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1. The classical coinvariant algebra Rn and its harmonic space Vn

2. The generalized coinvariant algebra Rn,λ

3. Describe the harmonic space and construct a harmonic basis for
Rn,λ.



Classical coinvariant algebra

Let In be an ideal of Q[xn] := Q[x1, . . . , xn] defined as

In := 〈e1, . . . , en〉

where ed is the elementary symmetric polynomial of degree d .

The classical coinvariant ring Rn is the associated quotient ring

Rn := Q[xn]/In



Some properties of Rn

1. Artin: The following set of monomials:

{x i11 . . . x
in
n : 0 ≤ ij ≤ n − j}

descends to a basis of Rn.

2. Chevalley: Rn is isomorphic to the regular representation
Q[Sn] as ungraded Sn-modules.

3. Lusztig-Stanley:

grFrob(Rn; q) =
∑

w=w1...wn

qmaj(w)xw1 . . . xwn



Defining the harmonic space

Take f ∈ Q[xn]. Let ∂f be the differential operator

∂f := f (∂/∂x1, . . . ∂/∂xn)

Then Q[xn] acts on itself by:

f � g := (∂f )(g)

We also define an inner product of Q[xn]:

〈f , g〉 := constant term of f � g



Defining the harmonic space

Let I ⊂ Q[xn] be a homogeneous ideal. Its harmonic space V is
defined as:

V := I⊥ = {g ∈ Q[xn] : 〈f , g〉 = 0 for all f ∈ I}

A basis of V is called a harmonic basis.

Fact: If I is Sn-invariant, then Q[xn]/I ∼= V as graded
Sn-modules.

Now, let Vn be the harmonic space associated to Rn.



Motivating Vn

Why we want to study Vn, instead of Rn?

Answer: It is hard to determine whether f + In = 0 for a given
f ∈ Q[xn]. We can avoid this challenge by studying Vn. Elements
of Vn are polynomials, not cosets.



Describe Vn

Fact: Vn is the smallest space that contains δn and is closed under
∂/∂x1, . . . , ∂/∂xn. Here, δn is the Vandermonde determinant:

δn :=
∏

1≤i<j≤n
(xi − xj).

Fact: The following is a basis of Vn.

{(xc11 · · · x
cn
n )� δn : 0 ≤ ci ≤ n − i}.



From Rn to Rn,λ

Sean Griffin generalized Rn to Rn,λ. Let k ≤ n be nonnegative
integers and let λ be a partition of k with s parts. Then let
In,λ ⊆ Q[xn] be the ideal generated by x s1 , . . . , x

s
n and ed(S), where

the range of S and d will be illustrated in the next example.

Let Rn,λ := Q[xn]/In,λ be the associated quotient ring. Let Vn,λ be
the harmonic space.



An example of In,λ

Assume n = 9, k = 7, s = 4, and λ = (3, 2, 2, 0).
I9,(3,2,2,0) is generated by x41 , . . . , x

4
9 together with: ed(S), where

possible d , S are:

9 8 7

6 5 4

3

· · ·
8 7 6

5

· · ·
· · ·
7

|S | = 9 |S | = 8 |S | = 7



Some special cases of Rn,λ

1. When k = s = n and λ = (1n), then Rn,λ = Rn.

2. When k = n and λ has no 0s, the ring Rn,λ is the Tanisaki
quotient studied by Tanisaki and Garsia-Procesi.

3. When λ = (1k , 0s−k), the ring Rn,λ was introduced by
Haglund, Rhoades and Shimozono to give a
representation-theoretic model for the
Haglund-Remmel-Wilson Delta Conjecture



Injective tableaux

Let λ be a partition. Let Inj(λ;≤ n) be the family of tableaux of
shape λ′ such that:

1. No two entries are the same.

2. Each entry is at most n.

Inj((4, 2, 1, 0, 0);≤ 9) contains

2 6 5

4 1

3

9



Generalizing Vandermonde

For any subset S ⊆ [n], define

δS :=
∏
i ,j∈S
i<j

(xi − xj)

Take T ∈ Inj(λ;≤ n), where λ has s parts. Let Ri be the set of
numbers in row i of T . Then

δT := δR1 · · · δRλ1 ×
∏

x s−1i

where the final product is over all i ∈ [n] which do not appear in T .



δT example

Let T be the following element in Inj((4, 2, 1, 0, 0);≤ 9):

2 6 5

4 1

3

9

Then R1 = {2, 5, 6}, and

δR1 = (x2 − x5)(x2 − x6)(x5 − x6)

Then we have

δT = δ{2,5,6} × δ{1,4} × δ{3} × δ{9} × x47x
4
8

= (x2 − x5)(x2 − x6)(x5 − x6)× (x1 − x4)× 1× 1× x47x
4
8 .



Describing Vn,λ

Theorem ([Rhoades-Y-Zhao])

Let k ≤ n and λ be a partition of k. The harmonic space Vn,λ is
the smallest subspace of Q[xn] which

I contains δT for any T ∈ Inj(λ,≤ n), and

I is closed under ∂/∂x1, . . . , ∂/∂xn.

For Tanisaki quotients, this statement was proved by N.Bergeron
and Garsia.



A spanning set of Vn,λ

Goal: construct a basis of Vn,λ.

Fact: The following is a spanning set of Vn,λ:

{(xb11 · · · x
bn
n )� δT : T ∈ Inj(λ;≤ n), bi ≥ 0}

Strategy: Extract a basis from this spanning set.



Ordered set partition

Given k ≤ n and a partition λ of k with s parts, let OPn,λ be the
family of sequences σ = (B1, . . . ,Bs) of subsets of [n] such that
[n] = B1 t · · · t Bs and |Bi | ≥ λi for all i .

For example, if n = 16 and λ = (3, 3, 2, 2, 0, 0), then OPn,λ

contains the following:

14 16

9 13 15 ∅ 11

6 10 12 8

5 7 4 2

3 1



Inversions

Assume i is in a box. An inversion of i is a number j such that

1. j > i .

2. j is on the left of i in the same row.

3. The number below j does not exists or is less than i .

14 16

9 13 15 ∅ 11

6 10 12 8

5 7 4 2

3 1



Inversions

Assume i is not in a box. An inversion of i is a column such that

1. The column is on the right of i .

2. The column has no boxes, or its highest number in box is less
than i .

14 16

9 13 15 ∅ 11

6 10 12 8

5 7 4 2

3 1



Generalizing Lehmer code

Assign a sequence of n numbers to each σ ∈ OPn,λ.
The i th entry is the number of inversions of i .

14 16

9 13 15 ∅ 11

6 10 12 8

5 7 4 2

3 1

code(σ) = (1, 1, 0, 2, 0, 0, 0, 2, 3, 0, 0, 0, 4, 4, 3, 0).



δσ

Let T (σ) be the element in Inj(λ;≤ n) obtained by removing all
numbers outside of boxes.

14 16

9 13 15 ∅ 11

6 10 12 8

5 7 4 2

3 1

6 10 12 8

5 7 4 2

3 1

Define δσ by the rule

δσ := (xc11 · · · x
cn
n )� δT (σ)

where code(σ) = (c1, . . . , cn).



Harmonic Basis

Theorem ([Rhoades-Y-Zhao])

Let k ≤ n be positive integers and let λ be a partition of k with s
parts. The set

{δσ : σ ∈ OPn,λ}

is a harmonic basis of Rn,λ.

This result implies a combinatorial formula for the Hilbert series of
Rn,λ:

rev(Hilb(Rn,λ; q)) =
∑

σ∈OPn,λ

qsum(code(σ)).



A future direction

We can introduce a new set of variables y1, . . . , yn to Vn,λ. Define
DVn,λ to be the smallest space such that:

1. It contains δT for any T ∈ Inj(λ,≤ n)

2. It is closed under ∂/∂x1, . . . , ∂/∂xn and ∂/∂y1, . . . , ∂/∂yn

3. It is closed under y1(∂/∂x1) + · · ·+ yn(∂/∂xn)

Question: What is its Bigraded Frobenius image?

Haiman solved the special case: λ = (1n).



Thanks for listening!!
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