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(On vanishing sums of roots of unity)
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1. Introduction. The equation

By, ooy g, 0igy my (@, ...y @), ., trig, mh, (@1, ..., @) == 0
s called a trigonometric diophantine equation if

1) R, 6;,..., 8, ave rational functions of their arguments, with
rational number coefficients. ' :

(ii) trigy,...,trig, are functions chosen from the set {sin, cos, tan,
cot, sec, covec).

(iii} Tt is to be solved in integers for some of the @, and rational
numbers for the others. ‘ _ :

The equation is called an ordinary diophantine equation if n = 0.
In this paper we shall give an effective Procedure which given any trig-
onometrie.  diophantine equation in variables &1y -.., % Dproduces an
‘equivalent’ ordinary diophantine equation in variables @y, ..., a,, (m > .
To be precise, r,,...,7; is a solution of the first equation if and only if
there are numbers Yi41; - vy ¥ Such that r;, ..., 7, is 2 solution of the
second. Tf we neglect the néw variables (and they unsually enter only in
a raher trivial way) then we can say that our Process produees an ordinary
diophantine equation which has the same rolutions as any given trigono-

metrie diophantine equation. Thus no problems arise in solving equations
such as

weom( ) +(y2+3w)mnn(—-§x—?’l—w) = 1

w22 By — T

- 'which do not already arise in the solution of ordinary diophantine equa-

tiong. OF conrse it follows from the work of Matijasevid [8] that this
reduction is not necessarily helpful since arbitrarily hard problems can
still arise! Nevertheless we show in the second part of this paper that
a defailed consideration of vanishing sums of roots of unity yields a method
which s quite practicable in simple cases.
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We are grafiefal to the referee for drawing our atlention to several
obscurities and for providing the reference fo the important paper of
Rédei [8].

2. Preliminary reductions. Our problem as stated hos a certain
artificiality, and is not very well defined, since we have neglected the
problems concerned with infinite argumenty or valoes of the trigonometric
functions. We proceed at once o sirip it of ity spurious generality. It
is plain that we can suppose all the trigonometric funetiony fo he cosines,
since for example we can replace tanmd by cosw(d—0)/cosw8, and it is
reasonable to interpret ‘zero of B’ as ‘zero of the numerator of I, so
that we can guppose B to be a polynornial. (Other, perhaps more reason-
able, interpretations of this phrase ean be accomodated almost as rea-
dily — we chooge this one to simplify the exposition). If we now replace
2eos2n0 by e{)+e(—0), where e(z) denotes €™, and use the identity
e(z)e(y) = elw+y) we get an equation of the form

(L) ‘  Xie{O) ..+ Xye(Oy) = 0

in which X;, @, are given rational functions of =, ..., &, and N iz fixed.
But we shall prove in Theorem 3 thaf the solutions in rationals of the
equaftion

{2) 2ie(0) +... +axe(fy) =0

in which @y, ..., @y, b, ..., Gy ave variables, fall into a finite number
of parametric families of the form

B; = Ly(Pyy oeny D1,
Oy = My(D1ys oers Pp)

in which the I, and M, ave linear funchions and some of the parameters p;
range through the integers, the others through the rationals.

‘For each such parametric solution of (2) we consider the equation
in variables @, ..., @, Dyy o0y Py

r

N
(3) DX = LoDy oy B+ (O Ml vy )} == 0.
g=1

. Then it is obvious that the solutions of this equation restvict, when we
ignore the variables p;, to solutions of (1), and that we obtain all the
solutions of (1) by considering a finite number of equations (3), one for
each parametric family, say the equations I, = 0,..., 'z == 0. In other
words, the solutions of (1) are precisely those values of @y, ..., whloh
are obmmed from solntions of the equafion

.111 2--.PK-—_-'~0.
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The veader now appreciates just how artificial our problem as.
However several trigonometric (iophantine equations have heen used
in the literabuve, for example Coxeter [1], and provided with ed hoc
solutions, Gordan [5] and Crosby [2] (these applications are briefly dis-
cussed in our coneluding section), so it is quite valuable to realise that (2}
is essentially the only such equation, aund that for any given value of
N it can be solved completely in a guite effective way. We shall illustrate
these remarks later by finding all rational linear combinations of four
cosines of rntional angles (i.e. rational multiples of ).

3. The ring of formal sums of roots of wmity. A number of the form
¢(9) with rational 0 is & complex nuwmber of finite nwltiplicative order,
or in other words a reot of unity. From now on we shall eall & complex
number satistying o™ «= 1 an n-th root, or just a roof when = is immaterial.
We call it o primdfive nth root it » is its exact order. The least common
order of & set of roots is the least n for which they all satisfy 2 = 1.
Ouv problem has been reduced fo that of finding all linear dependences
among roots of unify, and it seems natural to atfack it with the following
teriinology.

Tale an inlinite dimensional vector space over the rationals, with
one basis vector a fov each root «, and convert it into a ring by writing
af ==y whenewer off = . The elements of thix ring we call formal sums
of rooty of wnity, 01 just formal sums. The formal sum & involves the T00t «
when the expression for 8 in tevms of the above bagis has non-zero coef-
ficient of a. The length 1(8) of § ix {he number of roots involved in 8,
and its exponent ¢(8) is their least common order. The snm & is ca.llecl
stmilor to L-af for any root o and any non-zero rational number &, and
the reduced exponent v(S) of § is the least exponent of any sum similar
to 8. If & involves 1 we call it monde; its exponent then coincides with
ite reduced exponent. The value v(8) of § = e, e is of cowrse the complex
number M e.a, and we call 8 & vanishing susn when v(8) = 0.

We call voots o, § equivalent if o/f bas squareiree order, noting
that equivalence s an equivalent relation. If » = ab, where o and b
are coprimne, then any wth root « factorises as a product of ath and bth
roots o aud £ Ina unigue way., We write ¢ = mla], f = o[b]. Finally
woe eall o vanishing swm minimal if no proper subsum vanishes.

Tumorus 1. Any vanishing sum also vonishes when resiricted o any
equivalence olass (i.e. the partial sum of just ﬂ_aosea terms of 8 from the given
squivalence elass vanishes).

Proof. The roots involved in § are all powers of a single root w,
sy, of ovder # == ¢(8). Let @ be the greatest squarefree divisor of », and
lot n = ab, 2 = 0" Then -1 and » are coprime, and so there is an
auvtomorphisin of the field Q(») replacing © by w' = Q. It is easy
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to see that thiz avtomorphism multiplies two powers of o by the same
power of Q if and only if they are equivalenf, and so § transiorms to
the new wvanighing sum ¥

Sy 28, + P8+ 2718,

where the 8, are the sums obtained by restricting § to equivalence classes.
Repeatedly applying this automorphism we obtain a nuwmnber of
such sums which on adding and using 1404 401 = Vleld b8y,
and so 8, (and similarly the other 8§;), must vanish.
In view of Theorem 1 we now restrict our attenfion to swms invol-
ving only roots of squarefree order. Our next theorem gives an exacth
eriterion for such a sum to vanish.

TeroREM 2. Consider 8 = }) c,a, where a ranges over all n-th roois

and n is squarefree, then 8 vonishes +f and only if we have

W | D nld)

d|n

Capa) = ¢

for every primitive n-th rool w, u being the Mdbius funclion.
Remark. This theorem appears in Rédei ([9], Satz 3).

Proof. Let « be an imprimitive nth root, so that the order of « is
not divisible by some prime factor p of n, and let & be a primitive pih
root. Then the equation

at+al+afP . 4alP =0

enables us to express a a3 4 linear combination of mth roots whose orders
are gtrictly larger than that of o, and repeating the process, if necessary,
we ultimately express o as-a linear combination of primitive nth reots.

But the above equation, considered as an equation of the type
2 e,o = 0 (with many zero coefficients) satisfies the eriterion (4), because
if o = m[e] for some primitive root w, then w[pe] has the form «f® and
only for & =e¢ or pe is eyq # 0.

It therefore follows that our criterion for the vanishing of § holds
in general if and only if it holds for sums 8 with s, = 0dor all imprinitive a.
But for such § the criterion merely demands that ¢, = 0 for all the re-
maining a, so that our theorem holds if and only if the primitive nth
roots are linearlty independent over the rationals. However we have just
shown that the p(n) primitive #th roots span the field they generate,
and since this field has degree p(n) they must form a bagis for it as a
vector gpace over the rationals, and the result follows.

We could also have completed the proof along the same lines s
our proof of Theorem 1, using the following lemma.
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Limvwa 1. If Sy4+ 08, -+... + '8, is o vanishing sum, o being
o primitive p-th root, and the 8, having (Jmpmwnts prime o p, then the S;
all have the same value.

Proof. Let K be the smallest extension of the rationals containing
all the roots of unity involved. Then there is an antomorphism of K fixing
each vool whose order is coprime to p but replacing o by any other
primitive pth root. Applying these automorphisms to § and adding the
resulting equations we obtain

o((p—1) 8y~ 8 ...

80 that 8, has valne

- Sp«-l) = 07

1
E?){So"l"gl 'I"‘..-“‘{"S:p_l)

and similarly we gsee that the other §, also have this value.

TaporwM. 3. Let » be the product of all primes p< N. Them to each
puir of functions

e, 1,2, N}, g¢:{0,2,...,5={0,1,...,r—1}
there is o parametric solution of
(3) #e(0)+...+aye(ly) =0
of the form
(6) : b = pi+ gy +gEHT,
(7) : @y o= Ly, ooy Tr)s

where the Py, .-, Py are arbitrary snteger parameters, quy ..., s 1oy 'y
are urbilrary rational parometers, and the Vinsar functions Ly, ..., Ly depend
only on the pair f, g. Bvery solution of (B) is o ouse of one of these parametric
solutions.

Proof, Given any solution of (), we fivst produce from it the par-
gmetors which satisfy (6). '

After Theorem 1, the sum of the terms of (5) in each equivalence
clasys vanishey, 3o by Lemma 1, any prime dividing the reduced exponent
of one of phese swms is“at most N. Thus two e(8;) in (5) belong to the
game equivalence class it and only if the corresponding 0, differ by an
integral multiplé of 1/r. Hence there exist rational numbers &, ..., S,
with ¢; depending only on the equivalence class of e(6;) in (5) such thaf
0,4, iy an integral multiple of 1/r, say B

B;—8; = pi+g(@)r,
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where p; is integral and g(é)e {0, 1,...,r—1}. If we number the equiv-
alence classes by numbers from 1, 2, ..., N (at mort), and let f(2) e
the number of the class containing e(8;), then we can write s; = gy,
obtaining (6).

Now for each pair f, ¢ we must find. the conditions the x; must safixfy
to give a solution of (5). For each #th root o, define ¢,(k) as the ~um
of all the », for which f(i) == & and ¢(g(i}/r] == o. Then Theorem 2 shows
that the requirved conditions are simply thab

2 & (d) r:’m[(l‘:[ ( ]{;) == {)

dir

for each primitive rth root o and each ke{l,..., ¥}. Since these are
linear conditions on the @, we can express their general solution in the
form (7), thereby proving the theorem.

- This also eompletes the proof of our assertion that trigonometric
diophantine equations reduce to ordinary ones. To make this into a prac-
tieable method for solving trigonometric equations we must evect a theory
of vanishing suwms.

4. Vanishing sums. In Theorem 6 we ghall in fact find all vanishing
sums of length < 9. These might suggest that any vanishing sum ecan
be obtained from. a shorter one by adding a sum similar to 1+ o +... 4 o?~*
for some pth root w. That this is not generally the case is shown by the
vanishing sum

1 o a® |
S: ]_ ﬁ._l_-ﬁﬂ ﬂ3+ﬁ4
L+7 49 475 +9

in which a, 8, y are roots of order 3, 5, 7 respectively. Here we lLave 1(S)
"= 23, but it can be shown that whenever § = § +8" with 8§ similar
0 l+o-... o’ then {8} > 23. However the following theorem
-gives a valid way of obtaining vanishing sums from shovier ones.

TumorEM L. Let 8 De o vanishing swm. Then either 8 is similar to
L+ o... 0" for some prime v and primitive r-th root w, or § = § 4§,
where 8', 8" are vanishing sums satisfying

o

UK US), r(S<r(S), WS <US),  r(87) < M)

Proof. We suppose § monic, so that #(8) = ¢(8) = # say, and

after Theorem 1 we ean suppose r squarefree. If 7 is prime Lewmma 1 proves .

that 8 is similar fo 1+ +...-- 0™, o a primitive rth root, 80 that we
suppose r composite. If now every #th root is involved in 8, we can take

icm
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8 as al-ao ...+ a0 " and 8§ as §—8', where o is a primitive pth
root for some plr, and ¢ iy the eoefficiens of 1 in S. Then

UE8) =r(8) =p<r =¢8) =18
while plainly #(8") << r, and 1{8") < » since §” does not involve 1.

It, on the other hand, some rth root iz not involved, we have 1(8) < »,
%o that some prime p divides » but not I(8). If we write § in the form

18+ @8 A P8 513

in which the exponent of each §; divides rfp and o is a primitive pth
root, then Lemma 1 shows that the value of the ; are all equal. But
fince p(8) their lengths cannot all be equal. We leti §; have the minimal
length, and suppose 1(8,) < I(8;). Then we can ftake §° as (8 —8) e,
when 8" will be the sum obtained from § by replacing S; by 8;. We then
have

L(87) < LS, + () < U(8)

{with strict inequality unless p = 2), and also
r(§)<rip<r =r(8),
while plainly #(8") = r{8), and
H8) = 1{8) —1(8)) +1{8;) < 1(8).

A more detailed argument yields the following relation between I(8)
and 1"(.8'). Recall that a vanishing swn is mindmal if no proper subsum
vanishes. We have : '

THEOREM 3. If a minimal vanishing sum hos length | and reduced
exponent r, then

1> Y (0—2)+2 ~f(r), say.

k4

=

This is an immediate corvollary of the following lemma.

TmyMA. 2. Lot 8 be a vomishing swm of the form 3 8,a, where a ranges
over all the v-th voots, and the S, are sums with exponents coprime fo v. Then
either there 45 o divisor d of v with d > 1 such that for each d-th root o the
sum vanishes when restricted to the o with a[d] = o (when we call it d-
splitting) or the muwmber of non-venishing S, 48 ot least f(r).

Remark, For @ = 1 d-splitting means that the swm & is a vanishing
gum, and r-splitting means that each term of the sum is zero.

Proot. We suppose S it not d-splitting for any & < r. It does not
affect the lemma to suppose also that any two S, which have the same
value are idenfical. For any divisor d of # we can express § in the form

8o+ o8y +... + 0" Bguy
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where dd* = », each §; has exponent coprime to 4%, and o is a primitive
d*th root. The number of non-vanishing sums §; i, by induction, at
least f(d%), and the lemma will be proved if we show that for some d there
are terms 8; and §; (¢ #% j) which together contain at least f(d) non-
vanishing terms of 8, for then the total humber of non-vanishing terms
in 8§ will be at least f(d*) —2+f(d) = f(+). Tt will suffice to prove that
for some 4 there arve terms 8, and §; for which 8;—8; is not D-splitting
for any proper divisor D of d, for then the sum 8;—8; has at least f(d)
bterms by induction,

Now there exist values of ¢ for which two of the sums 8; have the
same value but are not equal, since it ig easy to see that if the S, are all
equal for d = »/p, p prime, then § is d-splitting. Consider then the smallest
such @, noting that € > 1, and let 8y, 8; be unequal terms with the same
value. It 8;—§; is D-splitting for some D|d, D < d, DD* = d, then ex-
pressing 8; and §; in the forms

8 =8 +8 2+, P00
8; = 8j+8;2+...+ 8PP,

wherein the 8F and §* have exponents coprime to D and 2 is a primitive
Dith root, we see that v(8F - 8¥) = 0 for each k, but since 8; and 8, are
unequal there must be some & for which S% and SF are unequal, and this
therefore contradicts the minimality of d. Thus 8;—8; is not D-splitting
for any D)d, whence by induction it has at leagt F(d) terms ag required.

Since & minimal sum obviously cannot be d-splitting the theorem
follows. The result is best possible, ag can be zeen by congidering a van-
ishing swm of the form

8y +8y+... 48,
where _ .
8; = ;(V+ o+ ofi™),

1

s0 that one of the terms of §, +1 18 the negative of some ferm in 8, ... 4 S
It is an interesting exercise to show (by considering when equality holds
in the proof of the theorem) that this is in fact the most general exannple
tor which the bound is exactly attained. '

Our Theorem 5 improves a similar result of Mann ([7], Theorem 1).
We can also readily deduce the follewing

COROILARY. A minimal vansshing swm of length | and reduced exponent r
has

where o, i3 a primitive p,th r0o0t, & i3 an arbitrary root and ;.1 18 chosen

7 = Ofexp (O(tlogl)**)}
Jor every 0> 1
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The proof is routine and we suppress it, but the corollary is worth
mentioning because it is an improvement, essentially best possible, of
a result of Schinzel ([10], Theorem 1, Cor. 3). (A similar corollary could
be deduced from Manp’s theorem.)

Lrofessor Schinzel remarked, upon seeing an earlier draft of this
paper, that an immediate consequence is that, for squarefree n, the number
ol non-vanishing coefficients in the ath cyelotomic polynomial is »
(logm)*floglogn. An inferesfing problem in ity own right would be to
substantially improve this estimate. '

5. Vanishing swms of emall fength. Aceording to owr previous defi-
niftions formal sums such ag 1+a-Fa® and 1—-{—a)+4® are unequal,.
but from now on woe infend to regard them as identical. This is equivalent
to replacing our oviginal ring of formal sums of roots of unity by a new
one obtained by adding relations —(—o) = o for all roots .

Tanornm 6. Let 8 be a non-emply (*) vanishing sum of length at most 9.
Then cither 8 involves 0, af, a0 for some reot 6, or 8 is similar to one of

TP B —a—at 4 f4 oL A
Lo ot 224 Pyt 97 5 1+B+p4~(a+ o) (87449,
e a by byt R, B = (e ad) (L B ),
bty b e (aok a®) (p495), L-(ata®) (B2 5+ 57),
where «, B, v are primitive roots of ovders 8, B, T respectively.
Proof. Suppose that 8 is minimal. In this cass we can further sup-
pose ity exponent is squarefree and, using the remark hefore the theorem,

also odd. Let p be the largest prime divisor of ¢(§) so that by Theorem 5.
P T Dxpress § as

Sy-Foly .. o8, 4,

where o iy a prinitive pth root and the §; have exponents prime to p..

"I p =3, then § can involve oply 1, o, o, and so must be L-+-a-+e? If

P2 5 however, sone 8; has at most one term {(otherwise 1(8) 2= 2p 2= 10).
Since the &, have the same valne, Dy Lemma 1, no §; hay value zero,.
and we can suppese withont loss of gencrality that 8, = 1. All the 8,
have therefore the value 1. '

Now if some 8, # 1, L-8; is a vanishing sum of exponent prime
to .2;, and. this exponent must be 3, for otherwise we should obtain 35|e(S),
contradicting Theerem 5. Tt follows that 1 —8; = ké(L-- a4 a?) for rome
rational % aund root 8. Now if k8 1, § involves du’, adw®, a? do’, and
it %6 == 1 then 8; = — a—a® Bub any case in which §; is either 1 or

1) Under $hs now rules gunig such ag 14+42 = 1— L = 0 are the empty smm..
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--a—o*and I{S) < 9 is readily seen to be similar to one from the displayed
list.

HFinally, if § is not minimal, any minimal subsum of S has already
been shown to satisfy the theorem. However one such subsun has ab
most 4 terms, hence it, and a fortiori § itgelf, must involve, 6, af, o*8
for some 10Ot 0.

6. Rational sums of cosines of rational angles. We can now nse
Theorem 6 to find the complete solution of the equation

{8) A.cos2na 4 Beos2nb -+ (00 2ne - D ook 2nd = B

in which all the wvariables are rational.

TemorEM 7. Suppose we have at most four distinet rational mulliples
of m lying strictly between O and w/2 for which some rational linear combi-
nation of their cosines is rational but no proper subset has this property.
Then the appropriste linear combination is proportional to one from the
Jellowing list: '

cos T/ ==}, ‘ :

— 08¢ 103 (/8 —p) +eos(n/3 +p) =0 (0 < < =/6),

cos7/5 —cos2n/3 = &,

087 /7 — ¢ 27/ + cos 3n T = %,

c0s /B —cos w/1b + cosdn/1B = 3},

— 082w /5 +eos 2w /15 —cos Tr/15 = §,

cos /7 4 co8 3n /T —cos /21 4 cos 8w /21 = },

o8 /7 —co8 27T 4 008 2m/21 — cos Br/21 = &,

- — 0827 [T+ cos3nfT +cos4n (2] + cos10n/21 = %,

~e087 /15 + €08 27/15 -} cos dm /15 — cos Tx /15 = .-

This generalizes the result of Wlodarski [11].

, Proof. On replacing 2cos2nz by e(@)+e(—x) we obtain a non-
empty vanishing sum § of roots of unity with at most 9 terms. Conversely
from such a vanishing sum in which each roof appears with the same
coefficient as its complex conjugate we obtain a rational linear combination
of at most four cosines in which we can normalize the angles to the range
[0, 7c/2). : _

We now apply Theorem 6. If 6, af, 28 are all involved we have
two cases. Rirstly if ¢™ and =™ are two of the corresponding three terms,
or if one of them is the constant term, we obtain a eguation which nor-
malizes to cosw/3 = 4. In the second cage 8, af, a*f correspond. to terms
from three distinet cosines for which the normalized angles satisly the
second equation on our list.

Otherwise the sum is similar to one of those displayed in Theorem 6
-and, since each root appears as often as its complex conjugate, we may
suppose it is exactly one of thege listed. Taking. all possibilities for the
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primitive roots involved, and normalizing the resulting angles, we obtain
the rexults quoted, together with a few cases in which partial sums are
linearly dependent on some of the above list.

7. Conclusion. Partienlar trigonometric diophantine equations arise
in many geomeiric situations. Gordan’s equation
(0<a,be< )
arises in the enumeration of finite linear groups [5] and in the related

problem of enumerating the regular star polyhedra ([1], §6.7). Crosby’s
equation [2]

COR2nd - CORBmh - 0820 == —1

(0<a,b, <)
can be used in fhe corresponding enumeration of 4-dimensional regnlar
star polytopes ([1], §14.5).

Both these equations are covered by Theorem 7, and make assertions
about the dihedral angles of certain classes of tetrahedra. It seems quite

604 2ra 4~ 008 2rd - o8 2me = 0

" probable that the general tetrahedron all of whose dihedral angles are

rational can he found by our technigues. A rather harder problem is
o enumerate all rectifiable tetrahedra, that is tetrahedra which can be
dissected into polyhedral pieces which can be reassembled to form a cube.
Many such tetrahedra are known (Goldberg [4]}), and our main theorem,
together with Dehn’s solution [3] to Hilbert’s third problem, shows thatb
their complete enumeration rednces in. principle to an ordinary diophantine
equation. '

2Ty
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Mann [7] uses vanishing sums o find polygons with rational sides
and ungles that are rational multiples of = Uking the geometry of the
complex plane we see that Theorem 7 enables us. to find all such polygons
with at mowt 9 sides. Another geometrical problem in which roots of
unity are involved is treated by Kérteszi [6]. _

Such geometrical problems ean often be rolved by Eupplymg our
methods in situ, without translating into algebraic form. We give as
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an example a simple proof that a triangle whose edges are all rationak
and whose angles are all rational multiples of = is necessarily equilateral.

Placing the triangle in the complex plane as shown in the TFigure
on page 239, we obtain the equation

o+ bo? 4 ew? =0,

where o is & primitive nth root of unity and p and g -are chosen so that ».
is minimal. Tf % is coprime to #, o is also a primitive root of unity, and
we obtain

a4 bo™ 4 ew®™ =0,

which correzponds to another triangle with the same edge lengths a, b, ¢,
the edge of length o being shared. The only other possible position is
the reflected one shown, corresponding to ¥ = —1, so we must have
(k, n) =1 implies k = 41 (mod #). But this implies n =1, 2, 3, 4, 6 so
that either all angles are multiples of right angles or all angles are mul-
tiples of ={3. Thus the only possibility for a proper triangle is equilateral.
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ACTA ARTTIIMETICA
XXX (1076)

A stopping time problem on the positive integers
by
Rao Trrrag (Del Mar, Calif.)

Define o fonction X on the natural numbers N = {0,1, 2,...} by -
getling X {n) =1 when » iy odd and X{n) == 0 when # is even. Now define
& funetion T mapping N into itself by setting

Tn = (3%®n 4 X (n))/2.

Note that il # is odd then T'n = (3n+1)/2 else Tn = n/2. Given an ne N
the nunber T is to be regarded as a successor to #. We shall be infe-
rested in analyzing the sueccessor funcfion T when it is applied iteratively
to n.

Before deseribing the principal result it will be convenient to intro-
duee some additional notation. Set T° to be the identity function on N.
I 7% has been defined then define T%*' by setting T%n = T'(T%n).

Durwrrion 0.1, Set g(n) =k if & iv the smallest positive integer
sueh that T%n < n. Tf no such integer exists set x(n) == oo, The number
x(n) will be called the stopping time of n.

Observe that y(0) = y(1) = co. The conjecture concerning y is that
y(n) is finite for all # > 2. It is easy to see that this conjecture is true
if and only if for every integer » 2> 2 there exists a positive integer &
guch that T = 1. In this guise the problem has faseinated computer

seientists [3] and haw also circulated in popular mathematics civeles [1].
In mathematical eircles this problem is frequently reforred to as the Collatz—
Kalcutani problem.

The prineipal result of this paper touching on this problem is the

dewmonntration that g possesses » well defined distribution function

(0) S Ik =l (lfm)p{n < m| g(n) =k}

where u denofes the counting function. The distribution F will be devived
theoretically and it shall be demonstrated that LimF(k) = 0.

Ji—00

Parhaps the most useful technigue to evolve from the machinery
developed is an extremely simple technigque for computing,actual values



