Harmonic bases for generalized coinvariant algebras

Tianyi Yu (Joint with Brendon Rhoades and Zehong Zhao)

UCSD

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline

1. The classical coinvariant algebra R_n and its harmonic space V_n

2. The generalized coinvariant algebra $R_{n,\lambda}$

3. Describe the harmonic space and construct a harmonic basis for $R_{n,\lambda}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Classical coinvariant algebra

Let I_n be an ideal of $\mathbb{Q}[\mathbf{x}_n] := \mathbb{Q}[x_1, \dots, x_n]$ defined as

$$I_n := \langle e_1, \ldots, e_n \rangle$$

where e_d is the elementary symmetric polynomial of degree d.

The classical coinvariant ring R_n is the associated quotient ring

$$R_n := \mathbb{Q}[\mathbf{x}_n]/I_n$$

Some properties of R_n

1. Artin: The following set of monomials:

$$\{x_1^{i_1}\dots x_n^{i_n}: 0\leq i_j\leq n-j\}$$

descends to a basis of R_n .

- 2. Chevalley: R_n is isomorphic to the regular representation $\mathbb{Q}[\mathfrak{S}_n]$ as ungraded \mathfrak{S}_n -modules.
- 3. Lusztig-Stanley:

$$\mathsf{grFrob}(R_n;q) = \sum_{w = w_1 \dots w_n} q^{maj(w)} x_{w_1} \dots x_{w_n}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Defining the harmonic space

Take $f \in \mathbb{Q}[\mathbf{x}_n]$. Let ∂f be the differential operator

$$\partial f := f(\partial/\partial x_1, \ldots \partial/\partial x_n)$$

Then $\mathbb{Q}[\mathbf{x}_n]$ acts on itself by:

$$f \odot g := (\partial f)(g)$$

We also define an inner product of $\mathbb{Q}[\mathbf{x}_n]$:

$$\langle f, g \rangle := \text{constant term of } f \odot g$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Defining the harmonic space

Let $I \subset \mathbb{Q}[\mathbf{x}_n]$ be a homogeneous ideal. Its harmonic space V is defined as:

$$V:=I^{\perp}=\{g\in \mathbb{Q}[\mathbf{x}_n]\,:\,\langle f,g
angle=0 ext{ for all } f\in I\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A basis of V is called a *harmonic basis*.

Fact: If I is \mathfrak{S}_n -invariant, then $\mathbb{Q}[\mathbf{x}_n]/I \cong V$ as graded \mathfrak{S}_n -modules.

Now, let V_n be the harmonic space associated to R_n .

Why we want to study V_n , instead of R_n ?

Answer: It is hard to determine whether $f + I_n = 0$ for a given $f \in \mathbb{Q}[\mathbf{x}_n]$. We can avoid this challenge by studying V_n . Elements of V_n are polynomials, not cosets.

Describe V_n

Fact: V_n is the smallest space that contains δ_n and is closed under $\partial/\partial x_1, \ldots, \partial/\partial x_n$. Here, δ_n is the *Vandermonde determinant*:

$$\delta_n := \prod_{1 \le i < j \le n} (x_i - x_j).$$

Fact: The following is a basis of V_n .

$$\{(x_1^{c_1}\cdots x_n^{c_n})\odot \delta_n : 0\leq c_i\leq n-i\}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Sean Griffin generalized R_n to $R_{n,\lambda}$. Let $k \leq n$ be nonnegative integers and let λ be a partition of k with s parts. Then let $I_{n,\lambda} \subseteq \mathbb{Q}[\mathbf{x}_n]$ be the ideal generated by x_1^s, \ldots, x_n^s and $e_d(S)$, where the range of S and d will be illustrated in the next example.

Let $R_{n,\lambda} := \mathbb{Q}[\mathbf{x}_n]/I_{n,\lambda}$ be the associated quotient ring. Let $V_{n,\lambda}$ be the harmonic space.

An example of $I_{n,\lambda}$

Assume n = 9, k = 7, s = 4, and $\lambda = (3, 2, 2, 0)$. $I_{9,(3,2,2,0)}$ is generated by x_1^4, \ldots, x_9^4 together with: $e_d(S)$, where possible d, S are:

|S| = 9 |S| = 8 |S| = 7

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Some special cases of $R_{n,\lambda}$

- 1. When k = s = n and $\lambda = (1^n)$, then $R_{n,\lambda} = R_n$.
- 2. When k = n, λ is a partition of n. The ring $R_{n,\lambda}$ is the *Tanisaki quotient* studied by Tanisaki and Garsia-Procesi.
- 3. When $\lambda = (1^k, 0^{s-k})$, the ring $R_{n,\lambda}$ was introduced by Haglund, Rhoades and Shimozono to give a representation-theoretic model for the Haglund-Remmel-Wilson Delta Conjecture

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Injective tableaux

Let λ be a partition. Let $\text{Inj}(\lambda; \leq n)$ be the family of tableaux of shape λ such that:

- 1. Each column is strictly increasing
- 2. No two entries are the same
- 3. Each entry is at most n

 $\operatorname{Inj}((4, 2, 1, 0, 0); \leq 9)$ contains

2	1	3	9
5	4		
6			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Generalizing Vandermonde

For any subset $S \subseteq [n]$, define

$$\delta_{\mathcal{S}} := \prod_{\substack{i,j\in \mathcal{S}\i< j}} (x_i - x_j)$$

Take $T \in \text{Inj}(\lambda; \leq n)$, where λ has *s* parts. Let C_1, \ldots, C_r be columns of *T*. Then

$$\delta_{\mathcal{T}} := \delta_{C_1} \cdots \delta_{C_r} \times \prod x_i^{s-1}$$

where the final product is over all $i \in [n]$ which do not appear in T.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

δ_T example

Let T be the following element in $\text{Inj}((4,2,1,0,0); \leq 9)$:

2	1	3	9
5	4		
6			

Then $C_1 = \{2, 5, 6\}$, and

$$\delta_{C_1} = (x_2 - x_5)(x_2 - x_6)(x_5 - x_6)$$

Then we have

$$egin{aligned} \delta_{\mathcal{T}} &= \delta_{\{2,5,6\}} imes \delta_{\{1,4\}} imes \delta_{\{3\}} imes \delta_{\{9\}} imes x_7^4 x_8^4 \ &= (x_2 - x_5)(x_2 - x_6)(x_5 - x_6) imes (x_1 - x_4) imes 1 imes 1 imes x_7^4 x_8^4. \end{aligned}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Describing $V_{n,\lambda}$

Theorem ([Rhoades-Y-Zhao])

Let $k \leq n$ and λ be a partition of k. The harmonic space $V_{n,\lambda}$ is the smallest subspace of $\mathbb{Q}[\mathbf{x}_n]$ which

- contains δ_T for any $T \in \text{Inj}(\lambda, \leq n)$, and
- is closed under $\partial/\partial x_1, \ldots, \partial/\partial x_n$.

When k = n, this statement was proved by N.Bergeron and Garsia.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A spanning set of $V_{n,\lambda}$

Goal: construct a basis of $V_{n,\lambda}$.

Fact: The following is a spanning set of $V_{n,\lambda}$:

$$\{(x_1^{b_1}\cdots x_n^{b_n})\odot \delta_T : T\in \mathrm{Inj}(\lambda; \leq n), \ b_i\geq 0\}$$

Strategy: Extract a basis from this spanning set. To do so, we need to study some combinatorial objects.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Ordered set partition

Given $k \leq n$ and a partition λ of k with s parts, let $\mathcal{OP}_{n,\lambda}$ be the family of sequences $\sigma = (B_1, \ldots, B_s)$ of subsets of [n] such that $[n] = B_1 \sqcup \cdots \sqcup B_s$ and $|B_i| \geq \lambda_i$ for all i.

For example, if n = 16 and $\lambda = (3, 3, 2, 2, 0, 0)$, then $\mathcal{OP}_{n,\lambda}$ contains the following:

		14				16
	9	10	15		Ø	11
	5	8	12	13		
ſ	3	7	2	4		
l	1	6				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Coinversion code of permutations

Recall that a coinversion pair of $w \in \mathfrak{S}_n$ is (i,j), where i < j and j is to the right of i in one-line notation of w.

We can encode w as (c_1, \ldots, c_n) , where c_i counts the number of coinversion pair (i, j) in w. This is called the coinversion code of w.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For instance, if w is 31452 in one-line notation, then its coinversion code is (3, 0, 2, 1, 0).

Generalizing coinversion pair

Take $\sigma \in \mathcal{OP}_{n,\lambda}$. For $1 \leq i < j \leq n$, we say that the pair (i, j) is a *coinversion* of σ when one of the following three conditions holds:

- i is not floating: j is to the right of i and on the same row of i.
- ▶ *i* is not floating: *j* is to the left of *i* and is one row below *i*.
- *i* is floating: *j* is to the right of *i* and is on the top of the container.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Generalizing coinversion pair

Take $\sigma \in OP_{n,\lambda}$. For $1 \le i < j \le n$, we say that the pair (i, j) is a *coinversion* of σ when one of the following three conditions holds:

- ▶ *i* is not floating: *j* is to the right of *i* and on the same row of *i*.
- ▶ *i* is not floating: *j* is to the left of *i* and is one row below *i*.
- *i* is floating: *j* is to the right of *i* and is on the top of the container.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Generalizing coinversion pair

Take $\sigma \in \mathcal{OP}_{n,\lambda}$. For $1 \leq i < j \leq n$, we say that the pair (i, j) is a *coinversion* of σ when one of the following three conditions holds:

- i is not floating: j is to the right of i and on the same row of i.
- i is not floating: j is to the left of i and is one row below i.
- *i* is floating: *j* is to the right of *i* and is on the top of the container.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Generalizing coinversion code

For $1 \le i \le n$, assume *i* is in p^{th} block of σ , we define c_i as $\begin{cases}
|\{i < j : (i,j) \text{ is a coinversion of } \sigma\}| & i \text{ not floating} \\
|\{i < j : (i,j) \text{ is a coinversion of } \sigma\}| + (p-1) & \text{otherwise}
\end{cases}$

The coinversion code of σ is given by $code(\sigma) := (c_1, \ldots, c_n)$.

	14				16
9	10	15		Ø	11
5	8	12	13		
3	7	2	4		
1	6				

 $code(\sigma) = (1, 2, 2, 1, 3, 0, 0, 2, 2, 3, 5, 1, 0, 1, 2, 5).$

maxcode

For $1 \le i \le n$, we define a_i as $\begin{cases} |\{i < j \ : \ i, j \text{ are on the same row}\}| & i \text{ not floating} \\ s - 1 & \text{otherwise} \end{cases}$

The max code of σ is given by maxcode $(\sigma) := (a_1, \ldots, a_n)$.

	14				16	
9	10	15		Ø	11	
5	8	12	13			
3	7	2	4			
1	6					

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\texttt{maxcode}(\sigma) = (1, 3, 2, 1, 3, 0, 0, 2, 5, 5, 5, 1, 0, 5, 5, 5)$

$T(\sigma)$ and δ_{σ}

Let $T(\sigma)$ be the element in $\text{Inj}(\lambda; \leq n)$ whose column *i* consists of elements on row *i* of σ .

Define δ_{σ} by the rule

$$\delta_{\sigma} := (x_1^{a_1-c_1}\cdots x_n^{a_n-c_n}) \odot \delta_{\mathcal{T}(\sigma)}$$

where $code(\sigma) = (c_1, \ldots, c_n)$ and $maxcode(\sigma) = (a_1, \ldots, a_n)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

δ_{σ} example

$$\begin{split} \texttt{maxcode}(\sigma) &= (1, 3, 2, 1, 3, 0, 0, 2, 5, 5, 5, 1, 0, 5, 5, 5)\\ \texttt{code}(\sigma) &= (1, 2, 2, 1, 3, 0, 0, 2, 2, 3, 5, 1, 0, 1, 2, 5) \end{split}$$

Finally, we have:

 $\delta_{\sigma} = (x_1^0 x_2^1 x_3^0 x_4^0 x_5^0 x_6^0 x_7^0 x_8^0 x_9^3 x_{10}^2 x_{11}^0 x_{12}^0 x_{13}^0 x_{14}^4 x_{15}^3 x_{16}^0) \odot \delta_{\mathcal{T}(\sigma)}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Harmonic Basis

Theorem ([Rhoades-Y-Zhao])

Let $k \leq n$ be positive integers and let λ be a partition of k with s parts. The set

$$\{\delta_{\sigma} : \sigma \in \mathcal{OP}_{n,\lambda}\}$$

is a harmonic basis of $R_{n,\lambda}$. The lexicographical leading term of δ_{σ} has exponent sequence $code(\sigma)$.

This result implies a combinatorial formula for the Hilbert series of $R_{n,\lambda}$:

$$\operatorname{Hilb}(R_{n,\lambda};q) = \sum_{\sigma \in \mathcal{OP}_{n,\lambda}} q^{\operatorname{sum}(\operatorname{code}(\sigma))}.$$

A future direction

We can introduce a new set of variables y_1, \ldots, y_n to $V_{n,\lambda}$. Define $DV_{n,\lambda}$ to be the smallest space such that:

- 1. It contains contains δ_T for any $T \in \text{Inj}(\lambda, \leq n)$
- 2. It is closed under $\partial/\partial x_1, \ldots, \partial/\partial x_n$ and $\partial/\partial y_1, \ldots, \partial/\partial y_n$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

3. It is closed under $y_1(\partial/\partial x_1) + \cdots + y_n(\partial/\partial x_n)$

Question: What is its Bigraded Frobenius image? Haiman solved the special case: $\lambda = (1^n)$.

Thanks for listening!!

B. Rhoades, T. Yu, and Z. Zhao. Harmonic bases for generalized coinvariant algebras. *Electronic Journal of Combinatorics*, 4 (4) (2020))

(ロ)、(型)、(E)、(E)、 E) のQ(()