Harmonic bases for generalized coinvariant algebras

Tianyi Yu
(Joint with Brendon Rhoades and Zehong Zhao)
UCSD

Outline

1. The classical coinvariant algebra R_{n} and its harmonic space V_{n}
2. The generalized coinvariant algebra $R_{n, \lambda}$
3. Describe the harmonic space and construct a harmonic basis for $R_{n, \lambda}$.

Classical coinvariant algebra

Let I_{n} be an ideal of $\mathbb{Q}\left[\mathbf{x}_{n}\right]:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ defined as

$$
I_{n}:=\left\langle e_{1}, \ldots, e_{n}\right\rangle
$$

where e_{d} is the elementary symmetric polynomial of degree d.

The classical coinvariant ring R_{n} is the associated quotient ring

$$
R_{n}:=\mathbb{Q}\left[\mathbf{x}_{n}\right] / I_{n}
$$

Some properties of R_{n}

1. Artin: The following set of monomials:

$$
\left\{x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}: 0 \leq i_{j} \leq n-j\right\}
$$

descends to a basis of R_{n}.
2. Chevalley: R_{n} is isomorphic to the regular representation $\mathbb{Q}\left[\mathfrak{S}_{n}\right]$ as ungraded \mathfrak{S}_{n}-modules.
3. Lusztig-Stanley:

$$
\operatorname{grFrob}\left(R_{n} ; q\right)=\sum_{w=w_{1} \ldots w_{n}} q^{m a j(w)} x_{w_{1}} \ldots x_{w_{n}}
$$

Defining the harmonic space

Take $f \in \mathbb{Q}\left[\mathbf{x}_{n}\right]$. Let ∂f be the differential operator

$$
\partial f:=f\left(\partial / \partial x_{1}, \ldots \partial / \partial x_{n}\right)
$$

Then $\mathbb{Q}\left[\mathbf{x}_{n}\right]$ acts on itself by:

$$
f \odot g:=(\partial f)(g)
$$

We also define an inner product of $\mathbb{Q}\left[\mathbf{x}_{n}\right]$:

$$
\langle f, g\rangle:=\text { constant term of } f \odot g
$$

Defining the harmonic space

Let $I \subset \mathbb{Q}\left[\mathbf{x}_{n}\right]$ be a homogeneous ideal. Its harmonic space V is defined as:

$$
V:=I^{\perp}=\left\{g \in \mathbb{Q}\left[\mathbf{x}_{n}\right]:\langle f, g\rangle=0 \text { for all } f \in I\right\}
$$

A basis of V is called a harmonic basis.

Fact: If I is \mathfrak{S}_{n}-invariant, then $\mathbb{Q}\left[\mathbf{x}_{n}\right] / I \cong V$ as graded \mathfrak{S}_{n}-modules.

Now, let V_{n} be the harmonic space associated to R_{n}.

Motivating V_{n}

Why we want to study V_{n}, instead of R_{n} ?

Answer: It is hard to determine whether $f+I_{n}=0$ for a given $f \in \mathbb{Q}\left[\mathbf{x}_{n}\right]$. We can avoid this challenge by studying V_{n}. Elements of V_{n} are polynomials, not cosets.

Describe V_{n}

Fact: V_{n} is the smallest space that contains δ_{n} and is closed under $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}$. Here, δ_{n} is the Vandermonde determinant:

$$
\delta_{n}:=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)
$$

Fact: The following is a basis of V_{n}.

$$
\left\{\left(x_{1}^{c_{1}} \cdots x_{n}^{c_{n}}\right) \odot \delta_{n}: 0 \leq c_{i} \leq n-i\right\} .
$$

From R_{n} to $R_{n, \lambda}$

Sean Griffin generalized R_{n} to $R_{n, \lambda}$. Let $k \leq n$ be nonnegative integers and let λ be a partition of k with s parts. Then let $I_{n, \lambda} \subseteq \mathbb{Q}\left[\mathbf{x}_{n}\right]$ be the ideal generated by $x_{1}^{s}, \ldots, x_{n}^{s}$ and $e_{d}(S)$, where the range of S and d will be illustrated in the next example.

Let $R_{n, \lambda}:=\mathbb{Q}\left[\mathbf{x}_{n}\right] / I_{n, \lambda}$ be the associated quotient ring. Let $V_{n, \lambda}$ be the harmonic space.

An example of $I_{n, \lambda}$

Assume $n=9, k=7, s=4$, and $\lambda=(3,2,2,0)$.
$I_{9,(3,2,2,0)}$ is generated by $x_{1}^{4}, \ldots, x_{9}^{4}$ together with: $e_{d}(S)$, where possible d, S are:

9	8	7
6	5	4
3		

$$
|S|=9
$$

$$
|S|=8
$$

$$
|S|=7
$$

Some special cases of $R_{n, \lambda}$

1. When $k=s=n$ and $\lambda=\left(1^{n}\right)$, then $R_{n, \lambda}=R_{n}$.
2. When $k=n$ and λ has no 0 s , the ring $R_{n, \lambda}$ is the Tanisaki quotient studied by Tanisaki and Garsia-Procesi.
3. When $\lambda=\left(1^{k}, 0^{s-k}\right)$, the ring $R_{n, \lambda}$ was introduced by Haglund, Rhoades and Shimozono to give a representation-theoretic model for the Haglund-Remmel-Wilson Delta Conjecture

Injective tableaux

Let λ be a partition. Let $\operatorname{Inj}(\lambda ; \leq n)$ be the family of tableaux of shape λ^{\prime} such that:

1. No two entries are the same.
2. Each entry is at most n.
$\operatorname{Inj}((4,2,1,0,0) ; \leq 9)$ contains

2	6	5
4	1	
3		
9		

Generalizing Vandermonde

For any subset $S \subseteq[n]$, define

$$
\delta_{S}:=\prod_{\substack{i, j \in S \\ i<j}}\left(x_{i}-x_{j}\right)
$$

Take $T \in \operatorname{Inj}(\lambda ; \leq n)$, where λ has s parts. Let R_{i} be the set of numbers in row i of T. Then

$$
\delta_{T}:=\delta_{R_{1}} \cdots \delta_{R_{\lambda_{1}}} \times \prod x_{i}^{s-1}
$$

where the final product is over all $i \in[n]$ which do not appear in T.

δ_{T} example

Let T be the following element in $\operatorname{Inj}((4,2,1,0,0) ; \leq 9)$:

2	6	5
4	1	
3		
9		

Then $R_{1}=\{2,5,6\}$, and

$$
\delta_{R_{1}}=\left(x_{2}-x_{5}\right)\left(x_{2}-x_{6}\right)\left(x_{5}-x_{6}\right)
$$

Then we have

$$
\begin{aligned}
\delta_{T} & =\delta_{\{2,5,6\}} \times \delta_{\{1,4\}} \times \delta_{\{3\}} \times \delta_{\{9\}} \times x_{7}^{4} x_{8}^{4} \\
& =\left(x_{2}-x_{5}\right)\left(x_{2}-x_{6}\right)\left(x_{5}-x_{6}\right) \times\left(x_{1}-x_{4}\right) \times 1 \times 1 \times x_{7}^{4} x_{8}^{4} .
\end{aligned}
$$

Describing $V_{n, \lambda}$

Theorem ([Rhoades-Y-Zhao])
Let $k \leq n$ and λ be a partition of k. The harmonic space $V_{n, \lambda}$ is the smallest subspace of $\mathbb{Q}\left[\mathbf{x}_{n}\right]$ which

- contains δ_{T} for any $T \in \operatorname{Inj}(\lambda, \leq n)$, and
- is closed under $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}$.

For Tanisaki quotients, this statement was proved by N.Bergeron and Garsia.

A spanning set of $V_{n, \lambda}$

Goal: construct a basis of $V_{n, \lambda}$.

Fact: The following is a spanning set of $V_{n, \lambda}$:

$$
\left\{\left(x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}\right) \odot \delta_{T}: T \in \operatorname{Inj}(\lambda ; \leq n), b_{i} \geq 0\right\}
$$

Strategy: Extract a basis from this spanning set.

Ordered set partition

Given $k \leq n$ and a partition λ of k with s parts, let $\mathcal{O} \mathcal{P}_{n, \lambda}$ be the family of sequences $\sigma=\left(B_{1}, \ldots, B_{s}\right)$ of subsets of $[n]$ such that $[n]=B_{1} \sqcup \cdots \sqcup B_{s}$ and $\left|B_{i}\right| \geq \lambda_{i}$ for all i.
For example, if $n=16$ and $\lambda=(3,3,2,2,0,0)$, then $\mathcal{O} \mathcal{P}_{n, \lambda}$ contains the following:

14				
16				
9	13	15		
6	10	12	8	
5	7	4	2	
3	1			

Inversions

Assume i is in a box. An inversion of i is a number j such that

1. $j>i$.
2. j is on the left of i in the same row.
3. The number below j does not exists or is less than i.

14				
16				
9	13	15		
6	10	12	8	
5	7	4	2	
3	1			

Inversions

Assume i is not in a box. An inversion of i is a column such that

1. The column is on the right of i.
2. The column has no boxes, or its highest number in box is less than i.

14			
16			
9	13	15	
6	10	12	8
5	7	4	2
3	1		

Generalizing Lehmer code

Assign a sequence of n numbers to each $\sigma \in \mathcal{O} \mathcal{P}_{n, \lambda}$. The $i^{t h}$ entry is the number of inversions of i.

\[

\]

Let $T(\sigma)$ be the element in $\operatorname{Inj}(\lambda ; \leq n)$ obtained by removing all numbers outside of boxes.

14				16
9	13			$\varnothing 11$
6	10	12	8	
5	7	4	2	
3	1			

6	10	12	8
5	7	4	2
3	1		

Define δ_{σ} by the rule

$$
\delta_{\sigma}:=\left(x_{1}^{c_{1}} \cdots x_{n}^{c_{n}}\right) \odot \delta_{T(\sigma)}
$$

where $\operatorname{code}(\sigma)=\left(c_{1}, \ldots, c_{n}\right)$.

Harmonic Basis

Theorem ([Rhoades-Y-Zhao])
Let $k \leq n$ be positive integers and let λ be a partition of k with s parts. The set

$$
\left\{\delta_{\sigma}: \sigma \in \mathcal{O} \mathcal{P}_{n, \lambda}\right\}
$$

is a harmonic basis of $R_{n, \lambda}$.

This result implies a combinatorial formula for the Hilbert series of $R_{n, \lambda}$:

$$
\operatorname{rev}\left(\operatorname{Hilb}\left(R_{n, \lambda} ; q\right)\right)=\sum_{\sigma \in \mathcal{O} \mathcal{P}_{n, \lambda}} q^{\text {sum }(\operatorname{code}(\sigma))}
$$

A future direction

We can introduce a new set of variables y_{1}, \ldots, y_{n} to $V_{n, \lambda}$. Define $D V_{n, \lambda}$ to be the smallest space such that:

1. It contains δ_{T} for any $T \in \operatorname{Inj}(\lambda, \leq n)$
2. It is closed under $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}$ and $\partial / \partial y_{1}, \ldots, \partial / \partial y_{n}$
3. It is closed under $y_{1}\left(\partial / \partial x_{1}\right)+\cdots+y_{n}\left(\partial / \partial x_{n}\right)$

Question: What is its Bigraded Frobenius image?
Haiman solved the special case: $\lambda=\left(1^{n}\right)$.

Thanks for listening!!

- B. Rhoades, T. Yu, and Z. Zhao. Harmonic bases for generalized coinvariant algebras. Electronic Journal of Combinatorics, 4 (4) (2020))

