mathcal{A}_x}(\mathcal{F}_x, \mathcal{G}_x)$; we then apply Propositions 5 and 6 and Theorem 2.

More generally, the carrier $\mathcal{F} : \mathcal{G}$ of a coherent sheaf \mathcal{G} into its coherent subsheaf \mathcal{F} is a coherent sheaf of ideals (being the annihilator of \mathcal{G}/\mathcal{F}).

1.2.16 Change of ring

The notions of a sheaf of finite type, and of a coherent sheaf, are dependent on the fixed sheaf of rings \mathcal{A}. When we will consider multiple sheaves of rings, we will say "of finite type over \mathcal{A}", "\mathcal{A}-coherent" to point out that we mean sheaves of \mathcal{A}-modules.

Theorem 3. Let \mathcal{A} be a coherent sheaf of rings, \mathcal{I} a coherent sheaf of ideals of \mathcal{A}. Let \mathcal{F} be a sheaf of \mathcal{A}/\mathcal{I}-modules. Then \mathcal{F} is \mathcal{A}/\mathcal{I}-coherent if and only if it is \mathcal{A}-coherent. In particular, \mathcal{A}/\mathcal{I} is a coherent sheaf of rings.

It is clear that "of finite type over \mathcal{A}" is the same as "of finite type over \mathcal{A}/\mathcal{I}". For the other part, if \mathcal{F} is \mathcal{A}-coherent, and if s_1, \ldots, s_p are sections of \mathcal{F} over an open U, the sheaf of relations between the s_i with coefficients in \mathcal{A}, is of finite type over \mathcal{A}. It follows immediately that the sheaf of relations between the s_i with coefficients in \mathcal{A}/\mathcal{I}, is of finite type over \mathcal{A}/\mathcal{I}, since it is the image of the preceding by the canonical mapping $\mathcal{A}^p \to (\mathcal{A}/\mathcal{I})^p$. Thus \mathcal{F} is \mathcal{A}/\mathcal{I}-coherent.
In particular, since A/I is A-coherent, it is also A/I-coherent, in other words, A/I is a coherent sheaf of rings. Conversely, if F is A/I-coherent, it is locally isomorphic to the cokernel of a homomorphism $\phi: (A/I)^q \to (A/I)^p$ and since A/I is A-coherent, F is coherent by Theorem 2.

1.2.17 Extension and restriction of a coherent sheaf

Let Y be a closed subspace of a space X. If G is a sheaf over Y, we denote by G^X the sheaf obtained by extending G by 0 outside Y; it is a sheaf over X (cf. n°5). If A is a sheaf of rings over Y, A^X is a sheaf of rings over X, and if F is a sheaf of A-modules, then F^X is a sheaf of A^X-modules.

Proposition 10. F is of finite type over A if and only if F^X is of finite type over A^X.

Let U be an open subset of X, and let $V = U \cap Y$. Any homomorphism $\phi: A^p \to F$ over V defines a homomorphism $\phi^X: (A^X)^p \to F^X$ over U, and conversely; so ϕ is surjective if and only if ϕ^X is. The proposition follows immediately from this.

We therefore show:

Proposition 11. F is A-coherent if and only if F^X is A^X-coherent.

Hence, by putting $F = A$:

Corollary. A is a coherent sheaf of rings if and only if A^X is a coherent sheaf of rings.
1.3 Cohomology of a space with values in a sheaf

In this paragraph, \(X \) is a topological space, separated or not. By a covering of \(X \) we will always mean an open covering.

1.3.18 Cochains of a covering

Let \(\mathcal{U} = \{ U_i \}_{i \in I} \) be a covering of \(X \). If \(s = (i_0, \ldots, i_p) \) is a finite sequence of elements of \(I \), we put

\[
U_s = U_{i_0} \cap \ldots \cap U_{i_p}.
\]

Let \(\mathcal{F} \) be a sheaf of abelian groups on the space \(X \). If \(p \) is an integer \(\geq 0 \), we call a \(p \)-cochain of \(U \) with values in \(\mathcal{F} \) a function \(f \) assigning to every \(s = (i_0, \ldots, i_p) \) of \(p + 1 \) elements of \(I \) a section \(f_s = f_{i_0 \ldots i_p} \) of \(\mathcal{F} \) over \(U_{i_0 \ldots i_p} \). The \(p \)-cochains form an abelian group, denoted by \(C_p(\mathcal{U}, \mathcal{F}) \); it is the product group \(\prod \Gamma(U_s, \mathcal{F}) \), the product being over all sequences \(s \) of \(p + 1 \) elements of \(I \). The family of \(C_p(\mathcal{U}, \mathcal{F}) \), \(p = 0, 1, \ldots \) is denoted by \(C(\mathcal{U}, \mathcal{F}) \). A \(p \)-cochain is also called a cochain of degree \(p \).

A \(p \)-cochain is said to be alternating if:

(a) \(f_{i_0 \ldots i_p} = 0 \) whenever any two of the indices \(i_0, \ldots, i_p \) are equal,
(b) \(f_{i_0 \ldots i_p} = \varepsilon_{\sigma} f_{i_{\sigma(0)} \ldots i_{\sigma(p)}} \) if \(\sigma \) is a permutation of the set \(\{0, \ldots, p\} \) (\(\varepsilon_{\sigma} \) denotes the sign of \(\sigma \)).

The alternating cochains form a subgroup \(C'_p(\mathcal{U}, \mathcal{F}) \) of the group \(C_p(\mathcal{U}, \mathcal{F}) \); the family of the \(C'_p(\mathcal{U}, \mathcal{F}) \) is denoted by \(C'(\mathcal{U}, \mathcal{F}) \).

1.3.19 Simplicial operations

Let \(S(I) \) be the simplex with the set \(I \) as its set of vertices; an (ordered) simplex of \(S(I) \) is a sequence \(s = (i_0, \ldots, i_p) \) of elements of \(I \); \(p \) is called the dimension of \(s \). Let \(K(I) = \bigoplus_{p=0}^{\infty} K_p(I) \) be the complex defined by \(S(I) \); by definition, \(K_p(I) \) is a free group with the set of simplexes of dimension \(p \) of \(S(I) \) as its base.

If \(s \) is a simplex of \(S(I) \), we denote by \(|s| \) the set of vertices of \(s \).

A mapping \(h : K_p(I) \to K_q(I) \) is called a simplicial endomorphism if

(i) \(h \) is a homomorphism,
(ii) For any simplex \(s \) of dimension \(p \) of \(S(I) \) we have

\[
h(s) = \sum_{s'} c_s^{s'} \cdot s', \quad \text{with } c_s^{s'} \in \mathbb{Z},
\]

the sum being over all simplexes \(s' \) of dimension \(q \) such that \(|s'| \subset |s| \).
1.3. Cohomology with values in a sheaf

Let h be a simplicial endomorphism, and let $f \in C^q(\mathcal{U}, \mathcal{F})$ be a cochain of degree q. For any simplex s of dimension p put:

$$(^t h f)_s = \sum_{s'} c_s^{s'} \cdot \rho^{s'}(f_{s'})$$

$\rho^{s'}$ denoting the restriction homomorphism: $\Gamma(U_{s'}, \mathcal{F}) \to \Gamma(U_s, \mathcal{F})$, which makes sense because $|s'| \subset |s|$. The mapping $s \mapsto (^t h f)_s$ is a p-cochain, denoted by $^t h f$. The mapping $f \mapsto ^t h f$ is a homomorphism $^t h : C^q(\mathcal{U}, \mathcal{F}) \to C^p(\mathcal{U}, \mathcal{F})$, and one verifies immediately the formulas:

$$^t(h_1 + h_2) = ^t h_1 + ^t h_2, \quad ^t(h_1 \circ h_2) = ^t h_2 \circ ^t h_1, \quad ^t 1 = 1.$$

Note. In practice, we often do not write the restriction homomorphism $\rho^{s'}$.

1.3.20 Complexes of cochains

We apply the above to the simplicial endomorphism

$$\partial : K_{p+1}(I) \to K_p(I),$$

defined by the usual formula:

$$\partial(i_0, \ldots, i_{p+1}) = \sum_{j=0}^{j=p+1} (-1)^j (i_0, \ldots, \hat{i}_j, \ldots, i_{p+1}),$$

the sign $\hat{\cdot}$ means, as always, that the symbol below it should be omitted.

We thus obtain a homomorphism $^t \partial : C^p(\mathcal{U}, \mathcal{F}) \to C^{p+1}(\mathcal{U}, \mathcal{F})$, which we denote by d; from definition, we have that

$$(df)_{i_0 \ldots i_{p+1}} = \sum_{j=0}^{j=p+1} (-1)^j \rho_j(f_{i_0 \ldots \hat{i}_j \ldots i_{p+1}}),$$

where ρ_j denotes the restriction homomorphism

$$\rho_j : \Gamma(U_{i_0 \ldots \hat{i}_j \ldots i_{p+1}}, \mathcal{F}) \to \Gamma(U_{i_0 \ldots i_{p+1}}, \mathcal{F}).$$

Since $\partial \circ \partial = 0$, we have $d \circ d = 0$. Thus we find that $C(\mathcal{U}, \mathcal{F})$ is equipped with a coboundary operator making it a complex. The q-th cohomology group of the complex $C(\mathcal{U}, \mathcal{F})$ will be denoted by $H^q(\mathcal{U}, \mathcal{F})$. We have:

Proposition 1. $H^0(\mathcal{U}, \mathcal{F}) = \Gamma(X, \mathcal{F})$.

23
A 0-cochain is a system \((f_i)_{i \in I}\) with every \(f_i\) being a section of \(\mathcal{F}\) over \(U_i\). It is a cocycle if and only if it satisfies \(f_i - f_j = 0\) over \(U_i \cap U_j\), or in other words, if there is a section \(f\) of \(\mathcal{F}\) on \(X\) coinciding with \(f_i\) on \(U_i\) for all \(i \in I\). Hence the Proposition.

(Thus \(H^0(\mathcal{U}, \mathcal{F})\) is independent of \(\mathcal{U}\); of course this is not true for \(H^q(\mathcal{U}, \mathcal{F})\) in general).

We see immediately that \(df\) is alternating if \(f\) is alternating; in other words, \(d\) preserves \(C^0(\mathcal{U}, \mathcal{F})\) which forms a subcomplex of \(C(\mathcal{U}, \mathcal{F})\). The cohomology groups of \(C^0(\mathcal{U}, \mathcal{F})\) are denoted by \(H^q(\mathcal{U}, \mathcal{F})\).

Proposition 2. The inclusion of \(C^0(\mathcal{U}, \mathcal{F})\) in \(C(\mathcal{U}, \mathcal{F})\) induces an isomorphism of \(H^q(\mathcal{U}, \mathcal{F})\) and \(H^q(\mathcal{U}, \mathcal{F})\), for every \(q \geq 0\).

We equip the set \(I\) with a structure of a total order, and let \(h\) be a simplicial endomorphism of \(K(I)\) defined in the following way:

\[h((i_0, \ldots, i_q)) = 0 \] if any two indices \(i_0, \ldots, i_q\) are equal,

\[h((i_0, \ldots, i_q)) = \varepsilon_\sigma(i_{\sigma 0} \ldots i_{\sigma q}) \] if all indices \(i_{0}, \ldots, i_{q}\) are distinct and \(\sigma\) is a permutation of \(\{0, \ldots, q\}\) for which \(i_{\sigma 0} < i_{\sigma 1} < \ldots < i_{\sigma q}\).

We verify right away that \(h\) commutes with \(\partial\) and that \(h(s) = s\) if \(\dim(s) = 0\); in result (cf. [7], Chapter VI, paragraph 5) there exists a simplicial endomorphism \(k\), raising the dimension by one, such that \(1 - h = \partial \circ k + k \circ \partial\). Hence, by passing to \(C(\mathcal{U}, \mathcal{F})\),

\[1 - \tau = \tau \circ \partial = \partial \circ \tau \]

But we check immediately that \(\tau\) is a *projection* from \(C(\mathcal{U}, \mathcal{F})\) onto \(C^0(\mathcal{U}, \mathcal{F})\); since the preceding formula shows that it is a homotopy operator, the Proposition is proved. (Compare with [7], Chapter VI, theorem 6.10).

Corollary. \(H^q(\mathcal{U}, \mathcal{F}) = 0\) for \(q > \dim(\mathcal{U})\).

By the definition of \(\dim(\mathcal{U})\), we have \(U_{i_0 \ldots i_q} = \emptyset\) for \(q > \dim(\mathcal{U})\), if the indices \(i_0, \ldots, i_q\) are distinct; hence \(C^{eq}(\mathcal{U}, \mathcal{F}) = 0\), which shows that

\[H^q(\mathcal{U}, \mathcal{F}) = H^{eq}(\mathcal{U}, \mathcal{F}) = 0. \]

1.3.21 Passing to a finer covering

A covering \(\mathcal{U} = \{U_i\}_{i \in I}\) is said to be *finer* than the covering \(\mathcal{B} = \{V_j\}_{j \in J}\) if there exists a mapping \(\tau : I \to J\) such that \(U_i \subset V_{\tau i}\) for all \(i \in I\). If \(f \in C^q(\mathcal{B}, \mathcal{F})\), put

\[(\tau f)_{i_0 \ldots i_q} = \rho_U^V(f_{\tau i_0 \ldots \tau i_q}), \]

\(\rho_U^V\) denoting the restriction homomorphism defined by the inclusion of \(U_{i_0 \ldots i_q}\) in \(V_{\tau i_0 \ldots \tau i_q}\). The mapping \(f \mapsto \tau f\) is a homomorphism from \(C^q(\mathcal{B}, \mathcal{F})\) to \(C^q(\mathcal{U}, \mathcal{F})\), defined for all \(q \geq 0\) and commuting with \(d\), thus it defines homomorphisms

\[\tau^* : H^q(\mathcal{B}, \mathcal{F}) \to H^q(\mathcal{U}, \mathcal{F}). \]
1.3. Cohomology with values in a sheaf

Proposition 3. The homomorphisms $\tau^* : H^q(\mathcal{B}, \mathcal{F}) \to H^q(\mathcal{U}, \mathcal{F})$ depend only on \mathcal{U} and \mathcal{B} and not on the chosen mapping τ.

Let τ and τ' be two mappings from I to J such that $U_i \subset V_{\tau i}$ and $U_i \subset V_{\tau' i}$; we have to show that $\tau^* = \tau'^*$.

Let $f \in C^q(\mathcal{B}, \mathcal{F})$; set

$$(kf)_{i_0 \ldots i_{q-1}} = \sum_{h=0}^{h=q-1} (-1)^h \rho_h(f_{\tau i_0 \ldots \tau i_h \ldots \tau' i_{q-1}}),$$

where ρ_n denotes the restriction homomorphism defined by the inclusion of $U_{i_0 \ldots i_{q-1}}$ in $V_{\tau i_0 \ldots \tau i_h \ldots \tau' i_{q-1}}$.

We verify by direct computation (cf. [7], Chapter VI, paragraph 3) that we have

$$dkf + kdf = \tau'f - \tau f,$$

which ends the proof of the Proposition.

Thus, if \mathcal{U} is finer than \mathcal{B}, there exists for every integer $q \geq 0$ a canonical homomorphism from $H^q(\mathcal{B}, \mathcal{F})$ to $H^q(\mathcal{U}, \mathcal{F})$. From now on, this homomorphism will be denoted by $\sigma(\mathcal{U}, \mathcal{B})$.

1.3.22 Cohomology groups of X with values in a sheaf \mathcal{F}

The relation "\mathcal{U} is finer than \mathcal{B}" (which we denote henceforth by $\mathcal{U} \prec \mathcal{B}$) is a relation of a preorder4 between coverings of X; moreover, this relation is filtered3, since if $\mathcal{U} = \{U_i\}_{i \in I}$ and $\mathcal{B} = \{V_j\}_{j \in J}$ are two coverings, $\mathcal{W} = \{U_i \cap V_j\}_{(i,j) \in I \times J}$ is a covering finer than \mathcal{U} and than \mathcal{B}.

We say that two coverings \mathcal{U} and \mathcal{B} are equivalent if we have $\mathcal{U} \prec \mathcal{B}$ and $\mathcal{B} \prec \mathcal{U}$. Any covering \mathcal{U} is equivalent to a covering \mathcal{U}' whose set of indices is a subset of $\mathcal{P}(X)$; in fact, we can take for \mathcal{U}' the set of open subsets of X belonging to the family \mathcal{U}. We can thus speak of the set of classes of coverings with respect to this equivalence relation; this is an ordered filtered set.5

If $\mathcal{U} \prec \mathcal{B}$, we have defined at the end of the preceding $n^o a well defined homomorphism $\sigma(\mathcal{U}, \mathcal{B}) : H^q(\mathcal{B}, \mathcal{F}) \to H^q(\mathcal{U}, \mathcal{F})$, defined for every integer $q \geq 0$ and every sheaf \mathcal{F} on X. It is clear that $\sigma(\mathcal{U}, \mathcal{U})$ is the identity and that $\sigma(\mathcal{U}, \mathcal{B}) \circ \sigma(\mathcal{B}, \mathcal{U}) = \sigma(\mathcal{U}, \mathcal{U})$ if $\mathcal{U} \prec \mathcal{B} \prec \mathcal{U}$. It follows that, if \mathcal{U} is equivalent to \mathcal{B}, then $\sigma(\mathcal{U}, \mathcal{B})$ and $\sigma(\mathcal{B}, \mathcal{U})$ are inverse isomorphisms; in other words, $H^q(\mathcal{F}, \mathcal{U})$ depends only on the class of the covering \mathcal{U}.

Definition. We call the q-th cohomology group of X with values in a sheaf \mathcal{F}, and denote by $H^q(X, \mathcal{F})$, the inductive limit of groups $H^q(\mathcal{U}, \mathcal{F})$, where \mathcal{U}

3 i.e. quasorder

4 i.e. directed

5 To the contrary, we cannot speak about the "set" of coverings, because a covering is a family whose set of indices is arbitrary.

25
runs over the filtered ordering of classes of coverings of \(X \), with respect to the homomorphisms \(\sigma(\mathfrak{U}, \mathfrak{B}) \).

In other words, an element of \(H^q(X, \mathcal{F}) \) is just a pair \((\mathfrak{U}, x)\) with \(x \in H^q(\mathfrak{U}, \mathcal{F}) \), and we identify two such pairs \((\mathfrak{U}, x)\) and \((\mathfrak{B}, y)\) whenever there exists a \(\mathfrak{W} \) with \(\mathfrak{W} \prec \mathfrak{U}, \mathfrak{W} \prec \mathfrak{B} \) and \(\sigma(\mathfrak{W}, \mathfrak{U})(x) = \sigma(\mathfrak{W}, \mathfrak{B})(y) \) in \(H^q(\mathfrak{W}, \mathcal{F}) \). Any covering \(\mathfrak{U} \) in \(X \) is thus associated a canonical homomorphism \(\sigma(\mathfrak{U}) : H^q(\mathfrak{U}, \mathcal{F}) \to H^q(X, \mathcal{F}) \).

We will see that \(H^q(X, \mathcal{F}) \) can also be defined by an inductive limit of \(H^q(\mathfrak{U}, \mathcal{F}) \) where \(\mathfrak{U} \) runs over a cofinal family of coverings. Thus, if \(X \) is quasi-compact (resp. quasi-paracompact), we can consider only finite (resp. locally finite) coverings.

When \(q = 0 \), by Proposition 1 we have:

Proposition 4. \(H^0(X, \mathcal{F}) = \Gamma(X, \mathcal{F}) \).

1.3.23 Homomorphisms of sheaves

Let \(\phi \) be a homomorphism from a sheaf \(\mathcal{F} \) to a sheaf \(\mathcal{G} \). If \(\mathfrak{U} \) is a covering of \(X \), we can assign to any \(f \in C^q(\mathfrak{U}, \mathcal{F}) \) an element \(\phi f \in C^q(\mathfrak{U}, \mathcal{G}) \) defined by the formula \((\phi f)_s = \phi(f_s) \). The mapping \(f \mapsto \phi f \) is a homomorphism from \(C(\mathfrak{U}, \mathcal{F}) \) to \(C(\mathfrak{U}, \mathcal{G}) \) commuting with the coboundary, thus it defines homomorphisms \(\phi^* : H^q(\mathfrak{U}, \mathcal{F}) \to H^q(\mathfrak{U}, \mathcal{G}) \). We have \(\phi^* \circ \sigma(\mathfrak{U}, \mathfrak{B}) = \sigma(\mathfrak{U}, \mathfrak{B}) \circ \psi^* \), hence, by passing to the limit, the homomorphisms

\[\phi^* : H^q(X, \mathcal{F}) \to H^q(X, \mathcal{G}) \]

When \(q = 0 \), \(\phi^* \) coincides with the homomorphism from \(\Gamma(X, \mathcal{F}) \) to \(\Gamma(X, \mathcal{G}) \) induced in the natural way by \(\phi \).

In general, the homomorphisms \(\phi^* \) satisfy usual formal properties:

\[(\phi + \psi)^* = \phi^* + \psi^*, \quad (\phi \circ \psi)^*, \quad 1^* = 1. \]

In other words, for all \(q \geq 0 \), \(H^q(X, \mathcal{F}) \) is a covariant additive functor of \(\mathcal{F} \). Hence we gather that if \(\mathcal{F} \) is the direct sum of two sheaves \(\mathcal{G}_1 \) and \(\mathcal{G}_2 \), then \(H^q(X, \mathcal{F}) \) is the direct sum of \(H^q(X, \mathcal{G}_1) \) and \(H^q(X, \mathcal{G}_2) \).

Suppose that \(\mathcal{F} \) is a sheaf of \(\mathcal{A} \)-modules. Any section of \(\mathcal{A} \) on \(X \) defines an endomorphism of \(\mathcal{F} \), therefore of \(H^q(X, \mathcal{F}) \). It follows that \(H^q(X, \mathcal{F}) \) are modules over the ring \(\Gamma(X, \mathcal{A}) \).
1.3.24 Exact sequence of sheaves: the general case

Let $0 \to \mathcal{A} \xrightarrow{\alpha} \mathcal{B} \xrightarrow{\beta} \mathcal{C} \to 0$ be an exact sequence of sheaves. If \mathcal{U} is a covering of X, the sequence

$$0 \to C(\mathcal{U}, \mathcal{A}) \xrightarrow{\alpha} C(\mathcal{U}, \mathcal{B}) \xrightarrow{\beta} C(\mathcal{U}, \mathcal{C})$$

is obviously exact, but the homomorphism β need not be exact in general. Denote by $C_0(\mathcal{U}, \mathcal{C})$ the image of this homomorphism; it is a subcomplex of $C(\mathcal{U}, \mathcal{C})$ whose cohomology groups will be denoted by $H^q(\mathcal{U}, \mathcal{C})$. The exact sequence of complexes:

$$0 \to C(\mathcal{U}, \mathcal{A}) \to C(\mathcal{U}, \mathcal{B}) \to C(\mathcal{U}, \mathcal{C}) \to 0$$

giving rise to an exact sequence of cohomology:

$$\ldots \to H^q(\mathcal{U}, \mathcal{B}) \to H^q(\mathcal{U}, \mathcal{C}) \xrightarrow{d} H^{q+1}(\mathcal{U}, \mathcal{A}) \to H^{q+1}(\mathcal{U}, \mathcal{B}) \to \ldots,$$

where the coboundary operator d is defined as usual.

Now let $\mathcal{U} = \{U_i\}_{i \in I}$ and $\mathcal{B} = \{V_j\}_{j \in J}$ be two coverings and let $\tau : I \to J$ such that $U_i \subset V_{\tau(i)}$; we thus have $\mathcal{U} \prec \mathcal{B}$. The commutative diagram:

$$\text{DIAGRAM 1}$$

shows that τ maps $C_0(\mathcal{B}, \mathcal{C})$ into $C_0(\mathcal{U}, \mathcal{C})$, thus defining the homomorphisms $\tau^* : H^q(\mathcal{B}, \mathcal{C}) \to H^q(\mathcal{U}, \mathcal{C})$. Moreover, the homomorphisms τ^* are independent of the choice of the mapping τ: this follows from the fact that, if $f \in C_1^0(\mathcal{B}, \mathcal{C})$, we have $kf \in C_1^0(\mathcal{U}, \mathcal{C})$, with the notations of the proof of Proposition 3. We have thus obtained canonical homomorphisms $\sigma(\mathcal{U}, \mathcal{B}) : H^q_0(\mathcal{B}, \mathcal{C}) \to H^q(\mathcal{U}, \mathcal{C})$; we might then define $H^q_0(X, \mathcal{C})$ as the inductive limit of the groups $H^q_0(\mathcal{U}, \mathcal{C})$.

Because an inductive limit of exact sequences is an exact sequence (cf. [7], Chapter VIII, theorem 5.4), we obtain:

Proposition 5. The sequence

$$\ldots \to H^q(X, \mathcal{B}) \xrightarrow{\beta^*} H^q_0(X, \mathcal{C}) \xrightarrow{d} H^{q+1}(X, \mathcal{A}) \xrightarrow{\alpha^*} H^{q+1}(X, \mathcal{B}) \to \ldots$$

is exact.

(d denotes the homomorphism obtained by passing to the limit with the homomorphisms $d : H^q_0(\mathcal{U}, \mathcal{C}) \to H^{q+1}(\mathcal{U}, \mathcal{A})$).

To apply the preceding Proposition, it is convenient to compare the groups $H^q_0(X, \mathcal{C})$ and $H^q(X, \mathcal{C})$. The inclusion of $C_0(\mathcal{U}, \mathcal{C})$ in $C(\mathcal{U}, \mathcal{C})$ defines the homomorphisms $H^q_0(\mathcal{U}, \mathcal{C}) \to H^q(\mathcal{U}, \mathcal{C})$, hence, by passing to the limit with \mathcal{U}, the homomorphisms:

$$H^q_0(X, \mathcal{C}) \to H^q(X, \mathcal{C}).$$

Proposition 6. The canonical homomorphism $H^q_0(X, \mathcal{C}) \to H^q(X, \mathcal{C})$ is bijective for $q = 0$ and injective for $q = 1$.

27
1.3 Cohomology with values in a sheaf

We will prove the following lemma:

Lemma 1. Let $\mathcal{B} = \{V_j\}_{j \in J}$ be a covering and let $f = (f_j)$ be an element of $C^0(\mathcal{B}, \mathcal{C})$. There exists a covering $U = \{U_i\}_{i \in I}$ and a mapping $\tau : I \to J$ such that $U_i \subseteq V_{\tau(i)}$ and $\tau f \in C^0_0(\mathcal{U}, \mathcal{C})$.

For any $x \in X$, take a $\tau x \in J$ such that $x \in V_{\tau x}$. Since $f_{\tau x}$ is a section of \mathcal{C} over $V_{\tau x}$, there exists an open neighbourhood U_x of x, contained in $V_{\tau x}$ and a section b_x of \mathcal{B} over U_x such that $\beta(b_x) = f_{\tau x}$ on U_x. The $\{U_x\}_{x \in X}$ form a covering \mathcal{U} of X, and the b_x form a 0-chain b of \mathcal{U} with values in \mathcal{B}; since $\tau f = \beta(b)$, we have that $\tau f \in C^0_0(\mathcal{U}, \mathcal{C})$.

We will now show that $H^0_I(X, \mathcal{C}) \to H^1(X, \mathcal{C})$ is injective. An element of the kernel of this mapping may be represented by a 1-cocycle $z = (z_{j_0j_1}) \in C^0_0(\mathcal{B}, \mathcal{C})$ such that there exists an $f = (f_j) \in C^0(\mathcal{B}, \mathcal{C})$ with $df = z$; applying Lemma 1 to f yields a covering \mathcal{U} such that $\tau f \in C^0_0(\mathcal{U}, \mathcal{C})$, which shows that τz is cohomological to 0 in $C_0(\mathcal{U}, \mathcal{C})$, thus its image in $H^0_I(X, \mathcal{C})$ is 0. This shows that $H^0_I(X, \mathcal{C}) \to H^0(X, \mathcal{C})$ is bijective.

Corollary 1. We have an exact sequence:

$$0 \to H^0(X, \mathcal{A}) \to H^0(X, \mathcal{B}) \to H^0(X, \mathcal{C}) \to H^1(X, \mathcal{A}) \to H^1(X, \mathcal{B}) \to H^1(X, \mathcal{C}).$$

This is an immediate consequence of Propositions 5 and 6.

Corollary 2. If $H^1(X, \mathcal{A}) = 0$, then $\Gamma(X, \mathcal{B}) \to \Gamma(X, \mathcal{C})$ is surjective.

1.3.25 Exact sequence of sheaves: the case of X paracompact

Recall that a space X is said to be paracompact if it is separated and if any covering of X admits a locally finite finer covering. On paracompact spaces, we can extend Proposition 6 for all values of q (I do not know whether that extension is possible for nonseparated spaces):

Proposition 7. If X is paracompact, the canonical homomorphism

$$H^q_0(X, \mathcal{C}) \to H^q(X, \mathcal{C})$$

is bijective for all $q \geq 0$.

This Proposition is an immediate consequence of the following lemma, analogous to Lemma 1:

Lemma 2. Let $\mathcal{B} = \{V_j\}_{j \in J}$ be a covering, and let $f = (f_j)$ be an element of $C^0(\mathcal{B}, \mathcal{C})$. There exists a covering $U = \{U_i\}_{i \in I}$ and a mapping $\tau : I \to J$ such that $U_i \subseteq V_{\tau(i)}$ and $\tau f \in C^0_0(\mathcal{U}, \mathcal{C})$.

Since X is paracompact, we might assume that \mathcal{B} is locally finite. Then there exists a covering $\{W_j\}_{j \in J}$ such that $W_j \subseteq V_j$. For every $x \in X$, choose
1.3. Cohomology with values in a sheaf

SHEAVES

an open neighbourhood U_x of x such that
(a) If $x \in V_j$ (resp. $x \in W_j$), then $U_x \subset V_j$ (resp. $U_x \subset W_j$),
(b) If $U_x \cap W_j \neq \emptyset$, then $U_x \subset W_j$,
(c) If $x \in V_{j_0 \ldots j_q}$, there exists a section b of \mathcal{B} over U_x such that $\beta(b) = f_{j_0 \ldots j_q}$ over U_x.

The condition (c) can be satisfied due to the definition of the quotient sheaf and to the fact that x belongs to a finite number of sets $V_{j_0 \ldots j_q}$. Having (c) satisfied, it suffices to

The family $\{U_x\}_{x \in X}$ forms a covering \mathcal{U}; for any $x \in X$, choose $\tau x \in J$ such that $x \in W_{\tau x}$. We now check that τf belongs to $C^0(\mathcal{U}, \mathcal{C})$, in other words, that $f_{\tau x_0 \ldots \tau x_q}$ is the image by β of a section of \mathcal{B} over $U_{x_0} \cap \ldots \cap U_{x_q}$. If $U_{x_0} \cap \ldots \cap U_{x_q}$ is empty, this is obvious; if not, we have $U_{x_0} \cap U_{x_k} \neq \emptyset$ for $0 \leq k \leq q$, and since $U_{x_0} \subset U_{\tau x_k}$, we have $U_{x_0} \cap U_{\tau x_k} \neq \emptyset$, which implies by (b) that $U_{x_0} \subset V_{\tau x_k}$; hence $x_0 \in V_{\tau x_0 \ldots \tau x_q}$; we then apply (c), seeing that there exists a section b of \mathcal{B} over U_{x_0} such that $\beta(b)_{x_0} = f_{\tau x_0 \ldots \tau x_q}$ on U_{x_0}, so also on $U_{x_0} \cap \ldots \cap U_{x_q}$, which ends the proof.

Corollary. If X is paracompact, we have an exact sequence:

$$
\ldots \to H^q(X, \mathcal{B}) \xrightarrow{\beta^*} H^q(X, \mathcal{C}) \xrightarrow{d} H^{q+1}(X, \mathcal{A}) \xrightarrow{\alpha^*} H^{q+1}(X, \mathcal{B}) \to \ldots
$$

(the map d being defined as the composition of the inverse of the isomorphism $H^q(\mathcal{C}) \to H^q(X, \mathcal{C})$ with $d : H^q(\mathcal{C}) \to H^{q+1}(X, \mathcal{A})$).

The exact sequence mentioned above is called the exact sequence of cohomology defined by a given exact sequence of sheaves $0 \to \mathcal{A} \to \mathcal{B} \to \mathcal{C} \to 0$. More generally, it exists whenever we can show that $H^0(\mathcal{C}) \to H^0(\mathcal{X})$ is bijective (we will see in \S47 that this is the case when X is an algebraic variety and when \mathcal{A} is an algebraic coherent sheaf).

1.3.26 Cohomology of a closed subspace

Let \mathcal{F} be a sheaf over a space X, and let Y be a subspace of Y. Let $\mathcal{F}(Y)$ be the sheaf induced by \mathcal{F} on Y, in the sense of \S4. If $\mathcal{U} = \{U_i\}_{i \in I}$ is a covering of X, the sets $U'_i = Y \cap U_i$ form a covering \mathcal{U}' of Y; if $f_{i_0 \ldots i_q}$ is a section of \mathcal{F} over $U_{i_0 \ldots i_q}$, the restriction of $f_{i_0 \ldots i_q}$ to $U'_{i_0 \ldots i_q} = Y \cap U_{i_0 \ldots i_q}$ is a section of $\mathcal{F}(Y)$. The operation of restriction is a homomorphism $\rho : C(\mathcal{U}, \mathcal{F}) \to C(\mathcal{U}', \mathcal{F}(Y))$, commuting with d, thus defining $\rho^* : H^q(\mathcal{U}, \mathcal{F}) \to H^q(\mathcal{U}', \mathcal{F}(Y))$. If $\mathcal{U} \prec \mathcal{B}$, we have $\mathcal{U}' \prec \mathcal{B}'$, and $\rho^* \circ \sigma(\mathcal{U}, \mathcal{B}) = \sigma(\mathcal{U}', \mathcal{B}') \circ \rho^*$; thus the homomorphisms ρ^* define, by passing to the limit with \mathcal{U}, homomorphisms $\rho^* : H^q(\mathcal{X}, \mathcal{F}) \to H^q(Y, \mathcal{F}(Y))$.

Proposition 8. Assume that Y is closed in X and that \mathcal{F} is zero outside Y. Then $\rho^* : H^q(X, \mathcal{F}) \to H^q(Y, \mathcal{F}(Y))$ is bijective for all $q \geq 0$.

29
The Proposition is implied by the following facts:
(a) Any covering $\mathcal{W} = \{W_i\}_{i \in I}$ of Y is of the form \mathcal{U}' for some covering \mathcal{U} of X. In effect, it suffices to put $U_i = W_i \cup (X - Y)$, since Y is closed in X.
(b) For any covering \mathcal{U} of X, $\rho : C(\mathcal{U}, \mathcal{F}) \to C(\mathcal{U}', \mathcal{F}(Y))$ is bijective. In effect, the result follows from Proposition 5 of π^5, applied to $U_{i_0 \ldots i_q}$ and the sheaf \mathcal{F}.

We can also express Proposition 8 in the following manner: If \mathcal{G} is a sheaf on Y, and if \mathcal{G}^X is the sheaf obtained by extending \mathcal{G} by 0 outside Y, we have $H^q(Y, \mathcal{G}) = H^q(X, \mathcal{G}^X)$ for all $q \geq 0$; in other words, the identification of \mathcal{G} with \mathcal{G}^X is compatible with passing to cohomology groups.
1.4 Comparison of cohomology groups of different coverings

In this paragraph, X denotes a topological space and \mathcal{F} is a sheaf on X. We pose conditions on a covering \mathcal{U} of X, under which we have $H^n(\mathcal{U}, \mathcal{F}) = H^n(X, \mathcal{F})$ for all $n \geq 0$.

1.4.27 Double complexes

A double complex (cf. [6], Chapter VI, paragraph 4) is a bigraded abelian group

$$K = \bigoplus_{p,q} K^{p,q}, \quad p \geq 0, q \geq 0,$$

equipped with two endomorphisms d' and d'' satisfying the following properties:
- d' maps $K^{p,q}$ to $K^{p+1,q}$ and d'' maps $K^{p,q}$ to $K^{p,q+1}$,
- $d' \circ d'' = 0, d'' \circ d' + d' \circ d'' = 0, d' \circ d'' = 0$.

An element of $K^{p,q}$ is said to be bihomogenous of bidegree (p,q), and of total degree $p + q$. The endomorphism $d = d' + d''$ satisfies $d \circ d = 0$, and the cohomology groups of K with respect to this coboundary operator are denoted by $H^n(K)$, where n means the total degree.

We can treat d' as a coboundary operator on K; since d' is compatible with the bigrading of K, we also obtain cohomology groups, denoted by $H^p_{I}(K)$; for d'', we have the groups $H^q_{II}(K)$.

We denote by K^q_{II} the subgroup of $K^{0,q}$ consisting of elements x such that $d'(x) = 0$, and by K_{II} the direct sum of K^q_{II} $(q = 0, 1, \ldots)$. We have an analogous definition of $K_I = \bigoplus_{p=0}^\infty K^p_I$. We note that

$$K^q_{II} = H^0_{I}(K) \quad \text{and} \quad K^p_I = H^p_{II}(K).$$

K_{II} is a subcomplex of K, and the operator d coincides on K_{II} with the operator d'.

Proposition 1. If $H^p_{I}(K) = 0$ for $p > 0$ and $q \geq 0$, the inclusion $K_{II} \to K$ defines a bijection from $H^n(K_{II})$ to $H^n(K)$, for all $n \geq 0$.

(Cf. [4], statement XVII-6, whose prove we shall repeat here).

By replacing K by K/K_{II}, we are led to prove that if $H^p_{I}(K) = 0$ for $p \geq 0$ and $q \geq 0$, then $H^n(K) = 0$ for all $n \geq 0$. Put

$$K_h = \bigoplus_{q \geq h} K^{p,q}.$$

The groups K_h $(h = 0, 1, \ldots)$ are subcomplexes embedded in K, and K_h/K_{h+1} is isomorphic to $\bigoplus_{p=h}^\infty K^{p,h}$, equipped with the coboundary operator d'. We thus
have $H^n(K_h/K_{h+1}) = H^i_{j=0}(-K) = 0$ for any n and h, therefore $H^n(K_h) = H^n(K_{h+1})$. Since $H^n(K_h) = 0$ if $h > n$, we deduce, by descending recursion on h, that $H^n(K_h) = 0$ for all n and h, and since K_0 is equal to K, the Proposition follows.

1.4.28 The double complex defined by two coverings

Let $\mathcal{U} = \{U_i\}_{i \in I}$ and $\mathcal{V} = \{V_j\}_{j \in J}$ be two coverings of X. If s is a p-simplex of $S(I)$ and s' a q-simplex of $S(J)$, we denote by U_s the intersection of U_i, $i \in s$ (cf. $n^2 18$), the intersection of V_j, $j \in s'$, by \mathcal{U}_s the covering of U_s formed by $\{U_s \cap V_j\}_{j \in J}$ and by \mathcal{V}_s' the covering of $V_{s'}$ formed by $\{V_{s'} \cap U_i\}_{i \in I}$.

We define a double complex $C(\mathcal{U}, \mathcal{V}; F) = \bigoplus_{p,q} C^{p,q}(\mathcal{U}, \mathcal{V}; F)$ as follows:

$$C^{p,q}(\mathcal{U}, \mathcal{V}; F) = \prod \Gamma(U_s \cap V_{s'}, F),$$

the product taken over all pairs (s, s') where s is a simplex of dimension p of $S(I)$ and s' is a simplex of dimension q of $S(J)$.

An element $f \in C^{p,q}(\mathcal{U}, \mathcal{V}; F)$ is thus a system $(f_{s,s'})$ of sections of F on $U_s \cap V_{s'}$ or, with the notations of $n^2 18$, it is a system

$$f_{i_0 \ldots i_p, j_0 \ldots j_q} \in \Gamma(U_{i_0 \ldots i_p} \cap V_{j_0 \ldots j_q}, F).$$

We can also identify $C^{p,q}(\mathcal{U}, \mathcal{V}; F)$ with $\prod_{s'} C^{p}(\mathcal{U}_s, F)$; thus, for all s', we have a coboundary operator $d : C^p(\mathcal{U}_s, F) \to C^{p+1}(\mathcal{U}_s, F)$, giving a homomorphism

$$d_{\mathcal{U}} : C^{p,q}(\mathcal{U}, \mathcal{V}; F) \to C^{p+1,q}(\mathcal{U}, \mathcal{V}; F).$$

Making the definition of $d_{\mathcal{U}}$ explicit, we obtain:

$$(d_{\mathcal{U}} f)_{i_0 \ldots i_k, j_0 \ldots j_q} = \sum_{k=0}^{k=p+1} (-1)^k \rho_k(f_{i_0 \ldots i_k i_{p+1}, j_0 \ldots j_q}),$$

ρ_k being the restriction homomorphism defined by the inclusion of

$$U_{i_0 \ldots i_k} \cap V_{j_0 \ldots j_q} \quad \text{in} \quad U_{i_0 \ldots i_k, i_{p+1}} \cap V_{j_0 \ldots j_q}.$$

We define $d_{\mathcal{V}} : C^{p,q}(\mathcal{U}, \mathcal{V}; F) \to C^{p,q+1}(\mathcal{U}, \mathcal{V}; F)$ the same way and we have

$$(d_{\mathcal{V}} f)_{i_0 \ldots i_p, j_0 \ldots j_{q+1}} = \sum_{h=0}^{h=q+1} (-1)^h \rho_h(f_{i_0 \ldots i_p, j_0 \ldots j_h \ldots j_{q+1}}).$$

It is clear that $d_{\mathcal{U}} \circ d_{\mathcal{U}} = 0$, $d_{\mathcal{U}} \circ d_{\mathcal{V}} = d_{\mathcal{V}} \circ d_{\mathcal{U}}$, $d_{\mathcal{V}} \circ d_{\mathcal{V}} = 0$. We thus put $d'' = d_{\mathcal{U}}$, $d' = (-1)^p d_{\mathcal{V}}$, equipping $C(\mathcal{U}, \mathcal{V}; F)$ with a structure of a double complex. We now apply to $K = C(\mathcal{U}, \mathcal{V}; F)$ the definitions from the preceding n^2; the groups or complexes denoted in the general case by $H^n(K)$, $H^n_{p,q}(K)$, $H^n_t(K)$,
1.4. Comparison of cohomology groups of different coverings

\[H^q_I(K), K_I, K_{II} \text{ will be denoted by } H^q(U, \mathcal{B}; F), H^q_I(U, \mathcal{B}; F), H^q_{II}(U, \mathcal{B}; F), C_I(U, \mathcal{B}; F) \text{ and } C_{II}(U, \mathcal{B}; F), \text{ respectively.} \]

From the definitions of \(d' \) and \(d'' \), we immediately obtain:

Proposition 2. \(H^q_I(U, \mathcal{B}; F) \) is isomorphic to \(\prod \alpha H^q(U_{\alpha}, \mathcal{F}) \), the product being taken over all simplexes of dimension \(q \) of \(S(J) \). In particular,

\[C^q_I(U, \mathcal{B}; F) = H^q_I(U, \mathcal{B}; F) \]

is isomorphic to \(\prod \beta C^q(U_{\beta}, \mathcal{F}) = C^q(\mathcal{B}, \mathcal{F}) \).

We denote by \(\iota'' \) the canonical isomorphism: \(C(\mathcal{B}, \mathcal{F}) \to C_{II}(U, \mathcal{B}; F) \). If \((f_{j_0...j_q}) \) is an element of \(C^q(\mathcal{B}, \mathcal{F}) \), we thus have

\[(\iota'' f)_{i_{j_0...j_q}} = \rho_{i_0}(f_{j_0...j_q}), \]

where \(\rho_{i_0} \) denotes the restriction homomorphism defined by the inclusion of

\[U_{i_0} \cap V_{j_0...j_q} \text{ in } V_{j_0...j_q}. \]

Obviously, a statement analogous to Proposition 2 holds for \(H^p_{II}I(U, \mathcal{B}; F) \), and we have an isomorphism \(\iota': C(U, \mathcal{F}) \to C_I(U, \mathcal{B}; F) \).

1.4.29 Applications

Proposition 3. Assume that \(H^p(U_{\alpha}, \mathcal{F}) = 0 \) for every \(s' \) and all \(p > 0 \). Then the homomorphism \(H^n(\mathcal{B}, \mathcal{F}) \to H^n(U, \mathcal{B}; F) \), defined by \(\iota'' \), is bijective for all \(n \geq 0 \).

This is an immediate consequence of Propositions 1 and 2.

Before stating Proposition 4, we prove a lemma:

Lemma 1. Let \(\mathcal{W} = \{ W_i \}_{i \in I} \) be a covering of a space \(Y \) and let \(\mathcal{F} \) be a sheaf on \(Y \). If there exists an \(i \in I \) such that \(W_i = Y \), then \(H^p(\mathcal{W}, \mathcal{F}) = 0 \) for all \(p > 0 \).

Let \(\mathcal{W}' \) be a covering of \(Y \), consisting of a single open set \(Y \); we obviously have \(\mathcal{W} \prec \mathcal{W}' \), and the assumption made on \(\mathcal{W} \) means that \(\mathcal{W}' \prec \mathcal{W} \). In result (n°22) we have \(H^p(\mathcal{W}, \mathcal{F}) = H^p(\mathcal{W}', \mathcal{F}) = 0 \) if \(p > 0 \).

Proposition 4. Suppose that the covering \(\mathcal{B} \) is finer than the covering \(U \). Then \(\iota' : H^n(\mathcal{B}, \mathcal{F}) \to H^n(U, \mathcal{B}; F) \) is bijective for all \(n \geq 0 \). Moreover, the homomorphism \(\iota' \circ \iota''^{-1} : H^n(U, \mathcal{F}) \to H^n(\mathcal{B}, \mathcal{F}) \) coincides with the homomorphism \(\sigma(\mathcal{B}, U) \) defined in n°21.

We apply Lemma 1 to \(\mathcal{W} = U_{s'} \) and \(Y = V_{s'} \), seeing that \(H^p(U_{s'}, \mathcal{F}) = 0 \) for all \(p > 0 \), and then Proposition 3 shows that

\[\iota'' : H^n(\mathcal{B}, \mathcal{F}) \to H^n(U, \mathcal{B}; F). \]
is bijective for all \(n \geq 0 \).

Let \(\tau: J \to I \) be a mapping such that \(V_j \subset U_{\tau j} \); for the proof of the second part of the Proposition, we need to observe that if \(f \) is an \(n \)-cocycle of \(C(\mathcal{U}, \mathcal{F}) \), the cocycles \(\iota'(f) \) and \(\iota''(\tau f) \) are cohomologous in \(C(\mathcal{U}, \mathcal{B}; \mathcal{F}) \).

For any integer \(p, 0 \leq p \leq n - 1 \), define \(g^p \in C^{p, n-p-1}(\mathcal{U}, \mathcal{B}; \mathcal{F}) \) by the following formula

\[
g^p_{i_0 \cdots i_p,j_0 \cdots j_{n-p-1}} = \rho_p(f_{i_0 \cdots i_p \tau j_0 \cdots \tau j_{n-p}}),
\]

\(\rho_p \) denoting the restriction defined by the inclusion of

\[
U_{i_0 \cdots i_p} \cap V_{j_0 \cdots j_{n-p-1}} \quad \text{in} \quad U_{i_0 \cdots i_p \tau j_0 \cdots \tau j_{n-p-1}}.
\]

We verify by a direct calculation (keeping in mind that \(f \) is a cocycle) that we have

\[
d^{p+1}(g^0) = \iota''(\tau f), \ldots, d^{p+1}(g^n) = \iota''(\tau f) - \iota'(f)
\]

hence \(d(g^0 - g^1 + \ldots + (-1)^n g^n) = \iota''(\tau f) - \iota'(f) \), which shows that \(\iota''(\tau f) \) and \(\iota'(f) \) are cohomologous.

Proposition 5. Suppose that \(\mathcal{B} \) is finer than \(\mathcal{U} \) and that \(H^q(\mathcal{B}, \mathcal{F}) = 0 \) for all \(s \) and all \(q > 0 \). Then the homomorphism \(\sigma(\mathcal{B}, \mathcal{U}) : H^n(\mathcal{U}, \mathcal{F}) \to H^n(\mathcal{B}, \mathcal{F}) \) is bijective for all \(n \geq 0 \).

If we apply Proposition 3, switching the roles of \(\mathcal{U} \) and \(\mathcal{B} \), we see that \(\iota' : H^n(\mathcal{B}, \mathcal{F}) \to H^n(\mathcal{U}, \mathcal{B}; \mathcal{F}) \) is bijective. The Proposition then follows directly from Proposition 4.

Theorem 1. Let \(X \) be a topological space, \(\mathcal{U} = \{U_i \}_{i \in I} \) a covering of \(X, \mathcal{F} \) a sheaf on \(X \). Assume that there exists a family \(\mathcal{B}^\alpha, \alpha \in A \) of coverings of \(X \) satisfying the following properties:

(a) For any covering \(\mathcal{B} \) of \(X \), there exists an \(\alpha \in A \) with \(\mathcal{B}^\alpha \prec \mathcal{B} \),

(b) \(H^q(\mathcal{B}^\alpha, \mathcal{F}) = 0 \) for all \(\alpha \in A \), all simplexes \(s \in S(I) \), and every \(q > 0 \).

Then \(\sigma(\mathcal{U}) : H^n(\mathcal{U}, \mathcal{F}) \to H^n(\mathcal{X}, \mathcal{F}) \) is bijective for all \(n \geq 0 \).

Since \(\mathcal{B}^\alpha \) are arbitrarily fine, we can assume that they are finer than \(\mathcal{U} \). In this case, the homomorphism

\[
\sigma(\mathcal{B}^\alpha, \mathcal{U}) : H^n(\mathcal{U}, \mathcal{F}) \to H^n(\mathcal{B}^\alpha, \mathcal{F})
\]

is bijective for all \(n \geq 0 \), by Proposition 5. Because \(\mathcal{B}^\alpha \) are arbitrarily fine, \(H^n(X, \mathcal{F}) \) is the inductive limit of \(H^n(\mathcal{B}^\alpha, \mathcal{F}) \), and the theorem follows.

Remarks. (1) It is probable that Theorem 1 remains valid when we replace the condition (b) with the following weaker condition:

(b') \(\lim_\alpha H^q(\mathcal{B}^\alpha, \mathcal{F}) = 0 \) for any simplex \(s \in S(I) \) and any \(q > 0 \).

(2) Theorem 1 is analogous to a theorem of Leray on acyclic coverings. Cf. [10] and also [4], statement XVII-7.
Chapter 2

Algebraic Varieties – Coherent algebraic sheaves on affine varieties
2.1. Algebraic varieties

2.1.3 Spaces satisfying condition (A)

Let \(X \) be a topological space. The condition (A) is the following:

(A) — Any decreasing sequence of closed subsets of \(X \) is stationary.

In other words, if we have \(F_1 \supseteq F_2 \supseteq F_3 \supseteq \ldots, \) \(F_i \) being closed in \(X \), there exists an integer \(n \) such that \(F_m = F_n \) for \(m \geq n \). Or:

(A') — The set of closed subsets of \(X \), ordered by inclusion, satisfies the minimality condition.

Examples. Equip a set \(X \) with the topology where the closed subsets are the finite subsets of \(X \) and the whole \(X \); the condition (A) is then satisfied. More generally, any algebraic variety, equipped with Zariski topology, satisfies (A) (cf. n°34).

Proposition 1. (a) If \(X \) satisfies the condition (A), then \(X \) is quasi-compact.
(b) If \(X \) satisfies (A), any subspace of \(X \) satisfies it also.
(c) If \(X \) is a finite union of \(Y_i \), the \(Y_i \) satisfying (A), then \(X \) also satisfies (A).

(???) If \(F_i \) is a filtering decreasing set of closed subsets of \(X \), and if \(X \) satisfies (A'), then there exists an \(i \) contained in all others; if \(\bigcap F_i = \emptyset \), there is therefore an \(i \) such that \(F_i = \emptyset \), which shows (a).

Let \(G_1 \supseteq G_2 \supseteq G_3 \supseteq \ldots \) be a decreasing sequence of closed subsets of a subspace \(Y \) of \(X \); if \(X \) satisfies (A), there exists an \(n \) for which \(G_m = G_n \) for \(m \geq n \), hence \(G_m = Y \cap G_m = Y \cap G_n = G_n \), which shows (b).

Let \(F_1 \supseteq F_2 \supseteq F_3 \supseteq \ldots \) be a decreasing sequence of closed subsets of a space \(X \) satisfying (c); since all \(Y_i \) satisfy (A), there exists for all \(i \) an \(n_i \) such that \(F_m \cap Y_i = F_n \cap Y_i \) for \(m \geq n_i \); if \(n = \text{Sup}(n_i) \), we then have \(F_m = F_n \) for \(m \geq n \), which shows (c).

A space \(X \) is said to be irreducible if it is not a union of two closed subspaces, distinct from \(X \) itself; or equivalently, if any two non-empty open subsets have a non-empty intersection. Any finite family of non-empty open subsets of \(X \) then has a non-empty intersection, and any open subset of \(X \) is also irreducible.

Proposition 2. Any space \(X \) satisfying the condition (A) is a union of a finite number of irreducible closed subsets \(Y_i \). If we suppose that that \(Y_i \) is not contained in \(Y_j \) for any pair \((i, j)\), \(i \neq j \), the set of \(Y_i \) is uniquely determined by \(X \); the \(Y_i \) are then called the irreducible components of \(X \).
The existence of a decomposition $X = \bigcup Y_i$ follows immediately from (A). If Z_k is another such decomposition of X, we have $Y_i = \bigcup Y_i \cap Z_k$, and, since Y_i is irreducible, this implies of an index k such that $Z_k \supset Y_i$; interchanging the roles of Y_i and Z_k, we conclude analogously that there exists an index i' for which $Y_{i'} \supset Z_k$; thus $Y_i \subset Z_k \subset Y_{i'}$, which by the assumption made on Y_i leads to $i = i'$ and $Y_i = Z_k$, hence the uniqueness of the decomposition.

Proposition 3. Let X be a topological space that is a finite union of non-empty open subsets V_i. Then X is irreducible if and only if all V_i are irreducible and $V_i \cap V_j \neq \emptyset$ for all pairs (i, j).

The necessity of these conditions was noted above; we show that they are sufficient. If $X = Y \cup Z$, where Y and Z are closed, we have $V_i = (V_i \cap Y) \cup (V_i \cap Z)$, which shows that each V_i is contained either in Y or in Z. Suppose that Y and Z are distinct from X; we can then find two indices i, j such that V_i is not contained in Y and V_j is not contained in Z; according to our assumptions on Y_i, we then have $V_i \subset Z$ and $V_j \subset Y$. Set $T = V_j - V_i \cap V_j$; T is closed in V_j and we have $V_j = T \cup (Z \cap V_j)$; as V_j is irreducible, it follows that either $T = V_j$, which means that $V_i \cap V_j = \emptyset$, or $Z \cap V_j = V_j$, which means that $V_j \subset Z$, and in both cases this leads to a contradiction, q.e.d.

2.1.31 Locally closed subsets of an affine space

Let r be an integer ≥ 0 and let $X = K^r$ be the affine space of dimension r over the field K. We equip X with the Zariski topology; recall that a subset of X is closed in this topology if it is the zero set of a family of polynomials $P^\alpha \in K[X_1, \ldots, X_r]$. Since the ring of polynomials is noetherian, X satisfies the condition (A) from the preceding n^r. Moreover, one easily shows that X is an irreducible space.

If $x = (x_1, \ldots, x_r)$ is a point of X, we denote by O_x the local ring of x; recall that this is the subring of the field $K(X_1, \ldots, X_r)$ consisting of those fractions which can be put in the form: $R = P/Q$, where P and Q are polynomials and $Q(x) \neq 0$.

Such a fraction is said to be regular in x; for all points $x \in X$ for which $Q(x) \neq 0$, the function $x \mapsto P(x)/Q(x)$ is a continuous function with values in K (K being given the Zariski topology) which can be identified with R, the field K being infinite. The O_x, $x \in X$ thus form a subsheaf O of the sheaf $\mathcal{F}(X)$ of germs of functions on X with values in K (cf. n°3); the sheaf O is a sheaf of rings.

We will extend the above to locally closed subspaces of X (we call a subset of a space X locally closed in X if it is an intersection of a open subset with a closed subset of X). Let Y be such a subspace and let $\mathcal{F}(Y)$ be the sheaf of germs of functions on Y with values in K; if x is a point of Y, the operation of restriction defines a canonical homomorphism

$$\epsilon_x : \mathcal{F}(X)_x \to \mathcal{F}(Y)_x.$$
2.1. Algebraic varieties

The image of \(\mathcal{O}_x \) under \(\varepsilon_x \) is a subring of \(\mathcal{F}(Y)_x \) which we denote by \(\mathcal{O}_{x,Y} \); the \(\mathcal{O}_{x,Y} \) form a subsheaf \(\mathcal{O}_Y \) of \(\mathcal{F}(Y) \), which we call the sheaf of local rings of \(Y \). A section of \(\mathcal{O}_Y \) over an open subset \(V \) of \(Y \) is thus, by definition, a function \(f : V \rightarrow K \) which is equal, in the neighbourhood of any point \(x \in V \), to a restriction to \(V \) of a rational function regular at \(x \); such a function is said to be regular on \(V \); it is a continuous function if we equip \(V \) with the induced topology and \(K \) with the Zariski topology. The set of regular functions at all points of \(V \) is a ring, the ring \(\Gamma(V, \mathcal{O}_Y) \); observe also that, if \(f \in \Gamma(V, \mathcal{O}_x) \) and if \(f(x) \neq 0 \) for all \(x \in V \), then \(1/f \) also belongs to \(\Gamma(V, \mathcal{O}_Y) \).

We can characterize the sheaf \(\mathcal{O}_Y \) in another way:

Proposition 4. Let \(U \) (resp. \(F \)) be an open (resp. closed) subspace of \(X \) and let \(Y = U \cap F \). Let \(I(F) \) be the ideal \(K[X_1, \ldots, X_r] \) consisting of polynomials vanishing on \(F \). If \(x \) is a point of \(Y \), the kernel of the surjection \(\varepsilon_x : \mathcal{O}_x \rightarrow \mathcal{O}_{x,Y} \) coincides with the ideal \(I(F) \cdot \mathcal{O}_x \) of \(\mathcal{O}_x \).

It is clear that each element of \(I(F) \cdot \mathcal{O}_x \) belongs to the kernel of \(\varepsilon_x \). Conversely, let \(R = P/Q \) be an element of the kernel, \(P \) and \(Q \) being two polynomials with \(Q(x) \neq 0 \). By assumption, there exists an open neighbourhood \(W \) of \(x \) such that \(P(y) = 0 \) for all \(y \in W \cap F \); let \(F' \) be the complement of \(W \), which is closed in \(X \); since \(x \in F' \), there exists, by the definition of the Zariski topology, a polynomial \(P' \) vanishing on \(F' \) and nonzero at \(x \); the polynomial \(P \cdot P' \) belongs to \(I(F) \) and we can write \(R = P \cdot P'/Q \cdot P' \), which shows that \(R \in I(F) \cdot \mathcal{O}_x \).

Corollary. The ring \(\mathcal{O}_{x,Y} \) is isomorphic to the localization of \(K[X_1, \ldots, X_r]/I(F) \) in the maximal ideal defined by the point \(x \).

This follows immediately from the construction of localization a quotient ring (cf. for example [8], Chap. XV, §5, th. XI).

2.1.32 Regular functions

Let \(U \) (resp. \(V \)) be a locally closed subspace of \(K^r \) (resp. \(K^n \)). A function \(\phi : U \rightarrow V \) is said to be regular on \(U \) (or simply regular) if:

- \(\phi \) is continuous,
- If \(x \in U \) and \(f \in \mathcal{O}_{\phi(x),V} \) then \(f \circ \phi \in \mathcal{O}_{x,U} \).

Denote the coordinates of the point \(\phi(x) \) by \(\phi_i(x) \), \(1 \leq i \leq s \). We then have:

Proposition 5. A map \(\phi : U \rightarrow V \) is regular on \(U \) if and only if \(\phi_i : U \rightarrow K \) are regular on \(U \) for all \(i \), \(1 \leq i \leq s \).

As the coordinate functions are regular on \(V \), the condition is necessary. Conversely, suppose that we have \(\phi_i \in \Gamma(U, \mathcal{O}_i) \) for each \(i \); if \(P(X_1, \ldots, X_s) \) is a polynomial, the function \(P(\phi_1, \ldots, \phi_s) \) belongs to \(\Gamma(U, \mathcal{O}_V) \) since \(\Gamma(U, \mathcal{O}_V) \) as a ring; it follows that it is a continuous function on \(U \), thus its zero set is closed, which shows the continuity of \(\phi \). If we have \(x \in U \) and \(f \in \mathcal{O}_{\phi(x),V} \), we can write \(f \) locally in the form \(f = P/Q \), where \(P \) and \(Q \) are polynomials and
2.1. Algebraic varieties

AFFINE VARIETIES

Q(φ(x)) ≠ 0. The function f ◦ φ is then equal to P ◦ φ/Q ◦ φ in a neighbourhood of x; from what we gave seen, P ◦ φ and Q ◦ φ are regular in a neighbourhood of x. As Q ◦ φ(x) ≠ 0, it follows that f ◦ φ is regular in a neighbourhood of x, q.e.d.

A composition of two regular maps is regular. A bijection φ : U → V is called a biregular isomorphism (or simply an isomorphism) if φ and φ⁻¹ are regular; or equivalently, if φ is a homeomorphism of U to V which transforms the sheaf O_U into the sheaf O_V. (???)

2.1.33 Products

If r and r' are two nonnegative integers, we identify the affine space K^{r+r'} with the product K^r × K^{r'}. The Zariski topology on K^{r+r'} is finer than the product of the Zariski topologies on K^r and K^{r'}: it is even strictly finer if r and r' are positive. In result, if U and U' are locally closed subspaces of K^r and K^{r'}, U × U' is a locally closed subspace of K^{r+r'} and the sheaf O_{U×U'} is well defined.

On the other hand, let W be a locally closed subspace of K^t, t ≥ 0 and let φ : W → U and φ' : W → U' be two maps. As an immediate result of Proposition 5 we have:

Proposition 6. A map x → (φ(x), φ'(x)) is regular from W to U × U' if and only if φ and φ' are regular.

As any constant function is regular, the preceding Proposition shows that any section x → (x, x_0), x_0 ∈ U' is a regular function from U to U × U'; on the other hand, the projections U × U' → U and U × U' → U' are obviously regular.

Let V and V' be locally closed subspaces of K^s and K^{s'} and let ψ : U → V and ψ' : U' → V' be two mappings. The preceding remarks, together with Proposition 6, show that we then have (cf. [1], Chap. IV):

Proposition 7. A map ψ × ψ' : U × U' → V × V' is regular if and only if ψ and ψ' are regular.

Hence:

Corollary. A map ψ × ψ' is a biregular isomorphism if and only if ψ and ψ' are biregular isomorphisms.

2.1.34 Definition of the structure of an algebraic variety

Definition. We call an algebraic variety over K (or simply an algebraic variety) a set X equipped with:

1. a topology,
2. a sheaf O_X of the sheaf F(X) of germs of functions on X with values in
2.1. Algebraic varieties

AFFINE VARIETIES

K,
this data being subject to axioms (VA_I) and (VA_{II}) stated below.

First note that if X and Y are equipped with two structures of the above type, we have a notion of isomorphism of X and Y: it is a homeomorphism of X to Y which transforms \(\mathcal{O}_X \) to \(\mathcal{O}_Y \). On the other hand, if \(X' \) is an open subset of X, we can equip \(X' \) with the induced topology and the induced sheaf: we have a notion of an induced structure on an open subset. That said (???), we can state the axiom (VA_I):

\[(VA_I) \quad \text{There exists a finite open covering } \mathcal{B} = \{ V_i \}_{i \in I} \text{ of the space } X \text{ such that each } V_i, \text{ equipped with the structure induced from } X, \text{ is isomorphic to a locally closed subspace } U_i \text{ of an affine space, equipped with the sheaf } \mathcal{O}_{U_i} \text{ defined in n°31.} \]

To simplify the language, we call an prealgebraic variety a topological space \(X \) together with a sheaf \(\mathcal{O}_X \) satisfying the axiom (VA_I). An isomorphism \(\phi_i : V_i \to U_i \) is called a chart of the open subset \(V_i \); the condition (VA_I) means that it is possible to cover \(X \) with finitely many open subsets possessing charts. Proposition 1 from n°30 shows that \(X \) satisfies condition (A), thus it is quasi-compact and so are its subspaces.

The topology on \(X \) is called the ,,Zariski topology“ and the sheaf \(\mathcal{O}_X \) is called the sheaf of local rings of \(X \).

Proposition 8. Let \(X \) be a set covered by a finite family of subsets \(X_j \), \(j \in J \). Suppose that each \(X_j \) is equipped with a structure of a prealgebraic variety and that the following conditions are satisfied:

(a) \(X_i \cap X_j \) is open in \(X_i \) for all \(i, j \in J \),
(b) the structures induced by \(X_i \) and \(X_j \) on \(X_i \cap X_j \) coincide for all \(i, j \in J \). Then there exists a unique structure of a prealgebraic variety on \(X \) such that \(X_j \) are open in \(X \) and such that the structure induced on each \(X_i \) is the given structure.

The existence and uniqueness of the topology on \(X \) and the sheaf \(\mathcal{O}_X \) are immediate; it remains to check that this topology and this sheaf satisfy (VA_I), which follows from the fact that \(X_j \) form a finite family and satisfy (VA_I).

Corollary. Let \(X \) and \(X' \) be two prealgebraic varieties. There exists a structure of a prealgebraic variety on \(X \times X' \) satisfying the following condition:

If \(\phi : V \to U \) and \(\phi' : V' \to U' \) are charts (\(V \) being open in \(X \) and \(V' \) being open in \(X' \)), then \(V \times V' \) is open in \(X \times X' \) and \(\phi \times \phi' : V \times V' \to U \times U' \) is a chart.

Cover \(X \) by a finite number of open \(V_i \) having charts \(\phi_i : V_i \to U_i \) and let \((V'_j, U'_j, \phi'_j) \) be an analogous system for \(X' \). The set \(X \times X' \) is covered by \(V_i \times V'_j \); equip each \(V_i \times V'_j \) with the structure of a prealgebraic variety induced from \(U_i \times U'_j \) by \(\phi_i^{-1} \times \phi'_j^{-1} \); the assumptions (a) and (b) of Proposition 8 are satisfied for this covering of \(X \times X' \), by the corollary of Proposition 7. We
obtain a structure of a prealgebraic variety on $X \times X'$ which satisfies appropriate conditions.

We can apply the preceding corollary to the particular case $X' = X$; so $X \times X$ has a structure of a prealgebraic variety, and in particular a topology. We can now state the axiom (VA_{II}):

$$(VA_{II}) \quad \text{The diagonal } \Delta \text{ of } X \times X \text{ is closed in } X \times X.$$

Suppose that X is a prealgebraic variety obtained by the ,,gluing” procedure of Proposition 8; then the condition (VA_{II}) is satisfied if and only if $X_{ij} = \Delta \cap X_i \times X_j$ is closed in $X_i \times X_j$. Or X_{ij} is the set of (x, x) for $x \in X_i \cap X_j$. Suppose that there exist charts $\phi : X_i \rightarrow U_i$ and let $T_{ij} = \phi \times \phi_j(X_{ij})$; T_{ij} is the set of $(\phi_i(x), \phi_j(x))$ for x running over $X_i \cap X_j$. The axiom (VA_{II}) takes therefore the following form:

$$(VA'_{II}) \quad \text{For each pair } (i, j), T_{ij} \text{ is closed in } U_i \times U_j.$$

In this form we recognize Weil’s axiom (A) (cf. [16], p. 167), except that Weil considered only irreducible varieties.

Examples of algebraic varieties: Any locally closed subspace U of an affine space, equipped with the induced topology and the sheaf O_U defined in n^331 is an algebraic variety. Any projective variety is an algebraic variety (cf. n^351). Any algebraic fiber space (cf. [17]) whose base and fiber are algebraic varieties is an algebraic variety.

Remarks. (1) We observe an analogy between condition (VA_{II}) and the condition of separatedness imposed on topological, differential and analytic varieties.

(2) Simple examples show that condition (VA_{II}) is not a consequence of condition (VA_I).

2.1.35 Regular mappings, induced structures, products

Let X and Y be two algebraic varieties and let ϕ be a function from X to Y. We say that ϕ is regular if:

(a) ϕ is continuous.

(b) If $x \in X$ and $f \in O\phi(x), Y$ then $f \circ \phi \in O_{x,X}$.

As in n^332, the composition of two regular functions is regular and a bijection $\phi : X \rightarrow Y$ is an isomorphism if and only if ϕ and ϕ^{-1} are regular functions. Regular functions form a family of morphisms for the structure of an algebraic variety in the sense of [1], Chap. IV.

Let X be an algebraic variety and let X' be a locally closed subspace of X. We equip X' with the topology induced from X and the sheaf O_X induced by O_X (to be precise, for all $x \in X'$ we define $O_{x,X'}$ as the image of $O_{x,X}$ under the canonical homomorphism $F(X)_x \rightarrow F(X')_x$). The axiom (VA_I) is satisfied: if $\phi_i : V_i \rightarrow U_i$ is a system of charts such that $X = \bigcup V_i$, we set $V'_i = X' \cap V_i$.
$U'_i = \phi_i(V'_i)$ and $\phi_i : V'_i \to U'_i$ is a system of charts such that $X' = \bigcup V'_i$. The axiom (VA_{II}) is satisfied as well since the topology of $X' \times X'$ is induced from $X \times X$ (we could also use (VA_{II})). We define the structure of an algebraic variety on X' which is induced by that of X; we also say that X' is a subvariety of X (in Weil [16], the term „subvariety” is reserved for what we call here an irreducible closed subvariety). If ι denotes the inclusion of X' in X, ι is a regular mapping; moreover, if ϕ is a function from an algebraic variety Y to X' then $\phi : Y \to X'$ is regular if and only if $\iota \circ \phi : Y \to X$ is regular (which justifies the term „induced structure”, cf. [1], loc. cit.).

If X and X' are two algebraic varieties, $X \times X'$ is an algebraic variety, called the product variety; it suffices to check that the axiom (VA'_{II}) is satisfied, in other words, that if $\phi_i : V_i \to U_i$ and $\phi'_i : V'_i \to U'_i$ are systems of charts such that $X = \bigcup V_i$ and $X' = \bigcup V'_i$, then the set $T_{ij} \times T'_{ij}$ is closed in $U_i \times U_j \times V'_i \times V'_j$ (with the notations of n°34); this follows immediately from the fact that T_{ij} and T'_{ij} are closed in $U_i \times U_j$ and $U'_i \times U'_j$, respectively.

Propositions 6 and 7 are valid without change for arbitrary algebraic varieties.

If $\phi : X \to Y$ is a regular mapping, the graph Φ of ϕ is closed in $X \times Y$, because it is the inverse image of the diagonal $Y \times Y$ by $\phi \times 1 : X \times Y \to Y \times Y$; moreover, the mapping $\psi : X \to \Phi$ defined by $\psi(x) = (x, \phi(x))$ is an isomorphism: indeed, ψ is a regular mapping, and so is ψ^{-1} (since it is a restriction of the projection $X \times Y \to X$).

2.1.36 The field of rational functions on an irreducible variety

We first show two lemmas of purely topological nature:

Lemma 1. Let X be a connected space, G an abelian group and G a constant sheaf on X isomorphic to G. The canonical mapping $G \to \Gamma(X, G)$ is bijective.

An element of $\Gamma(X, G)$ is just a continuous mapping from X to G equipped with the discrete topology. Since X is connected, any such a mapping is constant, hence the Lemma.

We call a sheaf F on a space X locally constant if any point x has an open neighbourhood U such that $F(U)$ is constant on U.

Lemma 2. Any locally constant sheaf on an irreducible space is constant.

Let F be a sheaf, X a space and set $F = \Gamma(X, F)$; it suffices to demonstrate that the canonical homomorphism $\rho_x : F \to F_x$ is bijective for all $x \in X$, because we would thus obtain an isomorphism of the constant sheaf isomorphic to F with the given sheaf F.

If $f \in F$, the set of points $x \in X$ such that $f(x) = 0$ is open (by the general properties of sheaves) and closed (because F is locally constant); since
an irreducible space is connected, this set is either \emptyset or X, which shows that ρ_x is injective.

Now take $m \in \mathcal{F}_x$ and let s be a section of \mathcal{F} over a neighborhood U of x such that $s(x) = m$; cover X by nonempty open subsets U_i such that $\mathcal{F}(U_i)$ is constant on U_i; since X is irreducible, we have $U \cap U_i \neq \emptyset$; choose a point $x_i \in U \cap U_i$; obviously there exists a section s_i of \mathcal{F} over U_i such that $s_i(x_i) = s(x_i)$, and since the sections s and s_i coincide in x_i, they coincide on whole $U \cap U_i$, since $U \cap U_i$ is irreducible, hence connected; analogously, s_i and s_j coincide on $U_i \cap U_j$, since they coincide on $U \cap U_i \cap U_j \neq \emptyset$; thus the sections s_i define a unique section s of \mathcal{F} over X and we have $\rho_x(s) = m$, which ends the proof.

Now let X be an irreducible algebraic variety. If U is a nonempty open subset of X, set $\mathcal{A}_U = \Gamma(U, \mathcal{O}_X)$; \mathcal{A}_U is an integral domain; indeed, suppose that we have $f \cdot g = 0$, f and g being regular functions from U to K; if F (resp. G) denotes the set of $x \in U$ such that $f(x) = 0$ (resp. $g(x) = 0$), we have $U = F \cup G$ and F and G are closed in U, because f and g are continuous; since U is irreducible, it follows that $F = U$ or $G = U$, which means exactly that f or g is zero on U. We can therefore form the field of fractions of \mathcal{A}_U, which we denote by K_U; if $U \subset V$, the homomorphism $\rho_U^V : \mathcal{A}_V \rightarrow \mathcal{A}_U$ is injective, because U is dense in V, and we have a well defined isomorphism ϕ^U_V of \mathcal{K}_V to \mathcal{K}_U; the system of $\{K_U, \phi^U_V\}$ defines a sheaf of fields \mathcal{K}; then \mathcal{K}_x is canonically isomorphic with the field of fractions of $\mathcal{O}_{x,X}$.

Proposition 9. For any irreducible algebraic variety X, the sheaf \mathcal{K} defined above is a constant sheaf.

By Lemma 2, it suffices to show the Proposition when X is a locally closed subvariety of the affine space K^n; let F be the closure of X in K^n and let $I(F)$ be the ideal in $K[X_1, \ldots, X_r]$ of polynomials vanishing on F (or equivalently on X). If we set $A = K[X_1, \ldots, X_r]/I(F)$, the ring A is an integral domain because X is irreducible; let $K(A)$ be the field of fractions of A. By corollary of Proposition 4, we can identify $\mathcal{O}_{x,X}$ with the localization of A in the maximal ideal defined by x; we thus obtain an isomorphism of the field $K(A)$ with the field of fractions of $\mathcal{O}_{x,X}$ and it is easy to check that it defines an isomorphism of the constant sheaf equal to $K(A)$ with the sheaf \mathcal{K}, which shows the Proposition.

By Lemma 1, the sections of the sheaf \mathcal{K} form a field, isomorphic with \mathcal{K}_x for all $x \in X$, which we denote by $K(X)$. We call it the field of rational functions on X; it is an extension of finite type\(^1\) of the field K, whose transcendence degree over K is the dimension of X (we extend this definition to reducible varieties by imposing $\dim X = \sup \dim Y_i$ if X is a union of closed irreducible varieties Y_i). In general, we identify the field $K(X)$ with the field \mathcal{K}_x; since we have $\mathcal{O}_{x,X} \subset \mathcal{K}_x$, we see that we can view $\mathcal{O}_{x,X}$ as a subring of $K(X)$ (it is the ring of specialization of the point x in $K(X)$ in the sense of Weil, [16], p. 77).

\(^1\)i.e. finitely generated
If U is an open subset of X, $\Gamma(U, \mathcal{O}_X)$ is the intersection in $K(X)$ of the rings $\mathcal{O}_{x,X}$ for x running over U.

If Y is a subvariety of X, we have $\dim Y \leq \dim X$; if furthermore Y is closed and does not contain any irreducible component of X, we have $\dim Y < \dim X$, as shown by reducing to the case of subvarieties of K^r (cf. for example [8], Chap. X, §5, th. II).
2.2 Coherent algebraic sheaves

2.2.37 The sheaf of local rings on an algebraic variety

Return to the notations of \(n^e31 \): let \(X = K^r \) and let \(\mathcal{O} \) be the sheaf of local rings of \(X \). We have:

Lemma 1. The sheaf \(\mathcal{O} \) is a coherent sheaf of rings, in the sense of \(n^e15 \).

Let \(x \in X \), let \(U \) be an open neighbourhood of \(x \) and let \(f_1, \ldots, f_p \) be sections of \(\mathcal{O} \) over \(U \), i.e. rational functions regular at each point of \(U \); we must show that the sheaf of relations between \(f_1, \ldots, f_p \) is a sheaf of finite type over \(\mathcal{O} \).

Possibly replacing \(U \) by a smaller neighbourhood, we can assume that \(f_i \) can be written in the form \(f_i = P_i/Q \) where \(P_i \) and \(Q \) are polynomials and \(Q \) does not vanish on \(U \). Let now \(y \in U \) and \(g_i \in \mathcal{O}_y \) such that \(\sum_{i=1}^p g_i f_i = 0 \) in a neighbourhood of \(y \); we can again write \(g_i \) in the form \(g_i = R_i/S \) where \(R_i \) and \(S \) are polynomials and \(S \) does not vanish in \(y \). The relationship \(\sum_{i=1}^p R_i P_i = 0 \) in a neighbourhood of \(y \), i.e. equivalent to \(\sum_{i=1}^p R_i P_i = 0 \). As the module of relations between the polynomials \(P_i \) is a module of finite type (because the ring of polynomials is noetherian), it follows that the sheaf of relations between \(f_i \) is of finite type.

Let now \(V \) be a closed subvariety of \(X = K^r \); for any \(x \in X \) let \(J_x(V) \) be the ideal of \(\mathcal{O}_x \) consisting of elements \(f \in \mathcal{O}_x \) whose restriction to \(V \) is zero in a neighbourhood of \(x \); we thus have \(J_x(V) = \mathcal{O}_x \) if \(x /\in V \). The \(J_x(V) \) form a subsheaf \(J(V) \) of the sheaf \(\mathcal{O} \).

Lemma 2. The sheaf \(J(V) \) is a coherent sheaf of \(\mathcal{O} \)-modules.

Let \(I(V) \) be the ideal of \(K[X_1, \ldots, X_r] \) consisting of polynomials \(P \) vanishing on \(V \). By Proposition 4 from \(n^e31 \), \(J_x(V) \) is equal to \(I(V) \cdot \mathcal{O}_x \) for all \(x \in V \) and this formula remains valid for \(x /\in V \) as shown immediately. The ideal \(I(V) \) being generated by a finite number of elements, it follows that the sheaf \(J(V) \) is of finite type, thus coherent by Lemma 1 and Proposition 8 from \(n^e15 \).

We shall now extend Lemma 1 to arbitrary algebraic varieties:

Proposition 1. If \(V \) is an algebraic variety, the sheaf \(\mathcal{O}_V \) is a coherent sheaf of rings on \(V \).

The question being local, we can suppose that \(V \) is a closed subvariety of the affine space \(K^r \). By Lemma 2, the sheaf \(J(V) \) is a coherent sheaf of ideals, thus the sheaf \(\mathcal{O}/J(V) \) is a coherent sheaf of rings on \(X \), by Theorem 3 from \(n^e16 \). This sheaf of rings is zero outside \(V \) and its restriction to \(V \) is just \(\mathcal{O}_V \) (\(n^e31 \)); thus the sheaf \(\mathcal{O}_V \) is a coherent sheaf of rings on \(V \) (\(n^e17 \), corollary of Proposition 11).

Remark. It is clear that Proposition is valid more generally for any prealgebraic variety.
2.2.38 Coherent algebraic sheaves

If V is an algebraic variety whose sheaf of local rings is \mathcal{O}_V, we call an algebraic sheaf on V any sheaf of \mathcal{O}_V–modules, in the sense of Definition 6; if \mathcal{F} and \mathcal{G} are two algebraic sheaves, we say that $\phi : \mathcal{F} \rightarrow \mathcal{G}$ is an algebraic homomorphism (or simply a homomorphism) if it is a \mathcal{O}_V–homomorphism; recall that this is equivalent to saying that $\phi_x : \mathcal{F}_x \rightarrow \mathcal{G}_x$ is $\mathcal{O}_{x,V}$–linear and that ϕ transforms local sections of \mathcal{F} into local sections of \mathcal{G}.

If \mathcal{F} is an algebraic sheaf on V, the cohomology groups $H^q(V, \mathcal{F})$ are modules over $\Gamma(V, \mathcal{O}_V)$, cf. Section 23; in particular, they are vector spaces over K.

An algebraic sheaf \mathcal{F} over V is said to be coherent if it is a coherent sheaf of \mathcal{O}_V–modules, in the sense of Definition 12; by Proposition 7 of Section 15 and Proposition 1 above, these sheaves are characterized by the property of being locally isomorphic to the cokernel of an algebraic homomorphism $\phi : \mathcal{O}_W^\mathcal{V}_x \rightarrow \mathcal{O}_W^\mathcal{V}_y$.

We shall give some examples of coherent algebraic sheaves (we will see more of them later, cf. in particular Sections 48, 57).

2.2.39 Sheaf of ideals defined by a closed subvariety

Let W be a closed subvariety of an algebraic variety V. For any $x \in V$, let $\mathcal{J}_x(W)$ be the ideal of \mathcal{O}_x,V consisting of elements f whose restriction to W is zero in a neighborhood of x; let $\mathcal{J}(W)$ be the subsheaf of \mathcal{O}_V formed by $\mathcal{J}_x(W)$.

We have the following Proposition, generalizing Lemma 2:

Proposition 2. The sheaf $\mathcal{J}(W)$ is a coherent algebraic sheaf.

The question being local, we can suppose that V (thus also W) is a closed subvariety of the affine space K^n. It follows from Lemma 2, applied to W, that the sheaf of ideals defined by W in K^n is of finite type; this shows that $\mathcal{J}(W)$, which is its image under the canonical homomorphism $\mathcal{O} \rightarrow \mathcal{O}_V$, is also of finite type, thus is coherent by Proposition 8 of Section 15 and Proposition 1 of Section 37.

Let \mathcal{O}_W be the sheaf of local rings of W and let $\mathcal{O}_W^\mathcal{V}$ be the sheaf on V obtained by extending \mathcal{O}_W by 0 outside W (cf. Section 5); this sheaf is canonically isomorphic to $\mathcal{O}_V/\mathcal{J}(W)$, in other words, we have an exact sequence:

$$0 \rightarrow \mathcal{J}(W) \rightarrow \mathcal{O}_V \rightarrow \mathcal{O}_W^\mathcal{V} \rightarrow 0.$$

Let then \mathcal{F} be an algebraic sheaf on W and let $\mathcal{F}^\mathcal{V}$ be the sheaf obtained by extending \mathcal{F} by 0 outside W; we can consider $\mathcal{F}^\mathcal{V}$ as a sheaf of $\mathcal{O}_W^\mathcal{V}$–modules, thus also as a sheaf of \mathcal{O}_V–modules whose annihilator contains $\mathcal{J}(W)$. We have:

Proposition 3. If \mathcal{F} is a coherent algebraic sheaf on W, $\mathcal{F}^\mathcal{V}$ is a coherent algebraic sheaf on V. Conversely, if \mathcal{G} is an coherent algebraic sheaf on V whose annihilator contains $\mathcal{J}(W)$, the restriction of \mathcal{G} to W is a coherent algebraic sheaf on W.

46
If \mathcal{F} is a coherent algebraic sheaf on W, \mathcal{F}^V is a coherent sheaf of \mathcal{O}_W^V–modules ($n^\circ 17$, Proposition 11), thus a coherent sheaf of \mathcal{O}_V–modules ($n^\circ 16$, Theorem 3). Conversely, if \mathcal{G} is a coherent algebraic sheaf on V whose annihilator contains $\mathcal{I}(W)$, \mathcal{G} can be considered as a sheaf of $\mathcal{O}_V/\mathcal{I}(W)$–modules, and is a coherent sheaf ($n^\circ 16$, Theorem 3); the restriction of \mathcal{G} to W is then a coherent sheaf of \mathcal{O}_W–modules ($n^\circ 17$, Proposition 11).

So, any coherent algebraic sheaf on W can be identified with an algebraic coherent sheaf on V (and this identification does not change cohomology groups, by Proposition 8 of $n^\circ 26$). In particular, any coherent algebraic sheaf on an affine (resp. projective) variety can be considered as a coherent algebraic sheaf on an affine (resp. projective) space; we will frequently use this possibility later.

Remark. Let \mathcal{G} be a coherent algebraic sheaf on V which is zero outside W; the annihilator of \mathcal{G} does not necessarily contain $\mathcal{I}(W)$ (in other words, \mathcal{G} not always can be considered as an coherent algebraic sheaf on W); all we can say is that it contains a power of $\mathcal{I}(W)$.

2.2.40 Sheaves of fractional ideals

Let V be an irreducible algebraic variety and let $K(V)$ denote the constant sheaf of rational functions on V (cf. $n^\circ 36$); $K(V)$ is an algebraic sheaf which is not coherent if $\dim V > 0$. An algebraic subsheaf \mathcal{F} of $K(V)$ can be called a „sheaf of fractional ideals“ since each \mathcal{F}_x is a fractional ideal of $\mathcal{O}_{x,V}$.

Proposition 4. An algebraic subsheaf \mathcal{F} of $K(V)$ is coherent if and only if it is of finite type.

The necessity is trivial. To prove the sufficiency, it suffices to prove that $K(V)$ satisfies condition (b) of definition 2 from $n^\circ 12$, in other that if f_1, \ldots, f_p are rational functions, the sheaf $\mathcal{R}(f_1, \ldots, f_p)$ is of finite type. If x is a point of V, we can find functions g_i and h such that $f_i = g_i/h$, g_i and h being regular in a neighborhood U of x and h being nonzero on U; the sheaf $\mathcal{R}(f_1, \ldots, f_p)$ is then equal to the sheaf $\mathcal{R}(g_1, \ldots, g_p)$, which is of finite type, since \mathcal{O}_V is a coherent sheaf of rings.

2.2.41 Sheaf associated to the total space of a vector bundle (???)

Let E be an algebraic fiber space with a vector space of dimension r as a fiber and an algebraic variety V as a base; by definition, the typical fiber of E is a vector space K^r and the structure group is the linear group $GL(r, K)$ acting on K^r in the usual way (for the definition of an algebraic fiber space, cf. [17]; see also [15], $n^\circ 4$ for analytic vector bundles (???)).

If U is an open subset of V, let $\mathcal{S}(E)_U$ denote the set of regular sections of E on U; if $V \supset U$, we have the restriction homomorphism $\phi^U : \mathcal{S}(E)_V \to \mathcal{S}(E)_U$.
2.2. Coherent algebraic sheaves

Thus a sheaf \(S(E) \), called the sheaf of germs of sections of \(E \). Since \(E \) is a vector bundle, each \(S(E) \mid_U \) is a \(\Gamma(U, \mathcal{O}_V) \)–module and it follows that \(S(E) \) is an algebraic sheaf on \(V \). If we identify locally \(E \) with \(V \times K^r \), we have:

Proposition 5. The sheaf \(S(E) \) is locally isomorphic to \(\mathcal{O}_V \); in particular, it is a coherent algebraic sheaf.

Conversely, it is easily seen that any algebraic sheaf \(F \) on \(V \), locally isomorphic to \(\mathcal{O}_V \), is isomorphic to a sheaf \(S(E) \) where \(E \) is determined up to isomorphism (cf. [15] for the analytic case).

If \(V \) is a variety without singularities, we can take for \(E \) the vector bundle of \(p \)-covectors tangent to \(V \) (\(p \) being a nonnegative integer); let \(\Omega^p \) be the sheaf corresponding to \(S(E) \); an element of \(\Omega^p_x \), \(x \in V \) is just a differential form of degree \(p \) on \(V \), regular in \(x \). If we set \(h^{p,q} = \dim_K \mathcal{H}^q(V, \Omega^p) \), we know that in the classical case (and if \(V \) is projective), \(h^{p,q} \) is equal to the dimension of harmonic forms of type \((p,q) \) (theorem of Dolbeault\(^2\)) and, if \(B_n \) denotes the \(n \)-th Betti number of \(V \), we have \(B_n = \sum_{p+q=n} h^{p,q} \). In the general case, we could take the above formula for the definition of the Betti numbers of a nonsingular projective variety (we will see in \(n \text{°}66 \) that \(h^{p,q} \) are finite). It is convenient to study their properties, in particular to see if they coincide with those involved in the Weil conjectures for varieties over finite fields\(^3\). We only mention that they satisfy the ,,Poincaré duality" \(B_n = B_{2m-n} \), when \(V \) is an irreducible of dimension \(m \). (???)

The cohomology groups \(\mathcal{H}^q(V, S(E)) \) are also involved in other issues, including the Riemann-Roch, as well as in the classification of algebraic fiber spaces with base \(V \) and the affine group \(x \mapsto ax + b \) as the structural group (cf. [17], §4, where the case when \(\dim V = 1 \) is studied).

\(^3\)Bulletin Amer. Math. Soc., 55, 1949, p.507
2.3 Coherent algebraic sheaves on affine varieties

2.3.42 Affine varieties

An algebraic variety V is said to be affine if it is isomorphic to a closed subvariety of an affine space. The product of two affine varieties is an affine variety; any closed subvariety of an affine variety is an affine variety.

An open subset U of an algebraic variety V is said to be affine if, equipped with the structure of an algebraic variety induced from X, it is an affine variety.

Proposition 1. Let U and V be two open subsets of an algebraic variety X. If U and V are affine, $U \cap V$ is affine.

Let Δ be the diagonal of $X \times X$; by $n^\circ \sigma$, the mapping $x \mapsto (x, x)$ is a biregular isomorphism from X onto Δ; thus the restriction of this map to $U \cap V$ is a biregular isomorphism of $U \cap V$ onto $\Delta \cap U \times V$. Since U and V are affine varieties, $U \times V$ is also an affine variety; on the other hand, Δ is closed in $X \times X$ by the axiom $(VAII)$, thus $\Delta \cap U \times V$ is closed in $U \times V$, hence affine, q.e.d.

(It is easily seen that this Proposition is false for prealgebraic varieties; the axiom $(VAII)$ plays an essential role).

Let us now introduce a notation which will be used thorough the rest of this paragraph: if V is an algebraic variety and f is a regular function on V, we denote by V_f the open subset of V consisting of all points $x \in V$ for which $f(x) \neq 0$.

Proposition 2. If V is an affine algebraic variety and f is a regular function on V, the open subset V_f is affine.

Let W be the subset of $V \times K$ consisting of pairs (x, λ) such that $\lambda \cdot f(x) = 1$; it is clear that W is closed in $V \times K$, thus it is an affine variety. For all $(x, \lambda) \in W$ set $\pi(x, \lambda) = x$; the mapping π is a regular mapping from W to V_f. Conversely, for all $x \in V_f$, set $\omega(x) = (x, 1/f(x))$; the mapping $\omega : V_f \to W$ is regular and we have $\pi \circ \omega = 1$, $\omega \circ \pi = 1$, thus V_f and W are isomorphic, q.e.d.

Proposition 3. Let V be a closed subvariety of K^r, F be a closed subset of V and let $U = V - F$. The open subsets V_P form a base for the topology of U when P runs over the set of polynomials vanishing on F.

Let $U' = V - F'$ be an open subset of U and let $x \in U'$; we must show that there exists a P for which $V_P \subset U'$ and $x \in V_P$; in other words, P has to be zero on F' and nonzero in x; the existence of such a polynomial follows simply from the definition of the topology of K^r.

Theorem 1. The open affine subsets of an algebraic variety X form an open base for the topology of X.

49
The question being local, we can assume that X is a locally closed subspace of an affine space K^n; in this case, the theorem follows immediately from Propositions 2 and 3.

Corollary. The coverings of X consisting of open affine subsets are arbitrarily fine.

We note that if $\mathcal{U} = \{U_i\}_{i \in I}$ is such a covering, the $U_{i_0 \ldots i_p}$ are also open affine subsets, by Proposition 1.

2.3.43 Some preliminary properties of irreducible varieties

Let V be a closed subvariety of K^n and let $I(V)$ be the ideal of $K[X_1, \ldots, X_r]$ consisting of polynomials vanishing on V; let A be the quotient ring $K[X_1, \ldots, X_r]/I(V)$; we have a canonical homomorphism

$$\iota: A \rightarrow \Gamma(V, \mathcal{O}_V)$$

that is injective by the definition of $I(V)$.

Proposition 4. If V is irreducible, $\iota: A \rightarrow \Gamma(V, \mathcal{O}_V)$ is bijective.

(In fact, this holds for any closed subvariety of K^n, as will be shown in the next n^3).

Let $K(V)$ be the field of fractions of A; by n^336, we can identify $\mathcal{O}_{x,V}$ with the localization of A in the maximal ideal m_x consisting of polynomials vanishing in x, and we have $\Gamma(V, \mathcal{O}_V) = A = \bigcap_{x \in V} \mathcal{O}_{x,V}$ (all $\mathcal{O}_{x,V}$ being considered as subrings of $K(V)$). But all maximal ideals of A are m_x, since K is algebraically closed (Hilbert’s theorem of zeros); it follows immediately (cf. [8], Chap. XV, §5, th. X) that $A = \bigcap_{x \in V} \mathcal{O}_{x,V} = \Gamma(V, \mathcal{O}_V)$, q.e.d.

Proposition 5. Let X be an irreducible algebraic variety, Q a regular function on X and P a regular function on X_Q. Then, for n sufficiently large, the rational function $Q^n P$ is regular on the whole of X.

By quasi-compactness of X, the question is local; by Theorem 1, we can thus suppose that X is a closed subvariety of K^n. The above Proposition shows that then Q is an element of $A = K[X_1, \ldots, X_r]/(I(X))$. The assumption made on P means that for any point $x \in X_Q$ we can write $P = P_x/Q_x$ with P_x and Q_x in A and $Q_x(x) \neq 0$; if \mathfrak{a} denotes the ideal of A generated by all Q_x, the variety of zeros of \mathfrak{a} is contained in the variety of zeros of Q; by Hilbert’s theorem of zeros, this leads to $Q^n \in \mathfrak{a}$ for n sufficiently large, hence $Q^n = \sum R_x Q_x$ and $Q^n P = \sum R_x P_x$ with $R_x \in A$, which shows that $Q^n P$ is regular on X.

(We could also use the fact that X_Q is affine if X is and apply Proposition 4 to X_Q).

Proposition 6. Let X be an irreducible algebraic variety, Q a regular function on X, \mathcal{F} a coherent algebraic sheaf on X and s a section of \mathcal{F} over X
2.3. Coherent algebraic sheaves on affine varieties

whose restriction to X_Q is zero. Then for n sufficiently large the section Q^ns is zero on the whole of X.

The question being again local, we can assume:
(a) that X is a closed subvariety of K^r,
(b) that \mathcal{F} is isomorphic to a cokernel of a homomorphism $\phi : \mathcal{O}_X^p \to \mathcal{O}_X^q$,
(c) that s is the image of a section σ of \mathcal{F}_X.

(Indeed, all the above conditions are satisfied locally).

Set $A = \Gamma(X, \mathcal{O}_X) = K[X_1, \ldots, X_n]/I(X)$. The section σ can be identified with a system of q elements of A. Let on the other hand

$$t_1 = \phi(1, 0, \ldots, 0), \ldots, t_p = \phi(0, \ldots, 0, 1);$$

the t_i, $1 \leq i \leq p$ are sections of \mathcal{O}_X^p over X, thus can be identified with systems of q elements of A. The assumption made on s means that for all $x \in X_Q$ we have $s(x) \in \phi(\mathcal{O}_X^p, X)$, that is, σ can be written in the form $\sigma = \sum_{i=1}^p f_i \cdot t_i$ with $f_i \in \mathcal{O}_X$; or, by clearing denominators, that there exist $Q_x \in A$, $Q_x(x) \neq 0$ for which $Q_x \cdot \sigma = \sum_{i=1}^p R_i \cdot t_i$ with $R_i \in A$. The reasoning used above shows then that, for n sufficiently large, Q^n belongs to the ideal generated by Q_x, hence $Q^n\sigma(x) \in \phi(\mathcal{O}_X^p, X)$ for all $x \in X$, which means that Q^ns is zero on the whole of X.

2.3.44 Vanishing of certain cohomology groups

Proposition 7. Let X be an irreducible algebraic variety, Q_i a finite family of regular functions on X that do not vanish simultaneously and \mathfrak{U} the open covering of X consisting of $X_{Q_i} = U_i$. If \mathcal{F} is a coherent algebraic subsheaf of \mathcal{O}_X^p, we have $H^q(\mathfrak{U}, \mathcal{F}) = 0$ for all $q > 0$.

Possibly replacing \mathfrak{U} by an equivalent covering, we can assume that none of the functions Q_i vanishes identically, in other words that we have $U_i \neq \emptyset$ for all i.

Let $f = (f_{i_0 \ldots i_q})$ be a q-cocycle of \mathfrak{U} with values in \mathcal{F}. Each $f_{i_0 \ldots i_q}$ is a section of \mathcal{F} over $U_{i_0 \ldots i_q}$, thus can be identified with a system of p regular functions on $U_{i_0 \ldots i_q}$; applying Proposition 5 to $Q = Q_{i_0} \ldots Q_{i_q}$ we see that, for n sufficiently large, $g_{i_0 \ldots i_q} = (Q_{i_0} \ldots Q_{i_q})^n f_{i_0 \ldots i_q}$ is a system of p regular functions on X. Choose an integer n for which this holds for all systems i_0, \ldots, i_q, which is possible because there is a finite number of such systems. Consider the image of $g_{i_0 \ldots i_q}$ in the coherent sheaf $\mathcal{O}_X^p/\mathcal{F}$; this is a section vanishing on $U_{i_0 \ldots i_q}$; then applying Proposition 6 we see that for m sufficiently large, the product of this section with $(Q_{i_0} \ldots Q_{i_q})^m$ is zero on the whole of X. Setting $N = m + n$, we see that we have constructed sections $h_{i_0 \ldots i_q}$ of \mathcal{F} over X which coincide with $(Q_{i_0} \ldots Q_{i_q})^N f_{i_0 \ldots i_q}$ on $U_{i_0 \ldots i_q}$.

As the Q^n_i do not vanish simultaneously, there exist functions

$$R_i \in \Gamma(X, \mathcal{O}_X)$$
such that $\sum R_i Q_i^N = 1$. Then for any system i_0, \ldots, i_{q-1} set

$$k_{i_0 \ldots i_{q-1}} = \sum_i R_i h_{i_0 \ldots i_{q-1}}/(Q_{i_0} \ldots Q_{i_{q-1}})^N,$$

which makes sense because $Q_{i_0} \ldots Q_{i_{q-1}}$ is nonzero on $U_{i_0 \ldots i_{q-1}}$.

We have thus defined a cochain $k \in C^{q-1}(\mathcal{U}, \mathcal{F})$. I claim that $f = dk$, which will show the Proposition.

We must check that $(dk)_{i_0 \ldots i_q} = f_{i_0 \ldots i_q}$; it suffices to show that these two sections coincide on $U = \bigcap U_i$, since they will coincide everywhere, because they are systems of p rational functions on X and $U \neq 0$. Now over U, we can write

$$k_{i_0 \ldots i_{q-1}} = \sum_i R_i \cdot Q_i^N \cdot f_{i_0 \ldots i_q},$$

hence

$$(dk)_{i_0 \ldots i_q} = \sum_{j=0}^{j=q} (-1)^j \sum_i R_i \cdot Q_i^N \cdot f_{i_0 \ldots i_j \ldots i_q}$$

and taking into account that f is a cocycle,

$$(dk)_{i_0 \ldots i_q} = \sum_i R_i \cdot Q_i^N \cdot f_{i_0 \ldots i_q} = f_{i_0 \ldots i_q}, \qquad q.e.d.$$

Corollary 1. $H^q(X, \mathcal{F}) = 0$ for $q > 0$.

Indeed, Proposition 3 shows that coverings of the type used in Proposition 7 are arbitrarily fine.

Corollary 2. The homomorphism $\Gamma(X, \mathcal{O}_X^p) \rightarrow \Gamma(X, \mathcal{O}_X^p/\mathcal{F})$ is surjective.

This follows from Corollary 1 above and from Corollary 2 to Proposition 6 from n^o24.

Corollary 3. Let V be a closed subvariety of K^r and let

$$A = K[X_1, \ldots, X_r]/I(V).$$

Then the homomorphism $\iota: A \rightarrow \Gamma(V, \mathcal{O}_V)$ is bijective.

We apply Corollary 2 above to $X = K^r$, $p = 1$, $\mathcal{F} = \mathcal{J}(V)$, the sheaf of ideals defined by V; we obtain that every element of $\Gamma(V, \mathcal{O}_V)$ is the restriction of a section of \mathcal{O} on X, that is, a polynomial, by Proposition 4 applied to X.

52
2.3.45 Sections of a coherent algebraic sheaf on an affine variety

Theorem 2. Let \mathcal{F} be a coherent algebraic sheaf on an affine variety X. For every $x \in X$, the $\mathcal{O}_{x,X}$-module F_x is generated by elements of $\Gamma(X, \mathcal{F})$.

Since X is affine, it can be embedded as a closed subvariety of an affine space K^n; by extending the sheaf \mathcal{F} by 0 outside X, we obtain a coherent algebraic sheaf on K^n (cf. n°39) and we are led to prove the theorem for the new sheaf. In other words, we can suppose that $X = K^n$.

By the definition of a coherent sheaf, there exists a covering of X consisting of open subsets on which \mathcal{F} is isomorphic with a quotient of the sheaf \mathcal{O}^p. Applying Proposition 3, we see that there exists a finite number of polynomials Q_i that do not vanish simultaneously and such that on every $U_i = X_{Q_i}$, there exists a surjective homomorphism $\phi_i : \mathcal{O}^{p_i} \to \mathcal{F}$; we can furthermore assume that none of the polynomials is identically zero.

The point x belongs to one U_i, say U_0; it is clear that F_x is generated by sections of \mathcal{F} over U_0; as Q_0 is invertible in \mathcal{O}_x, it suffices to prove the following lemma:

Lemma 1. If s_0 is a section of \mathcal{F} over U_0, there exists an integer N and a section s of \mathcal{F} over X such that $s = Q_0^N \cdot s_0$ over U_0.

By Proposition 2, $U_i \cap U_0$ is an affine variety, obviously irreducible; by applying Corollary 2 of Proposition 7 to this variety and to $\phi_i : \mathcal{O}^{p_i} \to \mathcal{F}$, we see that there exists a section σ_{0i} of \mathcal{O}^{p_i} on $U_i \cap U_0$ such that $\phi_i(\sigma_{0i}) = s_0$ on $U_i \cap U_0$; as $U_i \cap U_0$ is the set of points of U_i in which Q_0 does not vanish, we can apply Proposition 5 to $X = U_i$, $Q = Q_0$ and we see that there exists, for n sufficiently large, a section σ_i of \mathcal{O}^{p_i} over U_i which coincides with $Q_0^N \cdot \sigma_{0i}$ over $U_i \cap U_0$; by setting $s'_i = \phi_i(\sigma_i)$, we obtain a section of \mathcal{F} over U_i that coincides with $Q_0^n \cdot s_0$ over $U_i \cap U_0$. The sections s'_i and s'_j coincide on $U_i \cap U_j \cap U_0$; applying Proposition 6 to $s'_i - s'_j$, we see that for m sufficiently large we have $Q_0^m(s'_i - s'_j) = 0$ on the whole of $U_i \cap U_j \cap U_0$. The $Q_0^m \cdot s'_i$ then define a unique section s of \mathcal{F} over X, and we have $s = Q_0^{n+m} \cdot s_0$ on U_0, which shows the lemma and completes the proof of Theorem 2.

Corollary 1. The sheaf \mathcal{F} is isomorphic to a quotient sheaf of the sheaf \mathcal{O}^p_X.

Because \mathcal{F}_x is an $\mathcal{O}_{x,X}$-module of finite type, it follows from the above theorem that there exists a finite number of sections of \mathcal{F} generating \mathcal{F}_x; by Proposition 1 of n°12, these sections generate \mathcal{F}_y for y sufficiently close to x. The space X being quasi-compact, we conclude that there exists a finite number of sections s_1, \ldots, s_p of \mathcal{F} generating \mathcal{F}_x for all $x \in X$, which means that \mathcal{F} is isomorphic to a quotient sheaf of the sheaf \mathcal{O}^p_X.

53
2.3. Coherent algebraic sheaves on affine varieties

Corollary 2. Let \(A \xrightarrow{\alpha} B \xrightarrow{\beta} C \) be an exact sequence of coherent algebraic sheaves on an affine variety \(X \). The sequence \(\Gamma(X, A) \xrightarrow{\alpha} \Gamma(X, B) \xrightarrow{\beta} \Gamma(X, C) \) is also exact.

We can suppose, as in the proof of Theorem 2, that \(X \) is an affine space \(K^r \), thus is irreducible. Set \(J = \mathfrak{I}(\alpha) = \text{Ker}(\beta) \); everything reduces to seeing that \(\alpha : \Gamma(X, A) \xrightarrow{} \Gamma(X, J) \) is surjective. Now, by Corollary 1, we can find a surjective homomorphism \(\phi : \mathcal{O}_X \rightarrow A \) and, by Corollary 2 to Proposition 7, \(\alpha \circ \phi : \Gamma(X, \mathcal{O}_X) \rightarrow \Gamma(X, J) \) is surjective; it is a fortiori the same as \(\alpha : \Gamma(X, A) \rightarrow \Gamma(X, J) \) (??), q.e.d.

2.3.46 Cohomology groups of an affine variety with values in a coherent algebraic sheaf

Theorem 3. Let \(X \) be an affine variety, \(Q_1 \) a finite family of regular functions on \(X \) that do not vanish simultaneously and let \(\mathcal{U} \) be the open covering of \(X \) consisting of \(X_{Q_i} = U_i \). If \(\mathcal{F} \) is a coherent algebraic sheaf on \(X \), we have \(H^q(\mathcal{U}, \mathcal{F}) = 0 \) for all \(q > 0 \).

Assume first that \(X \) is irreducible. By Corollary 1 to Theorem 2, we can find an exact sequence

\[
0 \rightarrow R \rightarrow \mathcal{O}_X^p \rightarrow \mathcal{F} \rightarrow 0.
\]

The sequence of complexes: \(0 \rightarrow C(\mathcal{U}, R) \rightarrow C(\mathcal{U}, \mathcal{O}_X^p) \rightarrow C(\mathcal{U}, \mathcal{F}) \rightarrow 0 \) is exact; indeed, this reduces to saying that every section of \(\mathcal{F} \) over \(U_{i_0 \ldots i_q} \) is the image of a section of \(\mathcal{O}_X^p \) over \(U_{i_0 \ldots i_q} \), which follows from Corollary 2 to Proposition 7 applied to the irreducible variety \(U_{i_0 \ldots i_q} \). This exact sequence gives birth to an exact sequence of cohomology:

\[
\ldots \rightarrow H^q(\mathcal{U}, \mathcal{O}_X^p) \rightarrow H^q(\mathcal{U}, \mathcal{F}) \rightarrow H^{q+1}(\mathcal{U}, R) \rightarrow \ldots,
\]

and as \(H^q(\mathcal{U}, \mathcal{O}_X^p) = H^{q+1}(\mathcal{U}, R) = 0 \) for \(q > 0 \) by Proposition 7, we conclude that \(H^q(\mathcal{U}, \mathcal{F}) = 0 \).

We proceed now to the general case. We can embed \(X \) as a closed subvariety of an affine space \(K^r \); by Corollary 3 to Proposition 7, the functions \(Q_i \) are induced by polynomials \(P_i \); let on the other hand \(R_j \) be a finite system of generators of the ideal \(I(X) \). The functions \(P_i, R_j \) do not vanish simultaneously on \(K^r \), thus define an open covering \(\mathcal{U}' \) of \(K^r \); let \(\mathcal{F}' \) be the sheaf obtained by extending \(\mathcal{F} \) by 0 outside \(X \); applying what we have proven to the space \(K^r \), the functions \(P_i, R_j \) and the sheaf \(\mathcal{F}' \), we see that \(H^q(\mathcal{U}', \mathcal{F}') = 0 \) for \(q > 0 \). As we can immediately verify that the complex \(C(\mathcal{U}', \mathcal{F}') \) is isomorphic to the complex \(C(\mathcal{U}, \mathcal{F}) \), it follows that \(H^q(\mathcal{U}, \mathcal{F}) = 0 \), q.e.d.

Corollary 1. If \(X \) is an affine variety and \(\mathcal{F} \) a coherent algebraic sheaf on \(X \), we have \(H^q(X, \mathcal{F}) = 0 \) for all \(q > 0 \).

Indeed, the coverings used in the above theorem are arbitrarily fine.
Corollary 2. Let $0 \to A \to B \to C \to 0$ be an exact sequence of sheaves on an affine variety X. If the sheaf A is coherent algebraic, the homomorphism $\Gamma(X, B) \to \Gamma(X, C)$ is surjective.

This follows from Corollary 1, by setting $q = 1$.

2.3.47 Coverings of algebraic varieties by open affine subsets

Proposition 8. Let X be an affine variety and let $\mathcal{U} = \{U_i\}_{i \in I}$ be a finite covering of X by open affine subsets. If \mathcal{F} is a coherent algebraic sheaf on X, we have $H^q(\mathcal{U}, \mathcal{F}) = 0$ for all $q > 0$.

By Proposition 3, there exist regular functions P_i on X such that the covering $\mathcal{B} = \{X_{P_i}\}$ is finer than \mathcal{U}. For every (i_0, \ldots, i_p), the covering $\mathcal{B}_{i_0, \ldots, i_p}$ induced by \mathcal{B} on U_{i_0, \ldots, i_p} is defined by restrictions of P_i to U_{i_0, \ldots, i_p}; as U_{i_0, \ldots, i_p} is an affine variety by Proposition 1, we can apply Theorem 3 to it and conclude that $H^q(\mathcal{B}_{i_0, \ldots, i_p}, \mathcal{F}) = 0$ for all $q > 0$. Applying then Proposition 5 of $n \circ 29$, we see that

$$H^q(\mathcal{U}, \mathcal{F}) = H^q(\mathcal{B}, \mathcal{F}),$$

and, as $H^q(\mathcal{B}, \mathcal{F}) = 0$ for $q > 0$ by Theorem 3, the Proposition is proven.

Theorem 4. Let X be an algebraic variety, \mathcal{F} a coherent algebraic sheaf on X and $\mathcal{U} = \{U_i\}_{i \in I}$ a finite covering of X by open affine subsets. The homomorphism $\sigma(\mathcal{U}) : H^n(\mathcal{U}, \mathcal{F}) \to H^n(X, \mathcal{F})$ is bijective for all $n \geq 0$.

Consider the family \mathcal{B}^α of all finite coverings of X by open affine subsets. By the corollary of Theorem 1, these coverings are arbitrarily fine. On the other hand, for every system (i_0, \ldots, i_p) the covering $\mathcal{B}^\alpha_{i_0, \ldots, i_p}$ induced by \mathcal{B}^α on U_{i_0, \ldots, i_p} is a covering by open affine subsets, by Proposition 1; by Proposition 8, we thus have $H^q(\mathcal{B}^\alpha_{i_0, \ldots, i_p}, \mathcal{F}) = 0$ for $q > 0$. The conditions (a) and (b) of Theorem 1, $n \circ 29$ are satisfied and the theorem follows.

Theorem 5. Let X be an algebraic variety and $\mathcal{U} = \{U_i\}_{i \in I}$ a finite covering of X by open affine subsets. Let $0 \to A \to B \to C \to 0$ be an exact sequence of sheaves on X, the sheaf A being coherent algebraic. The canonical homomorphism $H^q(\mathcal{U}, C) \to H^q(\mathcal{U}, A)$ (cf. $n \circ 24$) is bijective for all $q \geq 0$.

It obviously suffices to prove that $C_0(\mathcal{U}, C) = C(\mathcal{U}, C)$, that is, that every section of C over U_{i_0, \ldots, i_p} is the image of a section of B over U_{i_0, \ldots, i_q}, which follows from Corollary 2 of Theorem 3.

Corollary 1. Let X be an algebraic variety and let $0 \to A \to B \to C \to 0$ be an exact sequence of sheaves on X, the sheaf A being coherent algebraic. The canonical homomorphism $H^q(\mathcal{U}, C) \to H^q(\mathcal{U}, A)$ is bijective for all $q \geq 0$.

This is an immediate consequence of Theorems 1 and 5.

Corollary 2. We have an exact sequence:

$$\ldots \to H^q(X, \mathcal{B}) \to H^q(X, \mathcal{C}) \to H^{q+1}(X, \mathcal{A}) \to H^{q+1}(X, \mathcal{B}) \to \ldots$$
2.4 Correspondence between modules and sheaves

2.4.48 Sheaf associated to a module

Let V be an affine variety, \mathcal{O} the sheaf of local rings of V; the ring $A = \Gamma(V, \mathcal{O})$, which will be called the ring of coordinates of V, is an algebra over K which has no nilpotent elements but 0. If V is embedded as a closed subvariety of an affine space K^r, we know (cf. n°44) that A is identified with the quotient algebra of $K[\{X_1, \ldots, X_r\}]$ by the ideal of polynomials vanishing on V; it follows that the algebra A is generated by a finite number of elements.

Conversely, we verify easily that if A is a commutative K–algebra without nilpotent elements (other than 0) and is generated by a finite number of elements, there exists an affine variety V such that A is isomorphic to $\Gamma(V, \mathcal{O})$; moreover, V is determined up to isomorphism by this property (we can identify V with the set of characters/maximal ideals of A equipped with the usual topology).

Let M be an A–module; M defines a constant sheaf on V which we denote again by M; the same way A defines a constant sheaf, and the sheaf M can be considered as a sheaf of A–modules. Define $A(M) = \mathcal{O} \otimes_A M$, the sheaf \mathcal{O} being also considered as a sheaf of A–modules; it is clear that $A(M)$ is an algebraic sheaf on V. Moreover, if $\phi : M \to M'$ is an A–homomorphism, we have a homomorphism $A(\phi) = 1 \otimes \phi : A(M) \to A(M')$; in other words, $A(M)$ is a covariant functor of the module M.

Proposition 1. The functor $A(M)$ is exact.

Let $M \to M' \to M''$ be an exact sequence of A–modules. We must observe that the sequence $A(M) \to A(M') \to A(M'')$ is exact, in other words, that for all $x \in V$ the sequence:

$$\mathcal{O}_x \otimes_A M \to \mathcal{O}_x \otimes_A M' \to \mathcal{O}_x \otimes_A M''$$

is exact.

Now \mathcal{O}_x is nothing else than the localization A_S of A, S being the set of those $f \in A$ for which $f(x) \neq 0$ (for the definition of localization, cf. [8], [12] or [13]). Proposition 1 is thus a particular case of the following result:

Lemma 1. Let A be a ring, S a multiplicative system in A (???) not containing 0, A_S the localization of A in S. If $M \to M' \to M''$ is an exact sequence of A–modules, the sequence $A_S \otimes_A M \to A_S \otimes_A M' \to A_S \otimes_A M''$ is exact.

Denote by M_S the set of fractions m/s with $m \in M$, $s \in S$, two fractions m/s and m'/s' being identified if there exists an $s'' \in S$ such that $s''(s'm - s'm') = 0$; it is easily seen that M_S is an A_S–module and that the mapping

$$a/s \otimes m \mapsto a \cdot m/s$$
is an isomorphism from $A_s \otimes_A A$ onto M_S; we are thus led to prove that the sequence
\[M_S \to M'_S \to M''_S \]
is exact, which is obvious.

Proposition 2. $A(M) = 0$ implies $M = 0$.

Let m be an element of M; if $A(M) = 0$, we have $1 \otimes m = 0$ in $O_x \otimes_A M$ for all $x \in V$. By the discussion above, $1 \otimes m = 0$ is equivalent to existence of an element $s \in A$, $s(x) \neq 0$ such that $s \cdot m = 0$; the annihilator of m in M is not contained in any maximal ideal of A, which implies that it is equal to A, so $m = 0$.

Proposition 3. If M is an A–module of finite type, $A(M)$ is a coherent algebraic sheaf on V.

Because M is of finite type and since A is noetherian, M is isomorphic to the cokernel of a homomorphism $\phi : A^q \to A^p$ and $A(M)$ is isomorphic to the cokernel of $A(\phi) : A(A^q) \to A(A^p)$. As $A(A^p) = O^p$ and $A(A^q) = O^q$, it follows that $A(M)$ is coherent.

2.4.49 Module associated to an algebraic sheaf

Let F be an algebraic sheaf on V and let $\Gamma(F) = \Gamma(V, F)$: since F is a sheaf of O–modules, $\Gamma(F)$ is equipped with a natural structure of an A–module. Any algebraic homomorphism $\phi : F \to G$ defines an A–homomorphism $\Gamma(\phi) : \Gamma(F) \to \Gamma(G)$. If we have an exact sequence of algebraic sheaves $F \to G \to K$, the sequence
\[\Gamma(F) \to \Gamma(G) \to \Gamma(K) \]
is exact (n²45); applying this to an exact sequence $O^p \to F \to 0$ we see that $\Gamma(F)$ is an A–module of finite type if F is coherent.

The functors $A(M)$ and $\Gamma(F)$ are ,,inverse” to each other:

Theorem 1. (a) If M is an A–module of finite type, $\Gamma(A(M))$ is canonically isomorphic to M.
(b) If F is a coherent algebraic sheaf on V, $A(\Gamma(F))$ is canonically isomorphic to F.

First let us show (a). Every element $m \in M$ defines a section $\alpha(m)$ of $A(M)$ by the formula: $\alpha(m)(x) = 1 \otimes m \in O_x \otimes_A M$; hence a homomorphism $\alpha : M \to \Gamma(A(M))$. When M is a free module of finite type, α is bijective (it suffices to see this when $M = A$, in which case it is obvious); if M is an arbitrary module of finite type, there exists an exact sequence $L^1 \to L^0 \to M \to 0$ where L^0 and L^1 are free of finite type; the sequence $A(L^1) \to A(L^0) \to A(M) \to 0$ is exact, thus also the sequence $\Gamma(A(L^1)) \to \Gamma(A(L^0)) \to \Gamma(A(M)) \to 0$. The commutative diagram:

\[\text{DIAGRAM2} \]
shows then that \(\alpha : M \to \Gamma(A(M)) \) is bijective, which shows (a).

Let now \(F \) be an algebraic coherent sheaf on \(V \). If we associate to every \(s \in \Gamma(F) \) an element \(s(x) \in F(X) \), we obtain an \(A \)-homomorphism: \(\Gamma(F) \to F_x \) which extends to an \(O_x \)-homomorphism \(\beta_x : O_x \otimes_A \Gamma(F) \to F_x \); we easily verify that the \(\beta_x \) form a homomorphism of sheaves \(\beta : A(\Gamma(F)) \to F \). When \(F = \mathcal{O}^p \), the homomorphism \(\beta \) is bijective; it follows by the same reasoning as above that \(\beta \) is bijective for every coherent algebraic sheaf \(F \), which shows (b).

Remarks. (1) We could also deduce (b) from (a); cf. \(\eta \circ \delta \), proof of Proposition 6.
(2) We will see in Chapter III how we can modify the above correspondence when we study coherent sheaves on the projective space. (???)

2.4.50 Projective modules and vector bundles

Recall ([6], Chap. I, th. 2.2) that an \(A \)-module is called \textit{projective} if it is a direct summand of a free \(A \)-module.

Proposition 4. Let \(M \) be an \(A \)-module of finite type. Then \(M \) is projective if and only if the \(O_x \)-module \(O_x \otimes_A M \) is free for every \(x \in V \).

If \(M \) is projective, \(O_x \otimes_A M \) is \(O_x \)-projective, thus \(O_x \)-free since \(O_x \) is a local ring (cf. [6], Chap. VIII, th. 6.1').

Conversely, if all \(O_x \otimes_A M \) are free, we have

\[
\dim(M) = \sup \dim_{x \in V}(O_x \otimes_A M) = 0 \quad (\text{cf.}[6],\, \text{Chap.} \text{ VII}, \text{Exer.} 11),
\]

from which it follows that \(M \) is projective ([6], Chap. VI, §2).

Note that if \(F \) is a coherent algebraic sheaf on \(V \) and if \(F_x \) is isomorphic to \(\mathcal{O}^p \), \(F \) is isomorphic to \(\mathcal{O}^p \) in a neighborhood of \(x \); if this property is satisfied in every \(x \in V \), the sheaf \(F \) is thus locally isomorphic to the sheaf \(\mathcal{O}^p \), the integer \(p \) being constant on every connected component of \(V \). Applying this to the sheaf \(A(M) \), we obtain:

Corollary. Let \(F \) be a coherent algebraic sheaf on a connected affine variety \(V \). The three following properties are equivalent:

(i) \(\Gamma(F) \) is a projective \(A \)-module,
(ii) \(F \) is locally isomorphic to \(\mathcal{O}^p \),
(iii) \(F \) is isomorphic to the sheaf of germs of sections of a vector bundle with base \(V \).

In other words, the mapping \(E \mapsto \Gamma(S(E)) \) (\(E \) denoting a vector bundle) gives a bijective correspondence between classes of vector bundles and classes of projective \(A \)-modules of finite type; in this correspondence, a \textit{trivial} bundle corresponds to a \textit{free} module and conversely.

Note that when \(V = K^r \) (in which case \(A = K[X_1, \ldots, X_r] \)), we do not know if there exist projective \(A \)-modules that are not free, or equivalently, if there exist algebraic vector bundles with base \(K^r \) that are not trivial.
Chapter 3

Coherent algebraic sheaves on projective varieties
3.1 Projective varieties

3.1.51 Notations

(The notations introduced below will be used without reference during the whole chapter).

Let \(r \) be an integer \(\geq 0 \) and let \(Y = K^{r+1} - \{0\} \); the multiplicative group \(K^* \) of nonzero elements of \(K \) acts on \(Y \) by the formula

\[
\lambda(\mu_0, \ldots, \mu_r) = (\lambda \mu_0, \ldots, \lambda \mu_r).
\]

Two points \(y \) and \(y' \) will be called equivalent if there exists \(\lambda \in K^* \) such that \(y' = \lambda y \); the quotient space of \(Y \) by this equivalence relation will be denoted by \(\mathbb{P}_r(K) \) or simply \(X \); it is the projective space of dimension \(r \) over \(K \); the canonical projection of \(Y \) onto \(X \) will be denoted \(\pi \).

Let \(I = \{0, 1, \ldots, r\} \); for every \(i \in I \), we denote by \(t_i \) the \(i \)-th coordinate function on \(K^{r+1} \), defined by the formula:

\[
t_i(\mu_0, \ldots, \mu_r) = \mu_i.
\]

We denote by \(V_i \) the open subset of \(K^{r+1} \) consisting of points whose \(t_i \) is \(\neq 0 \) and by \(U_i \) the image of \(V_i \) by \(\pi \); the \(\{U_i\} \) form a covering \(\Omega \) of \(X \). If \(i \in I \) and \(j \in I \), the function \(t_j/t_i \) is regular on \(V_i \) and invariant for \(K^* \), thus defines a function on \(U_i \) which we denote also by \(t_j/t_i \); for fixed \(i \), the functions \(t_j/t_i \), \(j \neq i \) define a bijection \(\phi_i : U_i \rightarrow K^r \).

We equip \(K^{r+1} \) with the structure of an algebraic variety and \(Y \) the induced structure. Likewise, we equip \(X \) with the quotient topology from \(Y \); a closed subset of \(X \) is thus the image by \(\pi \) of a closed cone in \(K^{r+1} \). If \(U \) is open in \(X \), we define \(A_U = \Gamma(\pi^{-1}(U), \mathcal{O}_Y) \); this is the sheaf of regular functions on \(\pi^{-1}(U) \). Let \(A_U^0 \) be the subring of \(A_U \) consisting of elements invariant for \(K^* \) (that is, homogeneous functions of degree 0). When \(V \supset U \), we have a restriction homomorphism \(\phi_U^V : A_U^0 \rightarrow A_V^0 \) and the system \((A_U^0, \phi_U^V) \) defines a sheaf \(\mathcal{O}_X \) which can be considered as a subsheaf of the sheaf \(\mathcal{F}(X) \) of germs of functions on \(X \). Such a function \(f \), defined in a neighborhood of \(x \) belongs to \(\mathcal{O}_{x,X} \) if and only if it coincides locally with a function of the form \(P/Q \) where \(P \) and \(Q \) are homogeneous polynomials of the same degree in \(t_0, \ldots, t_r \) with \(Q(y) \neq 0 \) for \(y \in \pi^{-1}(x) \) (which we write for brevity as \(Q(x) \neq 0 \)).

Proposition 1. The projective space \(X = \mathbb{P}_r(K) \), equipped with the topology and sheaf above, is an algebraic variety.

The \(U_i, i \in I \) are open in \(X \) and we verify immediately that the bijections \(\phi_i : U_i \rightarrow K^r \) defined above are biregular isomorphisms, which shows that the axiom \((VA_{II}) \) is satisfied. To show that \((VA_{III}) \) is also satisfied, we must observe
that the subset of $K^r \times K^r$ consisting of all pairs $(\psi_i(x), \psi_j(x))$ where $x \in U_i \cap U_j$ is closed, which does not pose difficulties.

In what follows, X will be always equipped with the structure of an algebraic variety just defined; the sheaf \mathcal{O}_X will be simply denoted \mathcal{O}. An algebraic variety V is called projective if it is isomorphic to a closed subvariety of a projective space. The study of coherent algebraic sheaves on projective varieties can be reduced to the study of coherent algebraic sheaves on $\mathbb{P}_r(K)$, cf. n\circ39.

3.1.52 Cohomology of subvarieties of the projective space

Let us apply Theorem 4 from n\circ47 to the covering $\mathcal{U} = \{U_i\}_{i \in I}$ defined in the preceding n\circ: it is possible since each U_i is isomorphic to K^r. We thus obtain:

Proposition 2. If \mathcal{F} is a coherent algebraic sheaf on $X = \mathbb{P}_r(K)$, the homomorphism $\sigma(\mathcal{U}) : H^n(\mathcal{U}, \mathcal{F}) \to H^n(X, \mathcal{F})$ is bijective for all $n \neq 0$.

Since \mathcal{U} consists of $r + 1$ open subsets, we have (cf. n\circ20, corollary to Proposition 2):

Corollary. $H^n(X, \mathcal{F}) = 0$ for $n > r$.

This result can be generalized in the following way:

Proposition 3. Let V be an algebraic variety, isomorphic to a locally closed subvariety of the projective space X. Let \mathcal{F} be an algebraic coherent sheaf on V and let W be the subvariety of V such that \mathcal{F} is zero outside W. We then have $H^n(V, \mathcal{F}) = 0$ for $n > \dim W$.

In particular, taking $W = V$, we see that we have:

Corollary. $H^n(V, \mathcal{F}) = 0$ for $n > \dim V$.

Identify V with a locally closed subvariety of $X = \mathbb{P}_r(K)$; there exists an open subset U of X such that V is closed in U. We can clearly assume that W is closed in V, so that W is closed in U. Let $F = X - U$. Before proving Proposition 3, we establish two lemmas:

Lemma 1. Let $k = \dim W$; there exists $k + 1$ homogeneous polynomials $P_1(t_0, \ldots, t_r)$ of degrees > 0, vanishing on F and not vanishing simultaneously on W.

(By abuse of language, we say that a homogeneous polynomial P vanishes in a point x of $\mathbb{P}_r(K)$ if it vanishes on $\pi^{-1}(x)$).

We proceed by induction on k, the case when $k = -1$ being trivial. Choose a point on each irreducible component of W and let P_1 be a homogeneous polynomial vanishing on F, of degree > 0 and nonvanishing in each of these points (the existence of P_1 follows from the fact that F is closed, given the definition of the topology of $\mathbb{P}_r(K)$). Let W' be a subvariety of W consisting of points $x \in W$ such that $P_1(x) = 0$; by the construction of P_1, no irreducible component of W is contained in W' and it follows (cf. n\circ36) that $\dim W' < k$. Applying the
3.1. Projective varieties

FAC ON PROJECTIVE VARIETIES

induction assumption to \(W' \), we see that there exist \(k \) homogeneous polynomials \(P_2, \ldots, P_{k+1} \) vanishing on \(F \) and nonvanishing simultaneously on \(W' \); it is clear that the polynomials \(P_1, \ldots, P_{k+1} \) satisfy appropriate conditions.

Lemma 2. Let \(P(t_0, \ldots, t_r) \) be a homogeneous polynomial of degree \(n > 0 \). The set \(X_P \) of all points \(x \in X \) such that \(P(x) \neq 0 \) is an open affine subset of \(X \).

If we assign to every point \(y = (\mu_0, \ldots, \mu_r) \in Y \) the point of the space \(K^N \) having for coordinates all monomials \(\mu_0^m \ldots \mu_r^m, m_0 + \ldots + m_r = n \), we obtain, by passing to quotient, a mapping \(\phi_n : X \to \mathbb{P}^N(K) \). It is classical, and also easy to verify, that \(\phi_n \) is a birational isomorphism of \(X \) onto a closed subvariety of \(\mathbb{P}^N(K) \) ("Veronese variety"); now \(\phi_n \) transforms the open subset \(X_P \) onto the locus of points of \(\phi_n(X) \) not lying on a certain hyperplane of \(\mathbb{P}^N(X) \); as the complement of any hyperplane is isomorphic to an affine space, we conclude that \(X_P \) is isomorphic to a closed subvariety of an affine space.

We shall now prove Proposition 3. Extend the sheaf \(\mathcal{F} \) by 0 on \(U - V \); we obtain a coherent algebraic sheaf on \(U \) which we also denote by \(\mathcal{F} \), and we know (cf. n°26) that \(H^n(U, \mathcal{F}) = H^n(V, \mathcal{F}) \). Let on the other hand \(P_1, \ldots, P_{k+1} \) be homogeneous polynomials satisfying the conditions of Lemma 1; let \(P_{k+2}, \ldots, P_h \) be homogeneous polynomials of degrees \(> 0 \), vanishing on \(W \) and not vanishing simultaneously in any point of \(U - W \) (to obtain such polynomials, it suffices to take a system of homogeneous coordinates of the ideal defined by \(W \cup \mathcal{F} \) in \(K[t_0, \ldots, t_r] \)). For every \(i, 1 \leq i \leq h \), let \(V_i \) be the set of points \(x \in X \) such that \(P_i(x) \neq 0 \); we have \(V_i \subset U \) and the assumptions made above show that \(\mathfrak{B} = \{V_i\} \) is an open covering of \(U \); moreover, Lemma 2 shows that \(V_i \) are open affine subsets, so \(H^n(\mathfrak{B}, \mathcal{F}) = H^n(U, \mathcal{F}) = H^n(V, \mathcal{F}) \) for all \(n \geq 0 \).

On the other hand, if \(n > k \) and if the indices \(i_0, \ldots, i_n \) are distinct, one of the indices is \(> k + 1 \) and \(V_{i_0 \ldots i_n} \) does not meet \(W \); we conclude that the group of alternating cochains \(C^n(\mathfrak{B}, \mathcal{F}) \) is zero if \(n > k \), which shows that \(H^n(\mathfrak{B}, \mathcal{F}) = 0 \), by Proposition 2 of n°20.

3.1.53 Cohomology of irreducible algebraic curves

If \(V \) is an irreducible algebraic variety of dimension 1, the closed subsets of \(V \) distinct from \(V \) are finite subsets. If \(F \) is a finite subset of \(V \) and \(x \) a point of \(F \), we set \(V^F_x = (V - F) \cup \{x\} \); the \(V^F_x \), \(x \in F \) form a finite open covering \(\mathfrak{B}^F \) of \(V \).

Lemma 3. The coverings \(\mathfrak{B}^F \) of the above type are arbitrarily fine.

Let \(\mathfrak{U} = \{U_i\}_{i \in I} \) be an open covering of \(V \), which we may assume to be finite since \(V \) is quasi-compact. We can likewise assume that \(U_i \neq 0 \) for all \(i \in I \).

If we set \(F_i = V - U_i \), \(F_i \) is also finite, and so is \(F = \bigcup_{i \in I} F_i \). We will show that \(\mathfrak{B}^F \prec \mathfrak{U} \), which proves the lemma. Let \(x \in F \); there exists an \(i \in I \) such that \(x \notin F_i \), since the \(U_i \) cover \(V \); we have then \(F - \{x\} \supset F_i \), because \(F \supset F_i \), which means that \(V^F_x \subset U_i \) and shows that \(\mathfrak{B}^F \prec \mathfrak{U} \).
Lemma 4. Let \mathcal{F} be a sheaf on V and F a finite subset of V. We have

$$H^n(\mathcal{B}^F, \mathcal{F}) = 0$$

for $n \geq 2$.

Set $W = V - F$; it is clear that $V_{x_0}^F \cap \ldots \cap V_{x_n}^F = W$ if x_0, \ldots, x_n are distinct and if $n \geq 1$. If we put $G = \Gamma(W, \mathcal{F})$, it follows that the alternating complex $C'(\mathcal{B}^F, \mathcal{F})$ is isomorphic, in dimensions ≥ 1, to $C'(S(F), G)$, $S(F)$ denoting the simplex with F for the set of vertices. It follows that

$$H^n(\mathcal{B}^F, \mathcal{F}) = H^n(S(F), G) = 0 \text{ for } n \geq 2,$$

the cohomology of a simplex being trivial.

Lemmas 3 and 4 obviously imply:

Proposition 4. If V is an irreducible algebraic curve and \mathcal{F} is an arbitrary sheaf in V, we have $H^n(V, \mathcal{F}) = 0$ for $n \geq 2$.

Remark. I do not know whether an analogous result is true for varieties of arbitrary dimension.
3.2.54 The operation $\mathcal{F}(n)$

Let \mathcal{F} be an algebraic sheaf on $X = \mathbb{P}_r(K)$. Let $\mathcal{F}_i = \mathcal{F}(U_i)$ be the restriction of \mathcal{F} to U_i (cf. n°51); if n is an arbitrary integer, let $\theta_{ij}(n)$ be the isomorphism of $\mathcal{F}_j(U_i \cap U_j)$ with $\mathcal{F}_i(U_i \cap U_j)$ defined by multiplication by the function t_j^n/t_i^n; this makes sense, since t_j/t_i is a regular function on $U_i \cap U_j$ with values in K^*. We have $\theta_{ij}(n) \circ \theta_{jk}(n) = \theta_{ik}(n)$ at every point of $U_i \cap U_j \cap U_k$; we can thus apply Proposition 4 of n°4 and obtain an algebraic sheaf denoted by $\mathcal{F}(n)$, defined by gluing the sheaves $\mathcal{F}_i = \mathcal{F}(U_i)$ using the isomorphisms $\theta_{ij}(n)$. We have the canonical isomorphisms: $\mathcal{F}(0) \approx \mathcal{F}, \mathcal{F}(n)(m) \approx \mathcal{F}(n + m)$. Moreover, $\mathcal{F}(n)$ is locally isomorphic to \mathcal{F}, thus coherent if \mathcal{F} is; it also follows that every exact sequence $\mathcal{F} \to \mathcal{F}' \to \mathcal{F}''$ of algebraic sheaves gives birth to exact sequences $\mathcal{F}(n) \to \mathcal{F}'(n) \to \mathcal{F}''(n)$ for all $n \in \mathbb{Z}$.

We can apply the above procedure to the sheaf $\mathcal{F} = \mathcal{O}$ and so obtain the sheaves $\mathcal{O}(n), n \in \mathbb{Z}$. We will give another description of these sheaves: if U is open in X, let A^n_U be the subset of $A_U = \Gamma(\pi^{-1}(U), \mathcal{O}_Y)$ consisting of regular functions of degree n (that is, satisfying the identity $f(\lambda y) = \lambda^n f(y)$ for $\lambda \in K^*$ and $y \in \pi^{-1}(U)$); the A^n_U are A^0_U–modules, thus give birth to an algebraic sheaf, which we denote by $\mathcal{O}'(n)$. An element of $\mathcal{O}'(n)_x, x \in X$ can be identified with a rational function P/Q, P and Q being homogeneous polynomials such that $Q(x) \neq 0$ and $\deg P - \deg Q = n$.

Proposition 1. The sheaves $\mathcal{O}(n)$ and $\mathcal{O}'(n)$ are canonically isomorphic.

By definition, a section of $\mathcal{O}(n)$ over an open $U \subset X$ is a system (f_i) of sections of \mathcal{O} over $U \cap U_i$ with $f_i = (t_j^n/t_i^n) \cdot f_j$ on $U \cap U_i \cap U_j$; the f_j can be identified with regular functions, homogeneous of degree 0 over $\pi^{-1}(U) \cap \pi^{-1}(U_i)$; set $g_i = t_j^n \cdot f_j$; we then have $g_i = g_j$ at every point of $\pi^{-1}(U) \cap \pi^{-1}(U_i) \cap \pi^{-1}(U_j)$, thus the g_i are the restrictions of a unique regular function on $\pi^{-1}(U)$, homogeneous of degree n. Conversely, such a function g defines a system (f_i) by setting $f_i = g/t_i^n$. The mapping $(f_i) \mapsto g$ is thus an isomorphism of $\mathcal{O}(n)$ with $\mathcal{O}'(n)$.

Henceforth, we will often identify $\mathcal{O}(n)$ with $\mathcal{O}'(n)$ by means of the above isomorphism. We observe that a section of $\mathcal{O}'(n)$ over X is just a regular function on Y, homogeneous of degree n. If we assume that $r \geq 1$, such a function is identically zero for $n < 0$ and it is a homogeneous polynomial of degree n for $n \geq 0$.

Proposition 2. For every algebraic sheaf \mathcal{F}, the sheaves $\mathcal{F}(n)$ and $\mathcal{F} \otimes \mathcal{O} \mathcal{O}(n)$ are canonically isomorphic.
3.2. Graded modules and coherent algebraic sheaves on projective varieties

Since $\mathcal{O}(n)$ is obtained from \mathcal{O}_i by gluing with respect to $\theta_{i,j}(n)$, $\mathcal{F} \otimes \mathcal{O}(n)$ is obtained from $\mathcal{F}_i \otimes \mathcal{O}_i$ by gluing with respect to the isomorphisms $1 \otimes \theta_{i,j}(n)$; identifying $\mathcal{F}_i \otimes \mathcal{O}_i$ with \mathcal{F}_i we recover the definition of $\mathcal{F}(n)$.

Henceforth, we will also identify $\mathcal{F}(n)$ with $\mathcal{F} \otimes \mathcal{O}(n)$.

3.2.55 Sections of $\mathcal{F}(n)$

Let us first show a lemma on algebraic varieties, that is quite analogous to Lemma 1 of n^2:

Lemma 1. Let V be an affine variety, Q a regular function on V and V_Q the set of all points $x \in V$ such that $Q(x) \neq 0$. Let \mathcal{F} be a coherent algebraic sheaf on V and let s be a section of \mathcal{F} over V_Q. Then, for n sufficiently large, there exists a section s' of \mathcal{F} over the whole V such that $s' = Q^n s$ over V_Q.

Embedding V in an affine space and extending \mathcal{F} by 0 outside V, we are brought to the case where V is an affine space, thus is irreducible. By Corollary 1 to Theorem 2 from n^2, there exists a surjective homomorphism $\phi : \mathcal{O}_V \rightarrow \mathcal{F}$; by Proposition 2 of n^2, V_Q is an open affine subset and thus there exists (n^3) a section σ of \mathcal{O}_V over V_Q such that $\phi(\sigma) = s$. We can identify σ with a system of p regular functions on V_Q; applying Proposition 5 of n^3 to each of these functions, we see that there exists a section σ' of \mathcal{O}_V over V such that $\sigma' = Q^n \sigma$ on V_Q, provided that n is sufficiently large. Setting $s' = \phi(\sigma')$, we obtain a section of \mathcal{F} over V such that $s' = Q^n s$ on V_Q.

Theorem 1. Let \mathcal{F} be a coherent algebraic sheaf on $X = \mathbb{P}_r(K)$. There exists an integer $n(\mathcal{F})$ such that for all $n \geq n(\mathcal{F})$ and all $x \in X$, the \mathcal{O}_x-module $\mathcal{F}(n)_x$ is generated by elements of $\Gamma(X, \mathcal{F}(n))$.

By the definition of $\mathcal{F}(n)$, a section s of $\mathcal{F}(n)$ over X is a system (s_i) of sections of \mathcal{F} over U_i satisfying the compatibility conditions:

$$s_i = (t^n_i / t^n_j) \cdot s_j$$

on $U_i \cap U_j$;

we say that s_i is the i-th component of s.

On the other hand, since U_i is isomorphic to K^n, there exists a finite number of sections s^n_i of \mathcal{F} over U_i which generate \mathcal{F}_x for all $x \in U_i$ (Corollary 1 to Theorem 2); if for a certain integer n we can find sections s^n_i of $\mathcal{F}(n)$ whose i-th component is s^n_i, it is clear that $\Gamma(X, \mathcal{F}(n))$ generates $\mathcal{F}(n)_x$ for all $x \in U_i$. Theorem 1 is thus proven if we prove the following Lemma:

Lemma 2. Let s_i be a section of \mathcal{F} over U_i. For all n sufficiently large, there exists a section s of $\mathcal{F}(n)$ whose i-th component is equal to s_i.

Apply Lemma 1 to the affine variety $V = U_j$, the function $Q = t_i / t_j$ and the section s_i restricted to $U_i \cap U_j$; this is legal, because t_i / t_j is a regular function on U_j whose zero set is equal to $U_j - U_i \cap U_j$. We conclude that there exists an integer p and a section s'_j of \mathcal{F} over U_j such that $s'_j = (t^n_i / t^n_j) \cdot s_i$ on $U_i \cap U_j$;
for \(j = i \), we have \(s'_i = s_i \), which allows us to write the preceding formula in the form \(s'_j = (t^p_j / t^{p'}_j) \cdot s'_j \).

The \(s'_j \) being defined for every index \(j \) (with the same exponent \(p \)), consider \(s'_j - (t^p_j / t^{p'}_j) \cdot s'_j \); it is a section of \(\mathcal{F} \) over \(U_j \cap U_k \) whose restriction to \(U_j \cap U_k \) is zero; by applying Proposition 6 of \(n^4 \) we see that for every sufficiently large integer \(q \) we have \((t^p_j / t^{p'}_j)(s'_j - (t^p_j / t^{p'}_j) \cdot s'_j) = 0 \) on \(U_j \cap U_k \); if we then put \(s_j = (t^p_j / t^{p'}_j) \cdot s'_j \) and \(n = p + q \), the above formula is written \(s_j = (t^p_j / t^{p'}_j) \cdot s_k \) and the system \(s = (s_j) \) is a section of \(\mathcal{F}(n) \) whose \(i \)-th component is equal to \(s_i \), q.e.d.

Corollary. Every coherent algebraic sheaf \(\mathcal{F} \) on \(X = \mathbb{P}_r(K) \) is isomorphic to a quotient sheaf of a sheaf \(\mathcal{O}(n)^p \), \(n \) and \(p \) being suitable integers.

By the above theorem, there exists an integer \(n \) such that \(\mathcal{F}(−n)_x \) is generated by \(\Gamma(X, \mathcal{F}(−n)) \) for every \(x \in X \); by the quasi-compactness of \(X \), this is equivalent to saying that \(\mathcal{F}(−n) \) is isomorphic to a quotient sheaf of a sheaf \(\mathcal{O}_x^p \); \(p \) being an appropriate integer \(\geq 0 \). It follows then that \(\mathcal{F} \approx \mathcal{F}(−n)(n) \) is isomorphic to a quotient sheaf of \(\mathcal{O}(n)^p \approx \mathcal{O}(n)^p \).

3.2.56 Graded modules

Let \(S = K[t_0, \ldots, t_r] \) be the algebra of polynomials in \(t_0, \ldots, t_r \); for every integer \(n \geq 0 \), let \(S_n \) be the linear subspace of \(S \) consisting by homogeneous polynomials of degree \(n \); for \(n < 0 \), we set \(S_n = 0 \). The algebra \(S \) is a direct sum of \(S_n \), \(n \in \mathbb{Z} \) and we have \(S_p \cdot S_q = S_{p+q} \); in other words, \(S \) is a graded algebra.

Recall that an \(S \)-module \(M \) is said to be graded if there is given a decomposition of \(M \) into a direct sum: \(M = \bigoplus_{n \in \mathbb{Z}} M_n \), \(M_n \) being subgroups of \(M \) such that \(S_p \cdot M_n \subset M_{p+n} \) for every couple \((p, q)\) of integers. An element of \(M_n \) is said to be homogeneous of degree \(n \); a submodule \(N \) of \(M \) is said to be homogeneous if it is a direct sum of \(N \cap M_n \), in which case it is a graded \(S \)-module. If \(M \) and \(M' \) are two graded \(S \)-modules, an \(S \)-homomorphism

\[\phi : M \rightarrow M' \]

is said to be homogeneous of degree \(s \) if \(\phi(M_n) \subset M'_{n+s} \) for every \(n \in \mathbb{Z} \). A homogeneous \(S \)-homomorphism of degree \(0 \) is simply called a homomorphism.

If \(M \) is a graded \(S \)-module and \(n \) an integer, we denote by \(M(n) \) the graded \(S \)-module:

\[M(n) = \bigoplus_{p \in \mathbb{Z}} M(n)_p \text{ with } M(n)_p = M_{n+p}. \]

We thus have \(M(n) = M \) as \(S \)-modules, but a homogeneous element of degree \(p \) of \(M(n) \) is homogeneous of degree \(n + p \) in \(M \); in other words, \(M(n) \) is made from \(M \) by lowering degrees by \(n \) units.

We denote by \(\mathcal{C} \) the class of graded \(S \)-modules \(M \) such that \(M_n = 0 \) for \(n \) sufficiently large. If \(A \rightarrow B \rightarrow C \) is an exact sequence of homomorphisms of
3.2. Graded modules and coherent algebraic sheaves on the projective space

graded \(S \)-modules, the relations \(A \in \mathcal{C}, C \in \mathcal{C} \) clearly imply \(B \in \mathcal{C} \); in other words, \(\mathcal{C} \) is a class in the sense of [14], Chap. I. Generally, we use the terminology introduced in the aforementioned article; in particular, a homomorphism \(\phi : A \to B \) is called \(\mathcal{C} \)-injective (resp. \(\mathcal{C} \)-surjective) if \(\text{Ker}(\phi) \in \mathcal{C} \) (resp. if \(\text{Coker}(\phi) \in \mathcal{C} \)) and \(\mathcal{C} \)-bijective if it is both \(\mathcal{C} \)-injective and \(\mathcal{C} \)-surjective.

A graded \(S \)-module \(M \) is said to be of finite type if it is generated by a finite number of elements; we say that \(M \) satisfies the condition \((\text{TF})\) if there exists an integer \(p \) such that the submodule \(\bigoplus_{n \geq p} M_n \) of \(M \) is of finite type; it is the same to say that \(M \) is \(\mathcal{C} \)-isomorphic to a module of finite type. The modules satisfying \((\text{TF})\) form a class containing \(\mathcal{C} \).

A graded \(S \)-module \(L \) is called free (resp. free of finite type) if it admits a base (resp. a finite base) consisting of homogeneous elements, in other words if it is isomorphic to a direct sum (resp. to a finite direct sum) of the modules \(S(n_i) \).

3.2.57 The algebraic sheaf associated to a graded \(S \)-module

If \(U \) is a nonempty subset of \(X \), we denote by \(S(U) \) the subset of \(S = K[t_0, \ldots, t_r] \) consisting of homogeneous polynomials \(Q \) such that \(Q(x) \neq 0 \) for all \(x \in U \); \(S(U) \) is a multiplicatively closed subset of \(S \), not containing 0. For \(U = \{x\} \), we write \(S(x) \) instead of \(S(\{x\}) \).

Let \(M \) be a graded \(S \)-module. We denote by \(M_U \) the set of fractions \(m/Q \) with \(m \in M, Q \in S(U), m \) and \(Q \) being homogeneous of the same degree; we identify two fractions \(m/Q \) and \(m'/Q' \) if there exists \(Q'' \in S(U) \) such that

\[
Q''(Q' \cdot m - Q \cdot m') = 0;
\]

it is clear that we have defined an equivalence relation between the pairs \((m, Q)\). For \(U = x \), we write \(M_x \) instead of \(M(\{x\}) \).

Applying this to \(M = S \), we see that \(S_U \) is the ring of rational functions \(P/Q \), \(P \) and \(Q \) being homogeneous polynomials of the same degree and \(Q \in S(U) \); if \(M \) is an arbitrary graded \(S \)-module, we can equip \(M_U \) with a structure of an \(S_U \)-module by imposing:

\[
\frac{m/Q + m'/Q'}{QQ'} = \frac{(Q'm + Qm')}{QQ'}
\]

\[
(P/Q) \cdot (m/Q') = Pm/QQ'.
\]

If \(U \subset V \), we have \(S(V) \subset S(U) \), hence the canonical homomorphisms

\[
\phi_U^V : M_V \to M_U;
\]

the system \((M_U, \phi_U^V)\), where \(U \) and \(V \) run over nonempty open subsets of \(X \), define thus a sheaf which we denote by \(\mathcal{A}(M) \); we verify immediately that

\[
\lim_{x \in U} M_U = M_x.
\]
that is, that $A(M)_{x} = M_{x}$. In particular, we have $A(S) = O$ and as the M_{U}
are S_{U}–modules, it follows that $A(M)$ is a sheaf of $A(S)$–modules, that is, an
algebraic sheaf on X. Any homomorphism $\phi : M \to M'$ defines in a natural
way the S_{U}–linear homomorphisms $\phi_{U} : M_{U} \to M'_{U}$, thus a homomorphism of
sheaves $A(\phi) : A(M) \to A(M')$, which we frequently denote ϕ. We clearly have

$$A(\phi + \psi) = A(\phi) + A(\psi), \quad A(1) = 1, \quad A(\phi \circ \psi) = A(\phi) \circ A(\psi).$$

The operation $A(M)$ is thus a covariant additive functor defined on the category
of graded S–modules and with values in the category of algebraic sheaves on X.

(The above definitions are quite analogous to these of §4, from Chap. II; it
should be noted however that S_{U} is not the localization of S in $S(U)$, but only
its homogeneous component of degree 0.)

3.2.58 First properties of the functor $A(M)$

Proposition 3. The functor $A(M)$ is an exact functor.

Let $M \xrightarrow{\alpha} M' \xrightarrow{\beta} M''$ be an exact sequence of graded S–modules and show
that the sequence $M_{x} \xrightarrow{\alpha_{x}} M'_{x} \xrightarrow{\beta_{x}} M''_{x}$ is also exact. Let $m'/Q \in M'_{x}$ be an
element of the kernel of β; by the definition of M''_{x}, there exist $R \in S(x)$ such
that $R(\beta(m')) = 0$; but then there exists $m \in M$ such that $\alpha(m) = Rm'$ and we
have $\alpha(m/RQ) = m'/Q$, q.e.d.

(Compare with $n^{2}48$, Lemma 1.)

Proposition 4. If M is a graded S–module and if n is an integer, $A(M(n))$
is canonically isomorphic to $A(M)(n)$.

Let $i \in I$, $x \in U$, and $m/Q \in M(n)_{x}$, with $m \in M(n)_{U}, Q \in S(x), \deg Q = p$.
Put:

$$\eta_{i,x}(m/Q) = m/\ell^{n}Q \in M_{x},$$

which is valid because $m \in M_{n+p}$ and $\ell^{n}Q \in S(x)$. We immediately see that
$\eta_{i,x} : M(n)_{x} \to M_{x}$ is bijective for all $x \in U$ and defines an isomorphism η_{i} of
$A(M(n))$ to $A(M)$ over U. Moreover, we have $\eta_{i} \circ \eta_{i}^{-1} = \theta_{ij}(n)$ over $U_{i} \cap U_{j}$.

By the definition of the operation $F(n)$ and Proposition 4 of $n^{2}4$, this shows that
$A(M(n))$ is isomorphic to $A(M)(n)$.

Corollary. $A(S(n))$ is canonically isomorphic to $O(n)$.

Indeed, it has been said that $A(S)$ was isomorphic to O.

(It is also clear that $A(S(n))$ is isomorphic to $O'(n)$, because $O'(n)_{x}$ consists
precisely of the rational functions P/Q such that $\deg P - \deg Q = n$ and $Q \in
S(x)$.)

Proposition 5. Let M be a graded S–module satisfying the condition (TF).
The algebraic sheaf $A(M)$ is also a coherent sheaf. Moreover $A(M) = 0$ if and
only if $M \in C$.
3.2. Graded modules and coherent algebraic sheaves on the projective space

If \(M \in \mathcal{C} \), for all \(m \in M \) and \(x \in X \) there exists \(Q \in S(x) \) such that \(Qm = 0 \); it suffices to take \(Q \) of a sufficiently large degree; we thus have \(M_x = 0 \), hence \(\mathcal{A}(M) = 0 \). Let now \(M \) be a graded \(S \)-module satisfying the condition (TF); there exists a homogeneous submodule \(N \) of \(M \), of finite type and such that \(M/N \in \mathcal{C} \); applying the above together with Proposition 3, we see that \(\mathcal{A}(N) \rightarrow \mathcal{A}(M) \) is bijective and it thus suffices to prove that \(\mathcal{A}(N) \) is coherent. Since \(N \) is of finite type, there exists an exact sequence \(L^1 \rightarrow L^0 \rightarrow N \rightarrow 0 \) where \(L^0 \) and \(L^1 \) are free modules of finite type. By Proposition 3, the sequence \(\mathcal{A}(L^1) \rightarrow \mathcal{A}(L^0) \rightarrow \mathcal{A}(N) \rightarrow 0 \) is exact. But, by the corollary to Proposition 4, \(\mathcal{A}(L^0) \) and \(\mathcal{A}(L^1) \) are isomorphic to finite direct sums of the sheaves \(\mathcal{O}(n) \) and it follows that \(\mathcal{A}(N) \) is coherent.

Let finally \(M \) be a graded \(S \)-module satisfying (TF) and such that \(\mathcal{A}(M) = 0 \); by the above considerations, we can suppose that \(M \) is of finite type. If \(m \) is a homogeneous element of \(M \), let \(a_m \) be the annihilator of \(m \), that is, the set of all polynomials \(Q \in S \) such that \(Q \cdot m = 0 \); it is clear that \(a_m \) is a homogeneous ideal. Moreover, the assumption \(M_x = 0 \) for all \(x \in X \) implies that the variety of zeros of \(a_m \) in \(K^{r+1} \) is reduced to \(\{0\} \); Hilbert’s theorem of zeros shows that every homogeneous polynomial of sufficiently large degree belongs to \(a_m \). Applying this to the finite system of generators of \(M \), we conclude immediately \(M_p = 0 \) for \(p \) sufficiently large, which completes the proof.

By combining Propositions 3 and 5 we obtain:

Proposition 6. Let \(M \) and \(M' \) be two graded \(S \)-modules satisfying the condition (TF) and let \(\phi : M \rightarrow M' \) be a homomorphism of \(M \) to \(M' \). Then

\[
\mathcal{A}(\phi) : \mathcal{A}(M) \rightarrow \mathcal{A}(M')
\]

is injective (resp. surjective, bijective) if and only if \(\phi \) is \(\mathcal{C} \)-injective (resp. \(\mathcal{C} \)-surjective, \(\mathcal{C} \)-bijective).

3.2.59 The graded \(S \)-module associated to an algebraic sheaf

Let \(\mathcal{F} \) be an algebraic sheaf on \(X \) and set:

\[
\Gamma(\mathcal{F}) = \bigoplus_{n \in \mathbb{Z}} \Gamma(\mathcal{F})_n, \quad \text{with} \quad \Gamma(\mathcal{F})_n = \Gamma(X, \mathcal{F}(n)).
\]

The group \(\Gamma(\mathcal{F}) \) is a graded group; we shall equip it with a structure of an \(S \)-module. Let \(s \in \Gamma(X, \mathcal{F}(q)) \) and let \(P \in S_p \); we can identify \(P \) with a section of \(\mathcal{O}(p) \) (cf. \(n \circ 54 \)), thus \(P \circ s \) is a section of \(\mathcal{O}(p) \otimes \mathcal{F}(q) = \mathcal{F}(q)(p) = \mathcal{F}(p+q) \), using the homomorphisms from \(n \circ 54 \); we have then defined a section of \(\mathcal{F}(p+q) \) which we denote by \(P \cdot s \) instead of \(P \circ s \). The mapping \((P, s) \rightarrow P \cdot s \) equips \(\Gamma(\mathcal{F}) \) with a structure of an \(S \)-module that is compatible with the grading.
In order to compare the functors $\mathcal{A}(M)$ and $\Gamma(\mathcal{F})$ we define two canonical homomorphisms:

$$\alpha : M \to \Gamma(\mathcal{A}(M)) \quad \text{and} \quad \beta : A(\Gamma(\mathcal{F})) \to \mathcal{F}. $$

Definition of α. Let M be a graded S-module and let $m \in M_0$ be a homogeneous element of M of degree 0. The element $m/1$ is a well-defined element of M_0 that varies continuously with $x \in X$; thus m defines a section $\alpha(m)$ of $\mathcal{A}(M)$. If now m is homogeneous of degree n, m is homogeneous of degree 0 in $M(n)$, thus defines a section $\alpha(m)$ of $\mathcal{A}(M(n)) = \mathcal{A}(M)(n)$ (cf. Proposition 4). This is the definition of $\alpha : M \to \Gamma(\mathcal{A}(M))$ and it is immediate that it is a homomorphism.

Definition of β. Let \mathcal{F} be an algebraic sheaf on X and let s/Q be an element of $\Gamma(\mathcal{F})_x$ with $s \in \Gamma(X, \mathcal{F}(n))$, $Q \in S_n$ and $Q(x) \neq 0$. The function $1/Q$ is homogeneous of degree $-n$ and regular in x, hence a section of $\mathcal{O}(n)$ in a neighborhood of x; it follows that $1/Q \otimes s$ is a section of $\mathcal{O}(n) \otimes \mathcal{F}(n) = \mathcal{F}$ in a neighborhood of x, thus defines an element of \mathcal{F}_x which we denote by $\beta_x(s/Q)$, because it depends only on s/Q. We can also define β_x by using the components s_i of s: if $x \in U_i$, $\beta_x(s/Q) = (t_i^n/Q) \cdot s_i(x)$. The collection of the homomorphisms β_x defines a homomorphism $\beta : \mathcal{A}(\Gamma(\mathcal{F})) \to \mathcal{F}$.

The homomorphisms α and β are related by the following Propositions, which are shown by direct computation:

Proposition 7. Let M be a graded S-module. The composition of the homomorphisms $\mathcal{A}(M) \to \mathcal{A}(\Gamma(\mathcal{A}(M))) \to \mathcal{A}(M)$ is the identity.

(The first homomorphism is defined by $\alpha : M \to \Gamma(\mathcal{A}(M))$ and the second is β, applied to $\mathcal{F} = \mathcal{A}(M)$.)

Proposition 8. Let \mathcal{F} be an algebraic sheaf on X. The composition of the homomorphisms $\Gamma(\mathcal{F}) \to \Gamma(\mathcal{A}(\Gamma(\mathcal{F}))) \to \Gamma(\mathcal{F})$ is the identity.

(The first homomorphism is α, applied to $M = \Gamma(\mathcal{F})$, while the second one is defined by $\beta : \mathcal{A}(\Gamma(\mathcal{F})) \to \mathcal{F}$.)

We will show in n^65 that $\beta : \mathcal{A}(\Gamma(\mathcal{F})) \to \mathcal{F}$ is bijective if \mathcal{F} is coherent and that $\alpha : M \to \Gamma(\mathcal{A}(M))$ is C-bijective if M satisfies the condition (TF).

3.2.60 The case of coherent algebraic sheaves

Let us show a preliminary result:

Proposition 9. Let \mathcal{L} be an algebraic sheaf on X, a direct sum of a finite number of the sheaves $\mathcal{O}(n_i)$. Then $\Gamma(\mathcal{L})$ satisfies (TF) and $\beta : \mathcal{A}(\Gamma(\mathcal{L})) \to \mathcal{L}$ is bijective.

It comes down immediately $\mathcal{L} = \mathcal{O}(n)$, then to $\mathcal{L} = \mathcal{O}$. In this case, we know that $\Gamma(\mathcal{O}(p)) = \mathcal{S}_p$ for $p \geq 0$, thus we have $\mathcal{S} \subset \Gamma(\mathcal{O})$, the quotient belonging
to \mathcal{C}. It follows first that $\Gamma(O)$ satisfies (TF), then that $\mathcal{A}(\Gamma(O)) = \mathcal{A}(S) = O$, q.e.d.

(We observe that we have $\Gamma(O) = S$ if $r \geq 1$; on the other hand, if $r = 0$, $\Gamma(O)$ is not even an S–module of finite type.)

Theorem 2. For every coherent algebraic sheaf F on X there exists a graded S–module M, satisfying (TF), such that $\mathcal{A}(M)$ is isomorphic to F.

By the corollary to Theorem 1, there exists an exact sequence of algebraic sheaves:

$$L_1 \xrightarrow{\phi} L_0 \to F \to 0,$$

where L_1 and L_0 satisfy the assumptions of the above Proposition. Let M be the cokernel of the homomorphism $\Gamma(\phi) : \Gamma(L_1) \to \Gamma(L_0)$; by Proposition 9, M satisfies the condition (TF). Applying the functor \mathcal{A} to the exact sequence:

$$\Gamma(L_1) \to \Gamma(L_0) \to M \to 0,$$

we obtain an exact sequence:

$$\mathcal{A}(\Gamma(L_1)) \to \mathcal{A}(\Gamma(L_0)) \to \mathcal{A}(M) \to 0.$$

Consider the following commutative diagram:

$$DIAGRAM 3.$$

By Proposition 9, the two vertical homomorphisms are bijective. It follows that $\mathcal{A}(M)$ is isomorphic to F, q.e.d.
3.3 Cohomology of the projective space with values in a coherent algebraic sheaf

3.3.61 The complexes $C_k(M)$ and $C(M)$

We preserve the notations of n51 and 56. In particular, I will denote the interval $\{0,1,\ldots,r\}$ and S will denote the graded algebra $K[t_0,\ldots,t_r]$.

Let M be a graded S–module, k and q two integers ≥ 0; we shall define a group $C^q_k(M)$: an element of $C^q_k(M)$ is a mapping

$$(i_0,\ldots,i_q) \mapsto m(i_0\ldots i_q)$$

which associates to every sequence (i_0,\ldots,i_q) of $q + 1$ elements of I a homogeneous element of degree $k(q + 1)$ of M, depending in an alternating way on i_0,\ldots,i_q. In particular, we have $m(i_0\ldots i_q) = 0$ if two of the indices i_0,\ldots,i_q are equal. We define addition in $C^q_k(M)$ in the obvious way, the same with multiplication by an element $\lambda \in K$, and $C^q_k(M)$ is a vector space over K.

If m is an element of $C^q_k(M)$, we define $dm \in C^{q+1}_k(M)$ by the formula:

$$(dm)(i_0\ldots i_{q+1}) = \sum_{j=0}^{j=q+1} (-1)^j t^k_{i_j} \cdot m(i_0\ldots \hat{i}_j\ldots i_{q+1}).$$

We verify by a direct calculation that $d \circ d = 0$; thus, the direct sum $C_k(M) = \bigoplus_{q=0}^{r} C^q_k(M)$, equipped with the coboundary operator d, is a complex, whose q-th cohomology group is denoted by $H^q_k(M)$.

(We note, after [11], another interpretation of the elements of $C^q_k(M)$: introduce $r + 1$ differential symbols dx_0,\ldots, dx_r, and associate to every $m \in C^q_k(M)$ a „differential form“ of degree $q + 1$: $\omega_m = \sum_{i_0 < \ldots < i_q} m(i_0\ldots i_q) dx_{i_0} \wedge \ldots \wedge dx_{i_q}$. If we put $\alpha_k = \sum_{i=0}^{r} t^k_i dx_i$, we see that we have:

$$\omega_{dm} = \alpha_k \wedge \omega_m,$$

in other words, the coboundary operation is transformed into the exterior multiplication by the form α_k).

If h is an integer $\geq k$, let $\rho^h_k : C^q_k(M) \to C^q_h(M)$ be the homomorphism defined by the formula:

$$\rho^h_k(m)(i_0\ldots i_q) = (t_{i_0}\ldots t_{i_q})^{h-k} m(i_0\ldots i_q).$$
3.3. Cohomology of the projective space with values in a coherent algebraic sheaf on projective varieties

We have \(\rho^h_k \circ d = d \circ \rho^k_h \) and \(\rho^h_k \circ \rho^k_l = \rho^h_l \) if \(k \leq h \leq l \). We can thus define a complex \(C(M) \), the inductive limit of the system \((C_k(M), \rho^k_h)\) for \(k \to +\infty \). The cohomology groups of this complex are denoted \(H^q(M) \). Because cohomology commutes with inductive limits (cf. [6], Chap. V, Prop. 9.3*), we have:

\[
H^q(M) = \lim_{k \to \infty} H^q_k(M).
\]

Every homomorphism \(\phi : M \to M' \) defines a homomorphism \(\phi : C_k(M) \to C_k(M') \)

by the formula: \(\phi(m)(i_0 \ldots i_q) = \phi(m)(i_0 \ldots i_q) \), hence, by passing to the limit, \(\phi : C(M) \to C(M') \); moreover, these homomorphisms commute with boundary and thus define the homomorphisms

\[
\phi : H^q_k(M) \to H^q_k(M') \quad \text{and} \quad \phi : H^q(M) \to H^q(M').
\]

If we have an exact sequence \(0 \to M \to M' \to M'' \to 0 \), we have an exact sequence of complexes \(0 \to C_k(M) \to C_k(M') \to C_k(M'') \to 0 \), hence an exact sequence of cohomology:

\[
\ldots H^q_0(M') \to H^q_k(M'') \to H^{q+1}_k(M') \to
\]

The same results for \(C(M) \) and \(H^q(M) \).

Remark. We shall see later (cf. 69) that we can express \(H^q_k(M) \) in terms of \(\text{Ext}^q_S \).

3.3.62 Calculation of \(H^q_k(M) \) for certain modules \(M \)

Let \(M \) be a graded \(S \)-module and \(m \in M \) a homogeneous element of degree 0. The system of \((i^k \cdot m) \) is a 0-cocycle of \(C_k(M) \), which we denote by \(\alpha^k(m) \) and identify with its cohomology class. We so obtain a \(K \)-linear homomorphism \(\alpha^k : M_0 \to H^0_0(M) \); as \(\alpha^k = \rho^k_0 \circ \alpha^k \) if \(h \geq k \), the \(\alpha^k \) define by passing to the limit a homomorphism \(\alpha : M_0 \to H^0(M) \).

Let us introduce two more notations:

If \((P_0, \ldots, P_h) \) are elements of \(S \), we denote by \((P_0, \ldots, P_h)M \) the submodule of \(M \) consisting of the elements \(\sum_{i=0}^h P_i \cdot m_i \) with \(m_i \in M \); if the \(P_i \) are homogeneous, this submodule is homogeneous.

If \(P \) is an element of \(S \) and \(N \) a submodule of \(M \), we denote by \(N : P \) the submodule of \(M \) consisting of the elements \(m \in M \) such that \(P \cdot m \in N \); we clearly have \(N : P \supset N \); if \(N \) and \(P \) are homogeneous, so is \(N : P \).

Having specified these notations, we have:
Proposition 1. Let M be a graded S–module and k an integer ≥ 0. Assume that for all $i \in I$ we have:

$$(t^k_0, \ldots, t^k_{i-1})M : t^k_i = (t^k_0, \ldots, t^k_{i-1})M.$$

Then:

(a) $\alpha^k : M_0 \to H_0^k(M)$ is bijective (if $r \geq 1$),
(b) $H^k_q(M) = 0$ for $0 < q < r$.

(For $i = 0$, the assumption means that $t^k_0 \cdot m = 0$ implies $m = 0$.)

This Proposition is a special case of a result of de Rham [11] (the de Rham’s result being also valid even if we do not assume that the $m_{i_0 \ldots i_q}$ are homogeneous). See also [6], Chap. VIII, ¶4 for a particular case, sufficient for our purposes. (???)

We now apply Proposition 1 to the graded S–module $S(n)$:

Proposition 2. Let k be an integer ≥ 0, n an arbitrary integer. Then:

(a) $\alpha^k : S_n \to H_0^k(S(n))$ is bijective (if $r \geq 1$),
(b) $H^k_q(S(n)) = 0$ for $0 < q < r$,
(c) $H^k_r(S(n))$ admits a base (over K) consisting of the cohomology classes of the monomials $t^{\alpha_0}_0 \ldots t^{\alpha_r}_r$ with $0 \leq \alpha_i < k$ and $\sum_{i=0}^{i=r} \alpha_i = k(r+1) + n$.

It is clear that the S–module $S(n)$ satisfies the assumptions of Proposition 1, which shows (a) and (b). On the other hand, for every graded S–module M, we have $H^k_r(M) = M_{k(r+1)}/(t^k_0, \ldots, t^k_r)M_{kr}$; now the monomials

$t^{\alpha_0}_0 \ldots t^{\alpha_r}_r, \alpha_i \geq 0, \sum_{i=0}^{i=r} \alpha_i = k(r+1) + n,$

form a basis of $S(n)_{k(r+1)}$ and those for which at least α_i is $\geq k$ form a basis of $(t^k_0, \ldots, t^k_r)S(n)_{kr}$; hence (c).

It is convenient to write the exponents α_i in the form $\alpha_i = k - \beta_i$. The conditions of (c) are then written:

$$0 < \beta_i \leq k \quad \text{and} \quad \sum_{i=0}^{i=r} \beta_i = -n.$$

The second condition, together with $\beta_i > 0$, implies $\beta_i \leq -n - r$; if thus $k \geq -n - r$, the condition $\beta_i \leq k$ is a consequence of the preceding two. Hence:

Corollary 1. For $k \geq -n - r$, $H^k_r(S(n))$ admits a basis formed of the cohomology classes of monomials $(t_0 \ldots t_r)^k/t^{\beta_0}_0 \ldots t^{\beta_r}_r$ with $\beta_i > 0$ and $\sum_{i=0}^{i=r} \beta_i = -n$.

We also have:
Corollary 2. If \(h \geq k \geq -n - r \), the homomorphism
\[
\rho_h^k : H^q_k(S(n)) \to H^q_k(S(n))
\]
is bijective for all \(q \geq 0 \).

For \(q \neq r \), this follows from the assertions (a) and (b) of Proposition 2. For \(q = r \), this follows from Corollary 1, given that \(\rho_h^k \) transforms
\[
(t_0 \ldots t_r)^k / t_0^{\beta_0} \ldots t_r^{\beta_r}
\]
into \((t_0 \ldots t_r)^h / t_0^{\beta_0} \ldots t_r^{\beta_r} \).

Corollary 3. The homomorphism \(\alpha : S_n \to H^0(S(n)) \) is bijective if \(r \geq 1 \) or if \(n \geq 0 \). We have \(H^q(S(n)) = 0 \) for \(0 < q < r \) and \(H^r(S(n)) \) is a vector space of dimension \(\binom{-n-1}{r} \) over \(K \).

The assertion pertaining to \(\alpha \) follows from Proposition 2, (a), in the case when \(r \geq 1 \); it is clear if \(r = 0 \) and \(n \geq 0 \). The rest of the Corollary is an obvious consequence of Corollaries 1 and 2 (seeing that the binomial coefficient \(\binom{a}{r} \) is zero for \(a < r \)).

3.3.63 General properties of \(H^q(M) \)

Proposition 3. Let \(M \) be a graded \(S \)-module satisfying the condition (TF).
Then:
(a) There exists an integer \(k(M) \) such that \(\rho_h^k : H^q_k(M) \to H^q_k(M) \) is bijective for \(h \geq k \geq k(M) \) and every \(q \).
(b) \(H^q(M) \) is a vector space of finite dimension over \(K \) for all \(q \geq 0 \).
(c) There exists an integer \(n(M) \) such that for \(n \geq n(M) \), \(\alpha : M_n \to H^0(M(n)) \) is bijective and that \(H^q(M(n)) \) is zero for all \(q > 0 \).

This is immediately reduced to the case when \(M \) is of finite type. We say that \(M \) is of dimension \(\leq s \) (\(s \) being an integer \(\geq 0 \)) if there exists an exact sequence:
\[
0 \to L^s \to L^{s-1} \to \ldots \to L^0 \to M \to 0,
\]
where \(L^i \) are free graded \(S \)-modules of finite type. By the Hilbert syzygy theorem (cf. [6], Chap. VIII, th. 6.5), this dimension is always \(\leq r + 1 \).

We prove the Proposition by induction on the dimension of \(M \). If it is 0, \(M \) is free of finite type, i.e. a direct sum of modules \(S(n_i) \) and the Proposition follows from Corollaries 2 and 3 and Proposition 2. Assume that \(M \) is of dimension \(\leq s \) and let \(N \) be the kernel of \(L^0 \to M \). The graded \(S \)-module \(N \) is of dimension \(\leq s - 1 \) and we have an exact sequence:
\[
0 \to N \to L^0 \to M \to 0.
\]

By the induction assumption, the Proposition is true for \(N \) and \(L^0 \). Applying the five lemma ([7], Chap. I, Lemme 4.3) to the commutative diagram:

\[\text{DIAGRAM}A,\]
where \(h \geq k \geq \operatorname{Sup}(k(N), k(L^0)) \), we show (a), thus also (b), because the \(H^q_k(M) \)
are of finite dimension over \(K \). On the other hand, the exact sequence

\[
H^q(L^0(n)) \rightarrow H^q(M(n)) \rightarrow H^{q+1}(N(n))
\]

shows that \(H^q(M(n)) = 0 \) for \(n \geq \operatorname{Sup}(n(L^0), n(N)) \). Finally consider the
commutative diagram:

\[
\text{DIAGRAM 5};
\]

for \(n \geq n(N) \), we have \(H^1(N(n)) = 0 \); we deduce that \(\alpha : M_n \rightarrow H^0(M(n)) \)
is bijective for \(n \geq \operatorname{Sup}(n(L^0), n(N)) \), which completes the proof of the Proposition.

3.3.64 Comparison of the groups \(H^q(M) \) and \(H^q(X, \mathcal{A}(M)) \)

Let \(M \) be a graded \(S \)-module and let \(\mathcal{A}(M) \) be the algebraic sheaf on \(X = \mathbb{P}_r(K) \)
defined by \(M \) by the procedure of \(n^57 \). We will now compare \(C(M) \) with
\(C^0(\mathfrak{U}, \mathcal{A}(M)) \), the complex of alternating cochains of the covering \(\mathfrak{U} = \{ U_i \}_{i \in I} \)
with values in the sheaf \(\mathcal{A}(M) \).

Let \(m \in C^q_0(M) \) and let \((i_0, \ldots, i_q) \) be a sequence of \(q + 1 \) elements of \(I \). The
polynomial \((t_{i_0} \cdots t_{i_q})^k \) belongs obviously to \(S(U_{i_0 \cdots i_q}) \), with the notations of
\(n^57 \). It follows that \(m(t_{i_0} \cdots t_{i_q})/(t_{i_0} \cdots t_{i_q})^k \) belongs to \(M_U \), where \(U = U_{i_0 \cdots i_q} \);
thus defines a section of \(\mathcal{A}(M) \) over \(U_{i_0 \cdots i_q} \). When \((i_0, \ldots, i_q) \) varies, the system
consisting of this sections is an alternating cochain of \(\mathfrak{U} \) with values in \(\mathcal{A}(M) \),
which we denote by \(\iota_k(m) \). We immediately see that \(\iota_k \) commutes with \(d \) and
that \(\iota_k = \iota_h \circ \rho_k^h \) if \(h \geq k \). By passing to the inductive limit, the \(\iota_k \) thus define
a homomorphism \(\iota : C(M) \rightarrow C^0(\mathfrak{U}, \mathcal{A}(M)) \), commuting with \(d \).

Proposition 4. If \(M \) satisfies the condition \((TF) \), \(\iota : C(M) \rightarrow C^0(\mathfrak{U}, \mathcal{A}(M)) \)
is bijective.

If \(M \in \mathcal{C} \), we have \(M_n = 0 \) for \(n \geq n_0 \), so \(C_k(M) = 0 \) for \(k \geq n_0 \) and
\(C(M) = 0 \). As every \(S \)-module satisfying \((TF) \) is \(C \)-isomorphic to a module of
finite type, this shows that we can restrict ourselves to the case when \(M \) is of
finite type. We can then find an exact sequence \(L^1 \rightarrow L^0 \rightarrow M \rightarrow 0 \), where \(L^1 \)
and \(L^0 \) are free of finite type. By Propositions 3 and 5 from \(n^58 \), the sequence

\[
\mathcal{A}(L^1) \rightarrow \mathcal{A}(L^0) \rightarrow \mathcal{A}(M) \rightarrow 0
\]

is an exact sequence of coherent algebraic sheaves; as the \(U_{i_0 \cdots i_q} \) are affine open
subsets, the sequence

\[
C^0(\mathfrak{U}, \mathcal{A}(L^1)) \rightarrow C^0(\mathfrak{U}, \mathcal{A}(L^0)) \rightarrow C^0(\mathfrak{U}, \mathcal{A}(M)) \rightarrow 0
\]

is exact (cf. \(n^45 \), Corollary 2 to Theorem 2). The commutative diagram

\[
\text{DIAGRAM 6}
\]

76
then shows that if the Proposition is true for the module L^1 and L^0, so it is for M. We are thus reduced to the special case of a free module of finite type, then, by the decomposition into direct summands, to the case when $M = S(n)$.

In this case, we have $\mathcal{A}(\mathcal{S}(n)) = \mathcal{O}(n)$; a section $f_{i_0 \ldots i_q}$ of $\mathcal{O}(n)$ over $U_{i_0 \ldots i_q}$ is, by the sole definition of this sheaf, a regular function on $V_{i_0} \cap \ldots \cap V_{i_q}$ and homogeneous of degree n. As $V_{i_0} \cap \ldots \cap V_{i_q}$ as the set of points of K^{r+1} where the function $t_{i_0} \ldots t_{i_q}$ is $\neq 0$, there exists an integer k such that

$$f_{i_0 \ldots i_q} = P(i_0 \ldots i_q)/(t_{i_0} \ldots t_{i_q})^k,$$

$P(i_0 \ldots i_q)$ being a homogeneous polynomial of degree $n + k(q + 1)$, that is, of degree $k(q+1)$ in $S(n)$. Thus, every alternating cochain $f \in C^q(\mathcal{U}, \mathcal{O}(n))$ defines a system $P(i_0 \ldots i_q)$ that is an element of $C_k(S(n))$; hence a homomorphism

$$\nu : C^q(\mathcal{U}, \mathcal{O}(n)) \to C(S(n)).$$

As we verify immediately that $\iota \circ \nu = 1$ and $\nu \circ \iota = 1$, it follows that ι is bijective, which completes the proof.

Corollary. ι defines an isomorphism of $H^q(M)$ with $H^q(X, \mathcal{A}(M))$ for all $q \geq 0$.

Indeed, we know that $H^q(\mathcal{U}, \mathcal{A}(M)) = H^q(\mathcal{U}, \mathcal{A}(M))$ ($n^\circ 20$, Proposition 2) and that $H^q(\mathcal{U}, \mathcal{A}(M)) = H^q(X, \mathcal{A}(M))$ ($n^\circ 52$, Proposition 2, which applies because $\mathcal{A}(M)$ is coherent).

Remark. It is easy to see that $\iota : C(M) \to C^q(\mathcal{U}, \mathcal{A}(M))$ is injective even if M does not satisfy the condition (TF).

3.3.65 Applications

Proposition 5. If M is a graded S–module satisfying the condition (TF), the homomorphism $\alpha : M \to \Gamma(\mathcal{A}(M))$, defined in $n^\circ 59$, is C-bijective.

We must observe that $\alpha : M_n \to \Gamma(X, \mathcal{A}(M(n)))$ is bijective for n sufficiently large. Then, by Proposition 4, $\Gamma(X, \mathcal{A}(M(n)))$ is identified with $H^0(M(n))$; the Proposition follows thus from Proposition 3, (c), given the fact that the homomorphism α is transformed by the above identification to a homomorphism defined at the beginning of $n^\circ 62$, also denoted by α.

Proposition 6. Let \mathcal{F} be a coherent algebraic sheaf on X. The graded S–module $\Gamma(\mathcal{F})$ satisfies the condition (TF) and the homomorphism $\beta : \mathcal{A}(\Gamma(\mathcal{F})) \to \mathcal{F}$ defined in $n^\circ 59$ is bijective.

By Theorem 2 of $n^\circ 60$, we can assume that $\mathcal{F} = \mathcal{A}(M)$, where M is a module satisfying (TF). By the above Proposition, $\alpha : M \to \Gamma(\mathcal{A}(M))$ is C-bijective; as M satisfies (TF), it follows that $\Gamma(\mathcal{A}(M))$ satisfies it also. Applying Proposition 6 from $n^\circ 58$, we see that $\alpha : \mathcal{A}(M) \to \mathcal{A}(\Gamma(\mathcal{A}(M)))$ is bijective. Since the
composition $\mathcal{A}(M) \xrightarrow{\alpha} \mathcal{A}(\Gamma(\mathcal{A}(M))) \xrightarrow{\beta} \mathcal{A}(M)$ is the identity (Proposition 7), it follows that β is bijective, q.e.d.

Proposition 7. Let \mathcal{F} be a coherent algebraic sheaf on X. The groups $H^q(X, \mathcal{F})$ are vector spaces of finite dimension over K for all $q \geq 0$ and we have $H^q(X, \mathcal{F}(n)) = 0$ for $q > 0$ and n sufficiently large.

We can assume, as above, that $\mathcal{F} = \mathcal{A}(M)$ where M is a module satisfying (TF). The Proposition then follows from Proposition 3 and the corollary to Proposition 4.

Proposition 8. We have $H^q(X, \mathcal{O}(n)) = 0$ for $0 < q < r$ and $H^r(X, \mathcal{O}(n))$ is a vector space of dimension $(-n-1)$ over K, admitting a base consisting of the cohomology classes of the alternating cocycles of \mathcal{U}

$$f_{01...r} = 1/t_0^{\beta_0} \ldots t_r^{\beta_r} \quad \text{with} \quad \beta_i > 0 \quad \text{and} \quad \sum_{i=0}^{r} \beta_i = -n.$$

We have $\mathcal{O}(n) = \mathcal{A}(S(n))$, hence $H^q(X, \mathcal{O}(n)) = H^q(S(n))$, by the corollary to Proposition 4; the Proposition follows immediately from this and from the corollaries of Proposition 2.

We note that in particular $H^r(X, \mathcal{O}(-r-1))$ is a vector space of dimension 1 over K, with a base consisting of the cohomology class of the cocycle $f_{01...r} = 1/t_0 \ldots t_r$.

3.3.66 Coherent algebraic sheaves on projective varieties

Let V be a closed subvariety of the projective space $X = \mathbb{P}_r(K)$ and let \mathcal{F} be a coherent algebraic sheaf on V. By extending \mathcal{F} by 0 outside V, we obtain a coherent algebraic sheaf on X (cf. n^239) denoted \mathcal{F}^X; we know that $H^q(X, \mathcal{F}^X) = H^q(V, \mathcal{F})$. The results of the preceding n^2 thus apply to the groups $H^q(V, \mathcal{F})$. We obtain immediately (given n^252):

Theorem 1. The groups $H^q(V, \mathcal{F})$ are vector spaces of finite dimension over K, zero for $q > \dim V$.

In particular, for $q = 0$ we have:

Corollary. $\Gamma(V, \mathcal{F})$ is a vector space of finite dimension over K.

(It is natural to conjecture whether the above theorem holds for all complete varieties, in the sense of Weil [16].)

Let $U'_i = U_i \cap V'$; the U'_i form an open covering \mathcal{U}' of V. If \mathcal{F} is an algebraic sheaf on V, let $\mathcal{F}_i = \mathcal{F}(U'_i)$ and let $\theta_{ij}(n)$ be the isomorphism of $\mathcal{F}_j(U'_i \cap U'_j)$ to $\mathcal{F}_i(U'_i \cap U'_j)$ defined by multiplication by $(t_j/t_i)^n$. We denote by $\mathcal{F}(n)$ the
sheaf obtained by gluing the \(F_i \) with respect to \(\theta_{ij}(n) \). The operation \(F(n) \) has the same properties as the operation defined in \(n^\circ 54 \) and generalizes it; in particular, \(F(n) \) is canonically isomorphic to \(F \otimes \mathcal{O}_V(n) \).

We have \(F^X(n) = F(n)^X \). Applying then Theorem 1 of \(n^\circ 55 \), together with Proposition 7 from \(n^\circ 65 \), we obtain:

Theorem 2. Let \(F \) be a coherent algebraic sheaf on \(V \). There exists an integer \(m(F) \) such that we have, for all \(n \geq m(F) \):

(a) For all \(x \in V \), the \(\mathcal{O}_x,V \)-module \(F(n)_x \) is generated by the elements of \(\Gamma(V,F(n)) \),

(b) \(H^q(V,F(n)) = 0 \) for all \(q > 0 \).

Remark. It is essential to observe that the sheaf \(F(n) \) does not depend solely on \(F \) and \(n \), but also on the embedding of \(V \) into the projective space \(X \). More precisely, let \(P \) be the principal bundle \(\pi^{-1}(V) \) with the structural group \(K^* \); with \(n \) an integer, we make \(K^* \) act on \(K \) by the formula:

\[
(\lambda, \mu) \mapsto \lambda^{-n} \mu \quad \text{if} \quad \lambda \in K^* \quad \text{and} \quad \mu \in K.
\]

Let \(E^n = P \times_K K \) be the fiber space associated to \(P \) and the fiber \(K \), equipped with the above action; let \(S(E^n) \) be the sheaf of germs of sections of \(E^n \) (cf. \(n^\circ 41 \)). Taking into account the fact that \(t_i/t_j \) form a system of transition maps of \(P \), we verify immediately that \(S(E^n) \) is canonically isomorphic to \(\mathcal{O}_V(n) \). The formula \(F(n) = \mathcal{F} \otimes \mathcal{O}_V(n) = \mathcal{F} \otimes S(E^n) \) shows then that the operation \(\mathcal{F} \to F(n) \) depends only on the class of the principal bundle \(P \) defined by the embedding \(V \to X \). In particular, if \(V \) is normal, \(F(n) \) depends only on the class of linear equivalence of hyperplane sections of \(V \) in the considered embedding (cf. [17]).

3.3.67 A supplement

If \(M \) is a graded \(S \)-module satisfying (TF), we denote by \(M^2 \) the graded \(S \)-module \(\Gamma(A(M)) \). We have seen in \(n^\circ 65 \) that \(\alpha : M \to M^2 \) is \(C \)-bijective. We shall now give conditions for \(\alpha \) to be bijective.

Proposition 9. \(\alpha : M \to M^2 \) is bijective if and only if the following conditions are satisfied:

(i) If \(m \in M \) is such that \(t_i \cdot m = 0 \) for all \(i \in I \), then \(m = 0 \).

(ii) If elements \(m_i \in M \), homogeneous of the same degree, satisfy \(t_j \cdot m_i = t_i \cdot m_j = 0 \) for every couple \((i, j) \), there exists an \(m \in M \) such that \(m_i = t_i \cdot m \).

Let us show that the conditions (i) and (ii) are satisfied by \(M^2 \), which will prove the necessity. For (i), we can assume that \(m \) is homogeneous, that is, it is a section of \(A(M(n)) \); in this case, the condition \(t_i \cdot m = 0 \) implies that \(m \) is zero on \(U_i \), and since this occurs for all \(i \in I \), we have \(m = 0 \). For (ii), let \(n \) be the
degree of m_i; we thus have $m_i \in \Gamma(\mathcal{A}(M(n)))$; as $1/t_i$ is a section of $\mathcal{O}(-1)$ over U_i, m_i/t_i is a section of $\mathcal{A}(M(n-1))$ over U_i and the condition $t_j \cdot m_i - t_i \cdot m_j$ shows that these various sections are the restrictions of a unique section m of $\mathcal{A}(M(n-1))$ over X; it remains to compare the sections $t_i \cdot m$ and m_i; to show that they coincide on U_j, it suffices to observe that $t_j(t_i \cdot m - m_i) = 0$ on U_j, which follows from the formula $t_j \cdot m_i = t_i \cdot m_j$ and the definition of m.

We will now show that (i) implies that α is injective. For n sufficiently large, we know that $\alpha : M_n \to M_\natural n$ is bijective and we can thus proceed by descending induction on n. If $\alpha(m) = 0$ with $m \in M_n$, we have $t_i \alpha(m) = \alpha(t_i \cdot m) = 0$ and the induction assumption, applicable since $t_i \cdot m \in M_{n+1}$, shows that $m = 0$. Finally, let us show that (i) and (ii) imply that α is surjective. We can, as before, proceed by descending induction on n. If $m' \in M_\natural n$, the induction assumption shows that there exist $m_i \in M_{n+1}$ such that $\alpha(m_i) = t_i \cdot m'$; we have $\alpha(t_j \cdot m_i - t_i \cdot m_j) = 0$, hence $t_j \cdot m_i - t_i \cdot m_j = 0$, because α is injective. The condition (ii) then implies that there exists an $m \in M_n$ such that $t_i \cdot m = m_i$; we have $t_i(m' - \alpha(m)) = 0$, which shows that $m' = \alpha(m)$ and completes the proof.

Remarks. (1) The proof shows that the condition (i) is sufficient and necessary for α to be injective.
(2) We can express (i) and (ii) as: the homomorphism $\alpha^1 : M_n \to H^0_q(M(n))$ is bijective for all $n \in \mathbb{Z}$. Besides, Proposition 4 shows that we can identify M^\natural with the S–module $\bigoplus_{n \in \mathbb{Z}} H^0_q(M(n))$ and it would be easy to provide a purely algebraic proof of Proposition 9 (without using the sheaf $\mathcal{A}(M)$).
3.4 Relations with the functors Ext_S^q

3.4.68 The functors Ext_S^q
Bibliography

