Tableaux rules for key polynomials and Lascoux polynomials

Tianyi Yu (UCSD)

March 29, 2022

Outline

1. Key polynomials are characters of the Demazure modules. We introduce two rules to compute a key polynomial using tableaux.

2. Lascoux polynomials are K-theoretic analogues of key polynomials. We introduce two rules to compute a Lascoux polynomial using tableaux.

Operator

Define an operator on $\mathbb{Z}[x_1, x_2, \dots, x_n]$:

$$\pi_i(f) = (x_i - x_{i+1})^{-1}(x_i f - x_{i+1} s_i f).$$

•
$$\pi_1(x_1) = \frac{x_1^2 - x_2^2}{x_1 - x_2} = x_1 + x_2$$

•
$$\pi_1(x_1^2) = \frac{x_1^3 - x_2^3}{x_1 - x_2} = x_1^2 + x_1 x_2 + x_2^2$$

Key polynomials

For weak composition α ,

$$\kappa_{\alpha} := \begin{cases} x^{\alpha} & \text{if } \alpha \text{ is a partition} \\ \pi_{i}(\kappa_{s_{i}\alpha}) & \text{if } \alpha_{i} < \alpha_{i+1}. \end{cases}$$

- $\kappa_{210} = x_1^2 x_2$.
- $\kappa_{120} = \pi_1(\kappa_{210}) = \frac{x_1^3 x_2 x_1 x_2^3}{x_1 x_2} = x_1^2 x_2 + x_1 x_2^2$.
- $\kappa_{102} = \pi_2(\kappa_{120}) = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + x_1 x_2 x_3 + x_1 x_3^2$

Schur polynomials

$$\kappa_{012} = \pi_1(\kappa_{102}) = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + 2x_1 x_2 x_3,$$
 which is the Schur polynomial of (2,1) in variables x_1, x_2, x_3 .

Fact: When α is a weakly increasing weak composition, κ_{α} is the Schur polynomial of $\operatorname{rev}(\alpha)$.

Combinatorial formula for Schur polynomials: SSYT

Schur polynomials can be computed by semi-standard Young tableaux (SSYT):

$$s_{(2,1)}(x_1, x_2, x_3)$$

$$= x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + 2x_1 x_2 x_3$$

Combinatorial formula for Schur polynomials: RSSYT

Schur polynomials can also be computed by reversed semi-standard Young tableaux (RSSYT):

$$s_{(2,1)}(x_1, x_2, x_3)$$

$$= x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + 2x_1 x_2 x_3$$

Keys

A *key* is a SSYT where each number in column j is also in column j-1.

A reverse key is a RSSYT where each number in column j is also in column j-1.

Keys, reverse keys, and weak compositions are in bijection with each other:

Let $\text{key}(\cdot)$ and $\text{key}^R(\cdot)$ send a weak composition to its corresponding key or reversed key.

Right keys and left keys

Each SSYT is associated with a key.

$$T = \begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix} \qquad K_+(T) = \begin{bmatrix} 1 & 3 \\ 3 \end{bmatrix}$$

Each RSSYT is associated with a reverse key.

$$T = \begin{bmatrix} 3 & 2 \\ 1 \end{bmatrix} \qquad K_{-}(T) = \begin{bmatrix} 3 & 3 \\ 1 \end{bmatrix}$$

SSYT formula for key polynomials

Theorem (Lascoux, Schützenberger, 1980)

$$\kappa_{\alpha} = \sum_{T} x^{\text{wt}(T)}$$

where T is a SSYT such that $K_+(T) \leq \text{key}(\alpha)$.

1	1
2	

1	1
3	

$$\kappa_{102} = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + x_1 x_2 x_3 + x_1 x_3^2.$$

RSSYT formula for key polynomials

Theorem (Lascoux, Schützenberger, 1980)

$$\kappa_{\alpha} = \sum_{T} x^{\text{wt}(T)}$$

where T is a RSSYT such that $K_{-}(T) \leq \ker^{R}(\alpha)$.

3	1
J	1
-	
_	

$$\kappa_{102} = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + x_1 x_2 x_3 + x_1 x_3^2.$$

Operator

Define an operator on $\mathbb{Z}[\beta][x_1, x_2, \dots, x_n]$:

$$\pi_i^{(\beta)}(f) = \pi_i(f) + \beta \pi_i(x_{i+1}f).$$

- $\pi_1^{(\beta)}(x_1) = x_1 + x_2 + \beta x_1 x_2$
- $\pi_1^{(\beta)}(x_1^2) = x_1^2 + x_1x_2 + x_2^2 + \beta(x_1^2x_2 + x_1x_2^2).$

Lascoux polynomials

For weak composition α ,

$$\mathfrak{L}_{\alpha}^{(\beta)} := \begin{cases} x^{\alpha} & \text{if } \alpha \text{ is a partition} \\ \pi_{i}^{(\beta)} (\mathfrak{L}_{s_{i}\alpha}^{(\beta)}) & \text{if } \alpha_{i} < \alpha_{i+1}. \end{cases}$$

- $\mathfrak{L}_{210}^{(\beta)} = x_1^2 x_2$.
- $\mathfrak{L}_{120}^{(\beta)} = x_1^2 x_2 + x_1 x_2^2 + \beta x_1^2 x_2^2$.

SVT formula for $\mathfrak{L}_{\alpha}^{(\beta)}$

Theorem (Buch 2002)

When α is weakly increasing, $\mathfrak{L}_{\alpha}^{(\beta)}$ is a sum over set-valued tableaux (SVT) with shape $rev(\alpha)$.

The following contribute to $\mathfrak{L}_{(0,1,2)}^{(\beta)}$

1	13
23	

$$\beta x_1 x_2 x_3^2$$

$$\beta x_1 x_2 x_3^2$$
 $\beta^2 x_1^2 x_2 x_3^2$ $\beta x_1 x_2^2 x_3$

$$\beta x_1 x_2^2 x_3$$

SVT formula for $\mathfrak{L}_{\alpha}^{(\beta)}$

Theorem (Y 2021)

$$\mathfrak{L}_{\alpha}^{(\beta)} = \sum_{T} \beta^{\mathrm{ex}(T)} x^{\mathrm{wt}(T)}$$

where T is a SVT such that no matter how you pick one number from each box, the resulting SSYT contributes to κ_{α} .

Example $\mathfrak{L}_{(1,0,2)}^{(eta)}$

$\begin{array}{ c c c c }\hline 1 & 1 \\ \hline \end{array}$	1 2	1 1	1 3	1 3	
2	2	3	2	3	
1 12	$\begin{bmatrix} 1 & 1 \end{bmatrix}$	1 13	1 3	1 13	1 23
2	23	2	23	3	2
1 123	1 13				
2	23	(2)			

Thus, we may write $\mathfrak{L}_{(1,0,2)}^{(\beta)}$ as

$$x_1^2x_2 + x_1x_2^2 + x_1^2x_3 + x_1x_2x_3 + x_1x_3^2 + \beta(x_1^2x_2^2 + 2x_1^2x_2x_3 + x_1x_2x_3^2 + x_1^2x_3^2 + x_1x_2^2x_3) + \beta^2(x_1^2x_2^2x_3 + x_1^2x_2x_3^2)$$

RSVT rule for $\mathfrak{L}_{\alpha}^{(\beta)}$

Theorem (Buciumas, Scrimshaw, Weber 2020; Shimozono, Y 2021)

$$\mathfrak{L}_{\alpha}^{(\beta)} = \sum_{T} \beta^{\text{ex}(T)} x^{\text{wt}(T)}$$

where T is a RSVT such that if you pick the largest number from each box, the resulting RSSYT contributes to κ_{α} .

Example $\mathfrak{L}_{(1,0,2)}^{(eta)}$

2	1	2 2	3 1	3 2	3 3	
1		1	1	1	1	
2	21	3 21	32 1	3 32	3 31	32 2
1		1	1	1	1	1
32	21	3 321				
1		1				

Thus, we may write $\mathfrak{L}_{(1,0,2)}^{(eta)}$ as

$$x_1^2x_2 + x_1x_2^2 + x_1^2x_3 + x_1x_2x_3 + x_1x_3^2 + \beta(x_1^2x_2^2 + 2x_1^2x_2x_3 + x_1x_2x_3^2 + x_1^2x_3^2 + x_1x_2^2x_3) + \beta^2(x_1^2x_2^2x_3 + x_1^2x_2x_3^2)$$

A future direction

Find a weight preserving bijection between SVT and RSVT that can unify the rules above.

Other combinatorial formulas for κ_{α} and $\mathfrak{L}_{\alpha}^{(\beta)}$

- Skyline fillings rule for κ_{α} [Mason 2009].
- Set-valued skyline fillings for $\mathfrak{L}_{\alpha}^{(\beta)}$. Conjectured [Monical 2017] proved [Buciumas, Scrimshaw, Weber 2020]

2 1

2 2

3 1

3 2

3 3

1

1

1

1

1

Other combinatorial formulas for κ_{α} and $\mathfrak{L}_{\alpha}^{(\beta)}$

- Reduced compatible sequence rule for κ_{α} [Reiner, Shimozono 1995].
- Compatible sequence rule for $\mathfrak{L}_{\alpha}^{(eta)}$ [Shimozono, Y 2021].

$$\begin{pmatrix} 3 & 1 & 4 \\ 2 & 1 & 1 \end{pmatrix} \, \begin{pmatrix} 3 & 4 & 1 \\ 2 & 2 & 1 \end{pmatrix} \, \begin{pmatrix} 3 & 1 & 4 \\ 3 & 1 & 1 \end{pmatrix} \, \begin{pmatrix} 3 & 4 & 1 \\ 2 & 3 & 1 \end{pmatrix} \, \begin{pmatrix} 3 & 4 & 1 \\ 3 & 3 & 1 \end{pmatrix}$$

Remark: This rule establishes a conjecture of Reiner and Yong.

Other combinatorial formulas for κ_{α} and $\mathfrak{L}_{\alpha}^{(\beta)}$

- Kohnert diagrams rule for κ_{α} [Kohnert 1991].
- K-Kohnert diagrams rule for $\mathfrak{L}_{\alpha}^{(\beta)}$. Conjectured [Ross, Yong 2015]. Rectangle case proved [Pechenik, Scrimshaw 2019]. General case proved [Pan, Y 2022].

Thanks for listening!!

- M. Shimozono, and T Yu. Grothendieck to Lascoux expansions. arXiv preprint arXiv:2106.13922 (2021).
- ➤ T Yu. Set-valued tableaux rule for Lascoux polynomials. arXiv preprint arXiv:2110.00164 (2021).