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algebras
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Abstract. Let k ≤ n be nonnegative integers and let λ be a partition of k. S. Griffin
recently introduced a quotient Rn,λ of the polynomial ring Q[x1, . . . , xn] in n variables
which simultaneously generalizes the Delta Conjecture coinvariant rings of Haglund–
Rhoades–Shimozono and the cohomology rings of Springer fibers studied by Tanisaki
and Garsia–Procesi. We describe the space Vn,λ of harmonics attached to Rn,λ and
produce a harmonic basis of Rn,λ indexed by certain ordered set partitions OPn,λ. Our
description of Vn,λ involves injective tableaux and Vandermonde determinants and
combinatorics of our harmonic basis is governed by a new extension of the Lehmer code
of a permutation to OPn,λ.
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1 Introduction: Quotient Rings and Harmonic Spaces

In his Ph.D. thesis [4], Sean Griffin introduced the following remarkable family of quo-
tients of the polynomial ring Q[xn] := Q[x1, . . . , xn] in n variables. Given a subset
S ⊆ [n] := {1, 2, . . . , n} and d ≥ 0, let ed(S) be the degree d elementary symmetric
polynomial in the variable set {xi : i ∈ S}. For example, we have

e2(1457) = x1x4 + x1x5 + x1x7 + x4x5 + x4x7 + x5x7.

By convention, we set ed(S) = 0 whenever |S| < d.
For k ≥ 0, in this paper we use the term partition of k to mean a weakly decreasing

sequence λ = (λ1 ≥ · · · ≥ λs) of nonnegative integers with λ1 + · · ·+ λs = k. We write
|λ| = k or λ ` k to mean that λ is a partition of k and call s the number of parts of
λ = (λ1, . . . , λs). For example, if λ = (4, 2, 2, 0, 0) we have λ ` 8 and the partition λ has
5 parts.
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Definition 1.1 (Griffin [4]). Let k ≤ n be nonnegative integers and let λ = (λ1 ≥ · · · ≥ λs ≥
0) be a partition of k with s parts. Write λ′ = (λ′1 ≥ · · · ≥ λ′n ≥ 0) for the conjugate partition
of λ, padded with trailing zeros to have n parts.

Let In,λ ⊆ Q[xn] be the ideal

In,λ = 〈xs
1, . . . , xs

n〉+ 〈ed(S) : S ⊆ [n] and d > |S| − λ′n − λ′n−1 − · · · − λ′n−|S|+1〉 (1.1)

and let Rn,λ := Q[xn]/In,λ be the associated quotient ring

As an example, suppose n = 9 and λ = (3, 2, 2, 0) so that k = 7 and s = 4. The
conjugate partition λ′ = (λ′1, . . . , λ′9) is given by (3, 3, 1, 0, 0, 0, 0, 0, 0). The ideal I9,λ ⊆
Q[x9] is generated by x4

1, . . . , x4
9 together with the polynomials

ei(S) S ⊆ [9] |S| = 9 i = 9, 8, 7, 6, 5, 4, 3,
ej(T) T ⊆ [9] |T| = 8 j = 8, 7, 6, 5,

ed(U) U ⊆ [9] |U| = 7 d = 7.

Griffin’s rings Rn,λ generalize several important classes of quotient rings in algebraic
combinatorics.

• When k = s = n and λ = (1n), the ideal In,λ is generated by the n elementary
symmetric polynomials e1(xn), e2(xn), . . . , en(xn) in the full variable set {x1, . . . , xn}
and Rn,λ is the classical coinvariant ring Rn := Q[xn]/〈e1(xn), e2(xn), . . . , en(xn)〉
attached to the symmetric group Sn. The ring Rn,λ presents the cohomology of the
complete flag variety of type An−1.

• When k = n and λ ` n is arbitrary, the ring Rn,λ is the Tanisaki quotient studied by
Tanisaki [10] and Garsia–Procesi [3] which presents the cohomology of the Springer
fiber Bλ attached to the partition λ.

• When λ = (1k, 0s−k) has all parts less or equal to 1, the rings Rn,λ were introduced
by Haglund, Rhoades, and Shimozono [7] to give a representation-theoretic model
for the Haglund–Remmel–Wilson Delta Conjecture [6]. Pawlowski–Rhoades proved
that these rings present the cohomology of a certain moduli space Xn,k,s of line
configurations [8].

The symmetric group Sn acts on Q[xn] by subscript permutation. The ideals In,λ are
graded and Sn-stable, so Rn,λ is a graded Sn-module. Generalizing results from [3, 7],
Griffin calculated [4] the graded Sn-isomorphism type of Rn,λ.

In this extended abstract we study the rings Rn,λ as graded Q-vector spaces. In the
special case k = s = n and λ = (1n), the classical coinvariant ring Rn has a number
of interesting bases which are important for different reasons. Perhaps the simplest of
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these was discovered by E. Artin [1], who used Galois Theory to prove that the family of
‘sub-staircase monomials’

{xc1
1 xc2

2 · · · x
cn
n : 0 ≤ ci ≤ n− i} (1.2)

descends to a basis for Rn. Extending earlier results of [3, 7], Griffin discovered the
appropriate generalization of ‘sub-staircase’ to obtain a monomial basis of Rn,λ; his result
is quoted in Theorem 2.3 below.

Our main goal is to describe the harmonic space of the quotient ring Rn,λ and so derive
a harmonic basis of this quotient ring. In order to motivate harmonic spaces and bases,
we recall some technical issues that arise in the study of quotient rings.

Let I ⊆ Q[xn] be any homogeneous ideal with quotient ring R = Q[xn]/I. In alge-
braic combinatorics, one is often interested in calculating algebraic invariants of R such
as its dimension or Hilbert series. A frequent impediment to computing these invariants
is that, given f ∈ Q[xn], it can be difficult to decide whether f + I = 0 in R. Harmonic
spaces can be used to replace quotients with subspaces, circumventing this problem.

For f = f (x1, . . . , xn) ∈ Q[xn], let ∂ f := f (∂/∂x1, . . . , ∂/∂xn) be the differential op-
erator on Q[xn] obtained by replacing each xi appearing in f with the partial derivative
∂/∂xi. The ring Q[xn] acts on itself by

f � g := (∂ f )(g) for all f , g ∈ Q[xn]. (1.3)

That is, the polynomial f � g is obtained by first turning f into a differential operator
∂ f , and then applying ∂ f to g.

For f , g ∈ Q[xn], we define a number 〈 f , g〉 ∈ Q by

〈 f , g〉 := constant term of f � g. (1.4)

Then 〈−,−〉 is an inner product on Q[xn] for which the set {xa1
1 · · · x

an
n : ai ≥ 0} of

monomials forms an orthogonal basis.
For a homogeneous ideal I ⊆ Q[xn], the harmonic space V of I is the graded subspace

of Q[xn] given by the orthogonal complement

V = I⊥ = {g ∈ Q[xn] : 〈 f , g〉 = 0 for all f ∈ I}. (1.5)

Writing R = Q[xn]/I, standard results of linear algebra imply that Q[xn] = V ⊕ I so that
any vector space basis for V projects onto a basis of R. Any basis of V (and its image
basis in R) is called a harmonic basis. If the ideal I is Sn-invariant, the Sn-invariance
of the inner product 〈−,−〉 furnishes an isomorphism of graded Sn-modules R ∼= V.
Harmonic spaces are important for the following two reasons.

1. As alluded to above, elements of the quotient ring R are cosets whereas elements
of the harmonic space V are honest polynomials. Expensive calls to polynomial
division inherent to Buchberger-like algorithms involved in the study of R are
avoided when one uses the harmonic model V.
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2. It is often of interest to extend a quotient involving x-variables {x1, . . . , xn} to an
additional set of y-variables {y1, . . . , yn}. A key example is the extension of the
classical coinvariant ring Rn to the diagonal coinvariant ring DRn. While it can be
unclear how to modify the ideal I defining the above quotient ring R to incorporate
y-variables in a natural way, the harmonic space V can sometimes by so extended
by closing under the ‘polarization’ operators y1(∂/∂x1) + · · ·+ yn(∂/∂xn) together
with ∂/∂y1, . . . , ∂/∂yn.

Definition 1.2. Let Vn,λ ⊆ Q[xn] be the harmonic space of In,λ.

In the classical case k = s = n and λ = (1, . . . , 1) so that Rn,λ = Rn, the harmonic
space has the following description. Recall that the Vandermonde determinant δn ∈ Q[xn]
is the polynomial

δn := ∏
1≤i<j≤n

(xi − xj). (1.6)

The harmonic space Vn ⊆ Q[xn] corresponding to Rn is generated by δn as a Q[xn]-
module. Equivalently, the space Vn is the smallest subspace of Q[xn] containing δn which
is closed under the partial derivatives ∂/∂x1, . . . , ∂/∂xn. A harmonic basis of Rn is given
by applying sub-staircase monomials (as differential operators) to δn:

{(xc1
1 · · · x

cn
n )� δn : 0 ≤ ci ≤ n− i}. (1.7)

In the Springer fiber case k = n with λ arbitrary, the harmonic space Vn,λ was described
by N. Bergeron and Garsia [2] using ‘partial Vandermonde’ polynomials.

The main results of this extended abstract are as follows.

• We show that Vn,λ is generated as a Q[xn]-module by an explicit family δT of poly-
nomials indexed by injective tableaux T of shape λ with entries ≤ n (Theorem 3.1).

• We describe a harmonic basis for Vn,λ indexed by certain ordered set partitions (The-
orem 3.2).

• In order to describe the harmonic basis of Theorem 3.2, we introduce a coinver-
sion statistic coinv and an associated coinversion code code on ordered set partitions
which generalize the classical Lehmer code on permutations (Section 2). The defi-
nition of our coinversion code is reminiscent of the diagonal inversion statistic dinv
in the theory of Macdonald polynomials [5]. The coinversion statistic may be used
to calculate the Hilbert series of Rn,λ (Corollary 3.3).
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2 Coinversion codes for ordered set partitions

2.1 Coinversion codes

Given a partition λ = (λ1 ≥ · · · ≥ λs) ` k and n ≥ k, we let OPn,λ be the family of
sequences σ = (B1, . . . , Bs) of subsets of [n] := {1, . . . , n} such that [n] = B1 t · · · t Bs
(disjoint union) and |Bi| ≥ λi for all i. We call elements of OPn,λ ordered set partitions,
despite the fact that when λi = 0 we allow the possibility that Bi = ∅. For example, if
n = 16 and λ = (3, 3, 2, 2, 0, 0) (so that s = 6) we have

({1, 3, 5, 9}, {6, 7, 8, 10, 14}, {2, 12, 15}, {4, 13},∅, {11, 16}) ∈ OPn,λ. (2.1)

When λ = (1n) ` n, we have a natural identification of ordered set partitions in
OPn,λ with permutations in Sn. The coinversion number coinv(w) of a permutation
w = w(1) · · ·w(n) in Sn counts the number of noninversions in w, i.e.

coinv(w) := |{1 ≤ i < j ≤ n : w(i) < w(j)}|. (2.2)

The coinversion code of w is the sequence (c1, . . . , cn) where

cj := |{1 ≤ i < j : w(i) < w(j)}|. (2.3)

This is a variant on the Lehmer code of the permutation w. The coinversion code (c1, . . . , cn)
refines the coinversion number in the sense that c1 + · · · + cn = coinv(w). The map
w 7→ (c1, . . . , cn) sending w to its coinversion code gives a bijection from Sn to the set
[n − 1] × [n − 2] × · · · × [0] of sequences which fit below a staircase. These substair-
case sequences also index the Artin basis {xc1

1 · · · x
cn
1 : 0 ≤ ci ≤ n− i} of the classical

coinvariant ring Rn.
Our first results extend the notion of coinversion number and coinversion code from

Sn to OPn,λ. To define these statistics, we adopt a tableau-like representation of ordered
set partitions in OPn,λ. If λ = (λ1 ≥ · · · ≥ λs) is a partition and σ = (B1, . . . , Bs) ∈
OPn,λ, the container diagram of σ is obtained by

• first placing from left to right λi top-justified boxes in column i (these boxes are
called the container), and then

• filling column i with the elements of Bi in increasing order from bottom to top,
where we will have entries which ‘float’ above the boxes whenever |Bi| > λi.

For example, when n = 16 and λ = (3, 3, 2, 2, 0, 0), the container diagram of the ordered
set partition σ of (2.1) is shown below.

14 16
9 10 15 ∅ 11
5 8 12 13
3 7 2 4
1 6 (2.4)
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Empty blocks in ordered set partitions give rise to empty columns in container diagrams.
The condition |Bi| ≥ λi corresponds to every box in the container being filled with a
number. Numbers which do not lie in the container are called floating.

Let λ = (λ1 ≥ · · · ≥ λs) be a partition and let σ ∈ OPn,λ be an ordered set partition,
thought of in terms of its container diagram. For 1 ≤ i < j ≤ n, we say that the pair (i, j)
is a coinversion of σ when one of the following three conditions hold:

• i is not floating, j is to the right of i in σ, i and j are in the same row of σ, and i < j,

• i is not floating, j is to the left of i in σ, j is one row below i in σ, and i < j, or

• i is floating, j is to the right of i in σ, j is at the top of its container, and i < j.

The first two conditions may be depicted schematically as

i · · · j and
· · · i

j

where i and j are in adjacent rows in the diagram on the right. The last condition may
be depicted

i
. . .

j

where j is at the top of the container and there is an arbitrary positive number of rows
separating i and j.

Remark 2.1. The conditions defining coinversions for non-floating indices are the same as those
used to define the statistic dinv which arises in the Haglund–Haiman–Loehr monomial expansion
of the modified Macdonald polynomials [5].

For 1 ≤ i ≤ n we define a number ci ≥ 0 by

ci :=

{
|{i < j : (i, j) is a coinversion of σ}| if i is not floating
|{i < j : (i, j) is a coinversion of σ}|+ (p− 1) if i is floating in the pth block of σ.

(2.5)
The coinversion code of σ is given by

code(σ) := (c1, . . . , cn) (2.6)

and the coinversion number of σ is given by

coinv(σ) := c1 + · · ·+ cn. (2.7)

Rhoades and Wilson [9] defined code(σ) in the special case where λ = (1k).
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As an example of these concepts, consider the ordered set partition σ ∈ OP16,(3,3,2,2,0,0)
appearing in (2.4). Let (c1, . . . , c16) be the sequence code(σ). The entry 2 forms coinver-
sions with 4 and 6, so that c2 = 2. The entry 10 is floating in column 2, and forms
coinversions with 12 and 13 so that c10 = 2 + (2− 1) = 3. We have

code(σ) = (c1, . . . , c16) = (1, 2, 2, 1, 3, 0, 0, 2, 2, 3, 5, 1, 0, 1, 2, 5).

Adding this sequence yields coinv(σ) = 30.

2.2 Shuffles and the code map

The code map σ 7→ code(σ) sends ordered set partitions in OPn,λ to length n sequences
of nonnegative integers. It turns out that this map is injective; to describe its image we
need some definitions.

Recall that a shuffle of two sequences (a1, . . . , ar) and (b1, . . . , bs) is an interleaving
(c1, . . . , cr+s) of these sequences which preserves the relative order of the a’s and b’s.
Analogously (or by induction), one can define a shuffle of any number of sequences.

Let k ≤ n be nonnegative integers and let λ = (λ1 ≥ · · · ≥ λs) be a partition of
k with s nonnegative parts. Write its conjugate as λ′ = (λ′1 ≥ · · · ≥ λ′k). We define
Cn,λ to be the family of length n sequences (c1, . . . , cn) of nonnegative integers which are
componentwise ≤ some shuffle of the k + 1 (possibly empty) sequences

(λ′1 − 1, λ′1 − 2, . . . , 1, 0), . . . , (λ′k − 1, λ′k − 2, . . . , 1, 0), and (s− 1, s− 1, . . . , s− 1)

where the final sequence has n− k copies of s− 1.

Theorem 2.2. Let k ≤ n be positive integers and let λ = (λ1 ≥ · · · ≥ λs) ` k be a partition of
k. The map code : OPn,λ → Cn,λ is a bijection.

Proof. (Sketch) We describe the inverse map ι : Cn,λ → OPn,λ in terms of an insertion
algorithm. For any ordered set partition (B1, . . . , Bs), we place the blocks B1, . . . , Bs
in the container diagram corresponding to λ, from left to right. For example, if λ =
(3, 3, 2, 2, 0, 0) and

(B1, · · · , Bs) = ({4}, {2, 3, 6}, {1},∅,∅, {5})

we obtain the diagram
∅ 5

6
3 1

4 2

1 3 2 0 4 5
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where the first, third, and fourth columns from the left remain unfilled. We label the
columns of the diagram of (B1, . . . , Bs) with the s distinct coinversion labels as follows.
We first label the a columns which contain no empty boxes (including those columns
corresponding to empty parts of λ) from right to left with s− 1, s− 2, . . . , s− a, then label
the b columns which contain a single empty box from left to right with s− a− 1, s− a−
2, . . . , s − a − b, then label the c columns which contain two empty boxes from left to
right with s− a− b− 1, s− a− b− 2, . . . , s− a− b− c, and so on. Note that coinversion
labels are assigned ‘in the opposite direction’ when labeled filled and unfilled columns.
The coinversion labels are displayed below the columns of the container diagram.

Suppose we have a sequence (c1, . . . , cn) ∈ OPn,λ. We define ι(c1, . . . , cn) by starting
with the ‘empty’ diagram corresponding to (∅, . . . ,∅) and, for each i = 1, 2, . . . , n, in-
serting i into the unique column with coinversion label ci (updating coinversion labels
as we go). For example if λ = (3, 3, 2, 2, 0, 0) (so that s = 6) and n = 16, the sequence

(c1, . . . , c16) = (1, 2, 2, 1, 3, 0, 0, 2, 2, 3, 5, 1, 0, 1, 2, 5) ∈ C16,λ

inserts to

∅ ∅

1 0 3 2 4 5

∅ ∅

1

3 0 2 1 4 5

∅ ∅

2
1

2 0 3 1 4 5

∅ ∅

3 2
1

3 0 2 1 4 5

∅ ∅

3 2 4
1

3 0 2 1 4 5

∅ ∅
5
3 2 4
1

3 0 2 1 4 5

∅ ∅
5
3 2 4
1 6

3 0 2 1 4 5

∅ ∅
5
3 7 2 4
1 6

3 2 1 0 4 5

∅ ∅
5 8
3 7 2 4
1 6

2 3 1 0 4 5

9 ∅ ∅
5 8
3 7 2 4
1 6

2 3 1 0 4 5

9 10 ∅ ∅
5 8
3 7 2 4
1 6

2 3 1 0 4 5

9 10 ∅ 11
5 8
3 7 2 4
1 6

2 3 1 0 4 5

9 10 ∅ 11
5 8 12
3 7 2 4
1 6

1 2 3 0 4 5

9 10 ∅ 11
5 8 12 13
3 7 2 4
1 6

0 1 2 3 4 5

14
9 10 ∅ 11
5 8 12 13
3 7 2 4
1 6

0 1 2 3 4 5

14
9 10 15 ∅ 11
5 8 12 13
3 7 2 4
1 6

0 1 2 3 4 5

14 16
9 10 15 ∅ 11
5 8 12 13
3 7 2 4
1 6

0 1 2 3 4 5

One verifies that ι is well-defined and that code and ι are mutually inverse.

Theorem 2.2 is proven by constructing an insertion-style inverse map Cn,λ → OPn,λ.
The family of sequences Cn,λ arises algebraically in the study of Rn,λ. Griffin proved that
Rn,λ has the following Artin-like monomial basis [4].
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Theorem 2.3 (Griffin [4]). Let k ≤ n be positive integers and let λ = (λ1 ≥ · · · ≥ λs) ` k.
The set of monomials

{xc1
1 · · · x

cn
n : (c1, . . . , cn) ∈ Cn,λ} (2.8)

descends to a vector space basis of Rn,λ.

Theorem 2.2 gives a direct combinatorial link between the monomial basis of Theo-
rem 2.3 and ordered set partitions. Theorem 2.2 will also be useful in study of harmonic
bases.

3 The harmonic space Vn,λ

3.1 Injective tableaux and harmonic generators

We regard Q[xn] as a module over itself by the differential operator action f � g := ∂ f (g).
The harmonic space Vn,λ of Rn,λ forms a Q[xn]-submodule of Q[xn]. The submodule Vn,λ
is not principal, but we may describe a generating set combinatorially.

Let λ be a partition. An tableau of shape λ is a filling T : λ → {1, 2, . . . } of the boxes
of λ with positive integers. The tableau T is injective if its entries are distinct and column
strict if its entries increase strictly going down columns. We let Inj(λ;≤ n) be the family
of injective and column strict tableaux of shape λ with entries ≤ n. A sample element
of Inj((4, 2, 1, 0, 0);≤ 9) appears below; observe that the entries 7 and 8 do not appear in
this tableau.

2 1 3 9
5 4
6 (3.1)

Let λ = (λ1 ≥ · · · ≥ λs) be a partition with s parts. We attach a polynomial δT ∈
Q[xn] to any tableau T ∈ Inj(λ;≤ n) as follows. For any subset S ⊆ [n], we let δS :=
∏i,j∈S

i<j
(xi − xj) be the Vandermonde determinant in the family of variables indexed by S.

If the tableau T has columns C1, . . . , Cr we set

δT := δC1 · · · δCr ×∏
i/∈T

xs−1
i (3.2)

where the final product is over all indices 1 ≤ i ≤ n which do not appear in the tableau
T. For example, if λ = (4, 2, 1, 0, 0) (so that s = 5) and T is as in (3.1) then

δT = δ{2,5,6} × δ{1,4} × δ{3} × δ{9} × x4
7x4

8

= (x2 − x5)(x2 − x6)(x5 − x6)× (x1 − x4)× 1× 1× x4
7x4

8.

The polynomials δT indexed by injective tableaux generate the harmonic space Vn,λ.
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Theorem 3.1. Let k ≤ n be positive integers and let λ = (λ1 ≥ · · · ≥ λs) be a partition of k.
The harmonic space Vn,λ is the smallest subspace of Q[xn] which

• contains the polynomial δT for every tableau T ∈ Inj(λ,≤ n), and

• is closed under the partial derivative operators ∂/∂x1, . . . , ∂/∂xn.

Equivalently, the set {δT : T ∈ Inj(λ,≤ n)} generates Vn,λ as a Q[xn]-module.

Theorem 3.1 gives an effective way to realize the Sn-module Rn,λ on a computer.
The use of harmonic polynomials in Vn,λ avoids the computationally expensive calls to
the multivariate polynomial long division involved in Gröbner-theoretic algorithms op-
erating on the quotient Rn,λ = Q[xn]/In,λ. The description of Vn,λ in terms of injective
tableaux is also arguably simpler than the quotient ring formulation of Rn,λ in Defini-
tion 1.1.

3.2 Harmonic bases

Theorem 3.1 furnishes a natural algorithm spanning set of the quotient ring Rn,λ: start-
ing with the family of polynomials {δT : T ∈ Inj(λ,≤ n)}, apply all possible partial
derivatives to obtain a set of polynomials

{(∂/∂x1)
b1 · · · (∂/∂xn)

bn δT : T ∈ Inj(λ;≤ n), bi ≥ 0} (3.3)

which spans Rn,λ. Since there are finitely many injective tableaux, the set (3.3) is finite.
It is natural to ask for a basis of Rn,λ extracted from the spanning set (3.3). Such a

basis may be obtained using container diagrams and coinversion codes. Given a partition
λ = (λ1, . . . , λs) of n with s parts, we think of an ordered set partition σ ∈ OPn,λ in terms
of its container diagram. We define an injective tableau T(σ) ∈ Inj(λ;≤ n) by letting the
ith column of T be the entries in the ith row of the container of σ. We also define a
sequence maxcode(σ) = (a1, . . . , an) of nonnegative integers by letting

ai :=

{
b if i appears in T(σ) with b boxes directly below it,
s− 1 if i does not appear in T(σ).

(3.4)

We define the polynomial δσ ∈ OPn,λ by the rule

δσ := (xa1−c1
1 · · · xan−cn

n )� δT(σ) (3.5)

where code(σ) = (c1, . . . , cn) is the coinversion code of σ.



Harmonic bases for generalized coinvariant algebras 11

As an example of these concepts, if n = 16 and λ = (3, 3, 2, 2, 0, 0) (so that s = 6) and
σ is the ordered set partition of (2.4) (rewritten below)

14 16
9 10 15 ∅ 11

σ = 5 8 12 13
3 7 2 4
1 6

which gives the injective tableau T(σ) ∈ Inj(λ;≤ n)

5 2 1
8 3 6

T(σ) = 12 4
13 7

and the corresponding maxcode sequence

maxcode(σ) = (a1, . . . , a16) = (1, 3, 2, 1, 3, 0, 0, 2, 5, 5, 5, 1, 0, 5, 5, 5).

The coinversion code of σ is

code(σ) = (c1, . . . , c16) = (1, 2, 2, 1, 3, 0, 0, 2, 2, 3, 5, 1, 0, 1, 2, 5)

and we have maxcode(σ)− code(σ) = (0, 1, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0, 0, 4, 3, 0) so that

δσ = (x0
1x1

2x0
3x0

4x0
5x0

6x0
7x0

8x3
9x2

10x0
11x0

12x0
13x4

14x3
15x0

16)� δT(σ).

Theorem 3.2. Let k ≤ n be positive integers and let λ = (λ1 ≥ · · · ≥ λs) be a partition of k.
The set

{δσ : σ ∈ OPn,λ} (3.6)

is a harmonic basis of Rn,λ. The lexicographical leading term of δσ has exponent sequence
code(σ).

It follows from the definitions that the degree of the polynomial δσ is the coinversion
number coinv(σ). Theorem 3.2 therefore gives a combinatorial formula for the Hilbert
series of Rn,λ.

Corollary 3.3. Let k ≤ n be positive integers and let λ = (λ1 ≥ · · · ≥ λs) be a partition of k.
We have

Hilb(Rn,λ; q) = ∑
σ∈OPn,λ

qcoinv(σ). (3.7)
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