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1. The classical coinvariant algebra Rn and its harmonic space Vn

2. The generalized coinvariant algebra Rn,λ

3. Describe the harmonic space and construct a harmonic basis for
Rn,λ.



Classical coinvariant algebra

Let In be an ideal of Q[xn] := Q[x1, . . . , xn] defined as

In := 〈e1, . . . , en〉

where ed is the elementary symmetric polynomial of degree d .

The classical coinvariant ring Rn is the associated quotient ring

Rn := Q[xn]/In



Some properties of Rn

1. Artin: The following set of monomials:

{x i11 . . . x
in
n : 0 ≤ ij ≤ n − j}

descends to a basis of Rn.

2. Chevalley: Rn is isomorphic to the regular representation
Q[Sn] as ungraded Sn-modules.

3. Lusztig-Stanley:

grFrob(Rn; q) =
∑

w=w1...wn

qmaj(w)xw1 . . . xwn



Defining the harmonic space

Take f ∈ Q[xn]. Let ∂f be the differential operator

∂f := f (∂/∂x1, . . . ∂/∂xn)

Then Q[xn] acts on itself by:

f � g := (∂f )(g)

We also define an inner product of Q[xn]:

〈f , g〉 := constant term of f � g



Defining the harmonic space

Let I ⊂ Q[xn] be a homogeneous ideal. Its harmonic space V is
defined as:

V := I⊥ = {g ∈ Q[xn] : 〈f , g〉 = 0 for all f ∈ I}

A basis of V is called a harmonic basis.

Fact: If I is Sn-invariant, then Q[xn]/I ∼= V as graded
Sn-modules.

Now, let Vn be the harmonic space associated to Rn.



Motivating Vn

Why we want to study Vn, instead of Rn?

Answer: It is hard to determine whether f + In = 0 for a given
f ∈ Q[xn]. We can avoid this challenge by studying Vn. Elements
of Vn are polynomials, not cosets.



Describe Vn

Fact: Vn is the smallest space that contains δn and is closed under
∂/∂x1, . . . , ∂/∂xn. Here, δn is the Vandermonde determinant:

δn :=
∏

1≤i<j≤n
(xi − xj).

Fact: The following is a basis of Vn.

{(xc11 · · · x
cn
n )� δn : 0 ≤ ci ≤ n − i}.



From Rn to Rn,λ

Sean Griffin generalized Rn to Rn,λ. Let k ≤ n be nonnegative
integers and let λ be a partition of k with s parts. Then let
In,λ ⊆ Q[xn] be the ideal generated by x s1 , . . . , x

s
n and ed(S), where

the range of S and d will be illustrated in the next example.

Let Rn,λ := Q[xn]/In,λ be the associated quotient ring. Let Vn,λ be
the harmonic space.



An example of In,λ

Assume n = 9, k = 7, s = 4, and λ = (3, 2, 2, 0).
I9,(3,2,2,0) is generated by x41 , . . . , x

4
9 together with: ed(S), where

possible d , S are:

9 8 7

6 5

4 3

· 8 7

· 6

· 5

· · 7

· ·
· ·

|S | = 9 |S | = 8 |S | = 7



Some special cases of Rn,λ

1. When k = s = n and λ = (1n), then Rn,λ = Rn.

2. When k = n, λ is a partition of n. The ring Rn,λ is the
Tanisaki quotient studied by Tanisaki and Garsia-Procesi.

3. When λ = (1k , 0s−k), the ring Rn,λ was introduced by
Haglund, Rhoades and Shimozono to give a
representation-theoretic model for the
Haglund-Remmel-Wilson Delta Conjecture



Injective tableaux

Let λ be a partition. Let Inj(λ;≤ n) be the family of tableaux of
shape λ such that:

1. Each column is strictly increasing

2. No two entries are the same

3. Each entry is at most n

Inj((4, 2, 1, 0, 0);≤ 9) contains

2 1 3 9

5 4

6



Generalizing Vandermonde

For any subset S ⊆ [n], define

δS :=
∏
i ,j∈S
i<j

(xi − xj)

Take T ∈ Inj(λ;≤ n), where λ has s parts. Let C1, . . . ,Cr be
columns of T . Then

δT := δC1 · · · δCr ×
∏

x s−1i

where the final product is over all i ∈ [n] which do not appear in T .



δT example

Let T be the following element in Inj((4, 2, 1, 0, 0);≤ 9):

2 1 3 9

5 4

6

Then C1 = {2, 5, 6}, and

δC1 = (x2 − x5)(x2 − x6)(x5 − x6)

Then we have

δT = δ{2,5,6} × δ{1,4} × δ{3} × δ{9} × x47x
4
8

= (x2 − x5)(x2 − x6)(x5 − x6)× (x1 − x4)× 1× 1× x47x
4
8 .



Describing Vn,λ

Theorem ([Rhoades-Y-Zhao])

Let k ≤ n and λ be a partition of k. The harmonic space Vn,λ is
the smallest subspace of Q[xn] which

I contains δT for any T ∈ Inj(λ,≤ n), and

I is closed under ∂/∂x1, . . . , ∂/∂xn.

When k = n, this statement was proved by N.Bergeron and Garsia.



A spanning set of Vn,λ

Goal: construct a basis of Vn,λ.

Fact: The following is a spanning set of Vn,λ:

{(xb11 · · · x
bn
n )� δT : T ∈ Inj(λ;≤ n), bi ≥ 0}

Strategy: Extract a basis from this spanning set. To do so, we
need to study some combinatorial objects.



Ordered set partition

Given k ≤ n and a partition λ of k with s parts, let OPn,λ be the
family of sequences σ = (B1, . . . ,Bs) of subsets of [n] such that
[n] = B1 t · · · t Bs and |Bi | ≥ λi for all i .

For example, if n = 16 and λ = (3, 3, 2, 2, 0, 0), then OPn,λ

contains the following:

14 16

9 10 15 ∅ 11

5 8 12 13

3 7 2 4

1 6



Coinversion code of permutations

Recall that a coinversion pair of w ∈ Sn is (i , j), where i < j and j
is to the right of i in one-line notation of w .

We can encode w as (c1, . . . , cn), where ci counts the number of
coinversion pair (i , j) in w . This is called the coinversion code of
w .

For instance, if w is 31452 in one-line notation, then its
coinversion code is (3, 0, 2, 1, 0).



Generalizing coinversion pair

Take σ ∈ OPn,λ. For 1 ≤ i < j ≤ n, we say that the pair (i , j) is a
coinversion of σ when one of the following three conditions holds:

I i is not floating: j is to the right of i and on the same row of i .

I i is not floating: j is to the left of i and is one row below i .

I i is floating: j is to the right of i and is on the top of the
container.

14 16

9 10 15 ∅ 11

5 8 12 13

3 7 2 4

1 6
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Generalizing coinversion code

For 1 ≤ i ≤ n, assume i is in pth block of σ, we define ci as{
|{i < j : (i , j) is a coinversion of σ}| i not floating

|{i < j : (i , j) is a coinversion of σ}|+ (p − 1) otherwise

The coinversion code of σ is given by code(σ) := (c1, . . . , cn).

14 16

9 10 15 ∅ 11

5 8 12 13

3 7 2 4

1 6

code(σ) = (1, 2, 2, 1, 3, 0, 0, 2, 2, 3, 5, 1, 0, 1, 2, 5).



maxcode

For 1 ≤ i ≤ n, we define ai as{
|{i < j : i , j are on the same row}| i not floating

s − 1 otherwise

The max code of σ is given by maxcode(σ) := (a1, . . . , an).

14 16

9 10 15 ∅ 11

5 8 12 13

3 7 2 4

1 6

maxcode(σ) = (1, 3, 2, 1, 3, 0, 0, 2, 5, 5, 5, 1, 0, 5, 5, 5)



T (σ) and δσ

Let T (σ) be the element in Inj(λ;≤ n) whose column i consists of
elements on row i of σ.

14 16

9 10 15 ∅ 11

5 8 12 13

σ = 3 7 2 4

1 6

5 2 1

8 3 6
T (σ) = 12 4

13 7

Define δσ by the rule

δσ := (xa1−c11 · · · xan−cnn )� δT (σ)

where code(σ) = (c1, . . . , cn) and maxcode(σ) = (a1, . . . , an)



δσ example

14 16

9 10 15 ∅ 11

5 8 12 13

σ = 3 7 2 4

1 6

5 2 1

8 3 6
T (σ) = 12 4

13 7

maxcode(σ) = (1, 3, 2, 1, 3, 0, 0, 2, 5, 5, 5, 1, 0, 5, 5, 5)

code(σ) = (1, 2, 2, 1, 3, 0, 0, 2, 2, 3, 5, 1, 0, 1, 2, 5)

Finally, we have:

δσ = (x01x
1
2x

0
3x

0
4x

0
5x

0
6x

0
7x

0
8x

3
9x

2
10x

0
11x

0
12x

0
13x

4
14x

3
15x

0
16)� δT (σ).



Harmonic Basis

Theorem ([Rhoades-Y-Zhao])

Let k ≤ n be positive integers and let λ be a partition of k with s
parts. The set

{δσ : σ ∈ OPn,λ}

is a harmonic basis of Rn,λ. The lexicographical leading term of δσ
has exponent sequence code(σ).

This result implies a combinatorial formula for the Hilbert series of
Rn,λ:

Hilb(Rn,λ; q) =
∑

σ∈OPn,λ

qsum(code(σ)).



A future direction

We can introduce a new set of variables y1, . . . , yn to Vn,λ. Define
DVn,λ to be the smallest space such that:

1. It contains contains δT for any T ∈ Inj(λ,≤ n)

2. It is closed under ∂/∂x1, . . . , ∂/∂xn and ∂/∂y1, . . . , ∂/∂yn

3. It is closed under y1(∂/∂x1) + · · ·+ yn(∂/∂xn)

Question: What is its Bigraded Frobenius image?

Haiman solved the special case: λ = (1n).



Thanks for listening!!
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