Harmonic bases for generalized coinvariant algebras

Tianyi Yu
(Joint with Brendon Rhoades and Zehong Zhao)
UCSD

Outline

1. The classical coinvariant algebra R_{n} and its harmonic space V_{n}
2. The generalized coinvariant algebra $R_{n, \lambda}$
3. Describe the harmonic space and construct a harmonic basis for $R_{n, \lambda}$.

Classical coinvariant algebra

Let I_{n} be an ideal of $\mathbb{Q}\left[\mathbf{x}_{n}\right]:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ defined as

$$
I_{n}:=\left\langle e_{1}, \ldots, e_{n}\right\rangle
$$

where e_{d} is the elementary symmetric polynomial of degree d.

The classical coinvariant ring R_{n} is the associated quotient ring

$$
R_{n}:=\mathbb{Q}\left[\mathbf{x}_{n}\right] / I_{n}
$$

Some properties of R_{n}

1. Artin: The following set of monomials:

$$
\left\{x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}: 0 \leq i_{j} \leq n-j\right\}
$$

descends to a basis of R_{n}.
2. Chevalley: R_{n} is isomorphic to the regular representation $\mathbb{Q}\left[\mathfrak{S}_{n}\right]$ as ungraded \mathfrak{S}_{n}-modules.
3. Lusztig-Stanley:

$$
\operatorname{grFrob}\left(R_{n} ; q\right)=\sum_{w=w_{1} \ldots w_{n}} q^{m a j(w)} x_{w_{1}} \ldots x_{w_{n}}
$$

Defining the harmonic space

Take $f \in \mathbb{Q}\left[\mathbf{x}_{n}\right]$. Let ∂f be the differential operator

$$
\partial f:=f\left(\partial / \partial x_{1}, \ldots \partial / \partial x_{n}\right)
$$

Then $\mathbb{Q}\left[\mathbf{x}_{n}\right]$ acts on itself by:

$$
f \odot g:=(\partial f)(g)
$$

We also define an inner product of $\mathbb{Q}\left[\mathbf{x}_{n}\right]$:

$$
\langle f, g\rangle:=\text { constant term of } f \odot g
$$

Defining the harmonic space

Let $I \subset \mathbb{Q}\left[\mathbf{x}_{n}\right]$ be a homogeneous ideal. Its harmonic space V is defined as:

$$
V:=I^{\perp}=\left\{g \in \mathbb{Q}\left[\mathbf{x}_{n}\right]:\langle f, g\rangle=0 \text { for all } f \in I\right\}
$$

A basis of V is called a harmonic basis.

Fact: If I is \mathfrak{S}_{n}-invariant, then $\mathbb{Q}\left[\mathbf{x}_{n}\right] / I \cong V$ as graded \mathfrak{S}_{n}-modules.

Now, let V_{n} be the harmonic space associated to R_{n}.

Motivating V_{n}

Why we want to study V_{n}, instead of R_{n} ?

Answer: It is hard to determine whether $f+I_{n}=0$ for a given $f \in \mathbb{Q}\left[\mathbf{x}_{n}\right]$. We can avoid this challenge by studying V_{n}. Elements of V_{n} are polynomials, not cosets.

Describe V_{n}

Fact: V_{n} is the smallest space that contains δ_{n} and is closed under $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}$. Here, δ_{n} is the Vandermonde determinant:

$$
\delta_{n}:=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)
$$

Fact: The following is a basis of V_{n}.

$$
\left\{\left(x_{1}^{c_{1}} \cdots x_{n}^{c_{n}}\right) \odot \delta_{n}: 0 \leq c_{i} \leq n-i\right\} .
$$

From R_{n} to $R_{n, \lambda}$

Sean Griffin generalized R_{n} to $R_{n, \lambda}$. Let $k \leq n$ be nonnegative integers and let λ be a partition of k with s parts. Then let $I_{n, \lambda} \subseteq \mathbb{Q}\left[\mathbf{x}_{n}\right]$ be the ideal generated by $x_{1}^{s}, \ldots, x_{n}^{s}$ and $e_{d}(S)$, where the range of S and d will be illustrated in the next example.

Let $R_{n, \lambda}:=\mathbb{Q}\left[\mathbf{x}_{n}\right] / I_{n, \lambda}$ be the associated quotient ring. Let $V_{n, \lambda}$ be the harmonic space.

An example of $I_{n, \lambda}$

Assume $n=9, k=7, s=4$, and $\lambda=(3,2,2,0)$.
$I_{9,(3,2,2,0)}$ is generated by $x_{1}^{4}, \ldots, x_{9}^{4}$ together with: $e_{d}(S)$, where possible d, S are:

9	8	7
6	5	
4	3	

\cdot	8	7
\cdot	6	
\cdot	5	

\cdot	\cdot	7
\cdot	\cdot	
\cdot	\cdot	

$$
|S|=9 \quad|S|=8 \quad|S|=7
$$

Some special cases of $R_{n, \lambda}$

1. When $k=s=n$ and $\lambda=\left(1^{n}\right)$, then $R_{n, \lambda}=R_{n}$.
2. When $k=n, \lambda$ is a partition of n. The ring $R_{n, \lambda}$ is the Tanisaki quotient studied by Tanisaki and Garsia-Procesi.
3. When $\lambda=\left(1^{k}, 0^{s-k}\right)$, the ring $R_{n, \lambda}$ was introduced by Haglund, Rhoades and Shimozono to give a representation-theoretic model for the Haglund-Remmel-Wilson Delta Conjecture

Injective tableaux

Let λ be a partition. Let $\operatorname{Inj}(\lambda ; \leq n)$ be the family of tableaux of shape λ such that:

1. Each column is strictly increasing
2. No two entries are the same
3. Each entry is at most n
$\operatorname{Inj}((4,2,1,0,0) ; \leq 9)$ contains

2	1	3	9
5	4		
6			

Generalizing Vandermonde

For any subset $S \subseteq[n]$, define

$$
\delta_{S}:=\prod_{\substack{i, j \in S \\ i<j}}\left(x_{i}-x_{j}\right)
$$

Take $T \in \operatorname{Inj}(\lambda ; \leq n)$, where λ has s parts. Let C_{1}, \ldots, C_{r} be columns of T. Then

$$
\delta_{T}:=\delta_{C_{1}} \cdots \delta_{C_{r}} \times \prod x_{i}^{s-1}
$$

where the final product is over all $i \in[n]$ which do not appear in T.

δ_{T} example

Let T be the following element in $\operatorname{Inj}((4,2,1,0,0) ; \leq 9)$:

2	1	3	9
5	4		
6			

Then $C_{1}=\{2,5,6\}$, and

$$
\delta_{C_{1}}=\left(x_{2}-x_{5}\right)\left(x_{2}-x_{6}\right)\left(x_{5}-x_{6}\right)
$$

Then we have

$$
\begin{aligned}
\delta_{T} & =\delta_{\{2,5,6\}} \times \delta_{\{1,4\}} \times \delta_{\{3\}} \times \delta_{\{9\}} \times x_{7}^{4} x_{8}^{4} \\
& =\left(x_{2}-x_{5}\right)\left(x_{2}-x_{6}\right)\left(x_{5}-x_{6}\right) \times\left(x_{1}-x_{4}\right) \times 1 \times 1 \times x_{7}^{4} x_{8}^{4} .
\end{aligned}
$$

Describing $V_{n, \lambda}$

Theorem ([Rhoades-Y-Zhao $]$)
Let $k \leq n$ and λ be a partition of k. The harmonic space $V_{n, \lambda}$ is the smallest subspace of $\mathbb{Q}\left[\mathbf{x}_{n}\right]$ which

- contains δ_{T} for any $T \in \operatorname{Inj}(\lambda, \leq n)$, and
- is closed under $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}$.

When $k=n$, this statement was proved by N.Bergeron and Garsia.

A spanning set of $V_{n, \lambda}$

Goal: construct a basis of $V_{n, \lambda}$.

Fact: The following is a spanning set of $V_{n, \lambda}$:

$$
\left\{\left(x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}\right) \odot \delta_{T}: T \in \operatorname{Inj}(\lambda ; \leq n), b_{i} \geq 0\right\}
$$

Strategy: Extract a basis from this spanning set. To do so, we need to study some combinatorial objects.

Ordered set partition

Given $k \leq n$ and a partition λ of k with s parts, let $\mathcal{O} \mathcal{P}_{n, \lambda}$ be the family of sequences $\sigma=\left(B_{1}, \ldots, B_{s}\right)$ of subsets of $[n]$ such that $[n]=B_{1} \sqcup \cdots \sqcup B_{s}$ and $\left|B_{i}\right| \geq \lambda_{i}$ for all i.
For example, if $n=16$ and $\lambda=(3,3,2,2,0,0)$, then $\mathcal{O} \mathcal{P}_{n, \lambda}$ contains the following:

14				16
91015				$\varnothing 1$
5	8	12	13	
3	7	2	4	
1	6			

Coinversion code of permutations

Recall that a coinversion pair of $w \in \mathfrak{S}_{n}$ is (i, j), where $i<j$ and j is to the right of i in one-line notation of w.

We can encode w as $\left(c_{1}, \ldots, c_{n}\right)$, where c_{i} counts the number of coinversion pair (i, j) in w. This is called the coinversion code of w.

For instance, if w is 31452 in one-line notation, then its coinversion code is $(3,0,2,1,0)$.

Generalizing coinversion pair

Take $\sigma \in \mathcal{O} \mathcal{P}_{n, \lambda}$. For $1 \leq i<j \leq n$, we say that the pair (i, j) is a coinversion of σ when one of the following three conditions holds:

- i is not floating: j is to the right of i and on the same row of i.
- i is not floating: j is to the left of i and is one row below i.
- i is floating: j is to the right of i and is on the top of the container.

14				16
9	10			θ
5	8	12	13	
3	7	2	4	
1	6			

Generalizing coinversion pair

Take $\sigma \in \mathcal{O} \mathcal{P}_{n, \lambda}$. For $1 \leq i<j \leq n$, we say that the pair (i, j) is a coinversion of σ when one of the following three conditions holds:

- i is not floating: j is to the right of i and on the same row of i.
- i is not floating: j is to the left of i and is one row below i.
- i is floating: j is to the right of i and is on the top of the container.

14				16
91015				
5	8	12	13	
3	7	2	4	
1	6			

Generalizing coinversion pair

Take $\sigma \in \mathcal{O} \mathcal{P}_{n, \lambda}$. For $1 \leq i<j \leq n$, we say that the pair (i, j) is a coinversion of σ when one of the following three conditions holds:

- i is not floating: j is to the right of i and on the same row of i.
- i is not floating: j is to the left of i and is one row below i.
- i is floating: j is to the right of i and is on the top of the container.

14				16
9	10	15		
5	8	12	13	
3	7	2	4	
1	6			

Generalizing coinversion code

For $1 \leq i \leq n$, assume i is in $p^{\text {th }}$ block of σ, we define c_{i} as

$$
\begin{cases}\mid\{i<j:(i, j) \text { is a coinversion of } \sigma\} \mid & i \text { not floating } \\ \mid\{i<j:(i, j) \text { is a coinversion of } \sigma\} \mid+(p-1) & \text { otherwise }\end{cases}
$$

The coinversion code of σ is given by code $(\sigma):=\left(c_{1}, \ldots, c_{n}\right)$.

14				16
91015				$\varnothing 1$
5	8	12	13	
3	7	2	4	
1	6			

$$
\operatorname{code}(\sigma)=(1,2,2,1,3,0,0,2,2,3,5,1,0,1,2,5)
$$

maxcode

For $1 \leq i \leq n$, we define a_{i} as

$$
\begin{cases}\mid\{i<j: i, j \text { are on the same row }\} \mid & i \text { not floating } \\ s-1 & \text { otherwise }\end{cases}
$$

The max code of σ is given by maxcode $(\sigma):=\left(a_{1}, \ldots, a_{n}\right)$.

14				16
9	10	15		¢ 1
5	8	12	13	
3	7	2	4	
1	6			

$\operatorname{maxcode}(\sigma)=(1,3,2,1,3,0,0,2,5,5,5,1,0,5,5,5)$

$T(\sigma)$ and δ_{σ}

Let $T(\sigma)$ be the element in $\operatorname{Inj}(\lambda ; \leq n)$ whose column i consists of elements on row i of σ.

$$
\sigma= \quad T(\sigma)=\begin{array}{|c|c|c|}
\hline 5 & 2 & 1 \\
\hline 8 & 3 & 6 \\
\hline 12 & 4 & \\
\hline 13 & 7 \\
\hline
\end{array}
$$

Define δ_{σ} by the rule

$$
\delta_{\sigma}:=\left(x_{1}^{a_{1}-c_{1}} \cdots x_{n}^{a_{n}-c_{n}}\right) \odot \delta_{T(\sigma)}
$$

where $\operatorname{code}(\sigma)=\left(c_{1}, \ldots, c_{n}\right)$ and maxcode $(\sigma)=\left(a_{1}, \ldots, a_{n}\right)$

δ_{σ} example

$$
\begin{aligned}
& \quad T(\sigma)=\begin{array}{|c|c|c|}
\hline 5 & 2 & 1 \\
\hline 8 & 3 & 6 \\
\hline 12 & 4 & \\
\hline 13 & 7 & \\
\hline
\end{array} \\
& \operatorname{maxcode}(\sigma)=(1,3,2,1,3,0,0,2,5,5,5,1,0,5,5,5) \\
& \operatorname{code}(\sigma)=(1,2,2,1,3,0,0,2,2,3,5,1,0,1,2,5)
\end{aligned}
$$

Finally, we have:

$$
\delta_{\sigma}=\left(x_{1}^{0} x_{2}^{1} x_{3}^{0} x_{4}^{0} x_{5}^{0} x_{6}^{0} x_{7}^{0} x_{8}^{0} x_{9}^{3} x_{10}^{2} x_{11}^{0} x_{12}^{0} x_{13}^{0} x_{14}^{4} x_{15}^{3} x_{16}^{0}\right) \odot \delta_{T(\sigma)}
$$

Harmonic Basis

Theorem ([Rhoades-Y-Zhao])

Let $k \leq n$ be positive integers and let λ be a partition of k with s parts. The set

$$
\left\{\delta_{\sigma}: \sigma \in \mathcal{O} \mathcal{P}_{n, \lambda}\right\}
$$

is a harmonic basis of $R_{n, \lambda}$. The lexicographical leading term of δ_{σ} has exponent sequence code (σ).

This result implies a combinatorial formula for the Hilbert series of $R_{n, \lambda}:$

$$
\operatorname{Hilb}\left(R_{n, \lambda} ; q\right)=\sum_{\sigma \in \mathcal{O} \mathcal{P}_{n, \lambda}} q^{\text {sum }(\operatorname{code}(\sigma))} .
$$

A future direction

We can introduce a new set of variables y_{1}, \ldots, y_{n} to $V_{n, \lambda}$. Define $D V_{n, \lambda}$ to be the smallest space such that:

1. It contains contains δ_{T} for any $T \in \operatorname{Inj}(\lambda, \leq n)$
2. It is closed under $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}$ and $\partial / \partial y_{1}, \ldots, \partial / \partial y_{n}$
3. It is closed under $y_{1}\left(\partial / \partial x_{1}\right)+\cdots+y_{n}\left(\partial / \partial x_{n}\right)$

Question: What is its Bigraded Frobenius image?
Haiman solved the special case: $\lambda=\left(1^{n}\right)$.

Thanks for listening!!

- B. Rhoades, T. Yu, and Z. Zhao. Harmonic bases for generalized coinvariant algebras. Electronic Journal of Combinatorics, 4 (4) (2020))

