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GROTHENDIECK POLYNOMIALS OF INVERSE FIREWORKS

PERMUTATIONS

CHEN-AN CHOU AND TIANYI YU

Abstract. Pipedreams are combinatorial objects that compute Grothendieck polynomials.
We introduce a new combinatorial object that naturally recast the pipedream formula. From
this, we obtain the first direct combinatorial formula for the top degree components of
Grothendieck polynomials, also known as the Castelnuovo-Mumford polynomials. We also
prove the inverse fireworks case of a conjecture of Mészáros, Setiabrata, and St. Dizier on
the support of Grothendieck polynomials.

1. Introduction

Fix n P Zą0 throughout the paper. For w P Sn, Lascoux and Schützenberger [LS82] intro-
duced the Grothendieck polynomials Gwpxq, which are explicit polynomial representatives
of the K-classes of structure sheaves of Schubert varieties in flag varieties. In general, the
Grothendieck polynomials are not homogeneous. Their lowest degree homogeneous compo-
nents recover the Schubert polynomials, which represent the cohomology classes of Schubert
varieties in flag varieties.

Grothendieck polynomials can be computed using combinatorial objects such as pipedreams
(PD) [BB93, BJS93, FK94]. Each w P Sn is associated with a set of PDs, denoted as PDpwq.
Each P P PDpwq is associated with a set of weight tiles wtypP q, which leads to a monomial
wtP pxq. By Fomin and Kirillov [FK94],

Gwpxq :“
ÿ

PPPDpwq

p´1q|wtypP q|´ℓpwqwtP pxq.

The main innovation of this paper is an alternative perspective for viewing PDs. We
remove certain pipes from a PD to obtain a novel combinatorial object called a marked
vertical-less pipedream (see Definition 3.1). In other words, we introduce a set MVPDpwq
and a bijection Φ : PDpwq Ñ MVPDpwq. We also define the weighty tiles wtypMq of each
M P MVPDpwq so that Φ preserves wtyp¨q. Consequently, each M P MVPDpwq is associated
with a monomial wtMpxq which agrees with its corresponding PD. This set MVPDpwq recasts
the PD formula in a way that helps us derive two applications on Grothendieck polynomials.

1.1. Combinatorial formula for the top degree components of Grothendieck poly-

nomials. There has been a growing acknowledgment of the significance of the Castelnuovo-

Mumford polynomial pGwpxq, the top degree homogeneous component ofGwpxq. For instance,

‚ the degree of pGwpxq determines the Castelnuovo–Mumford regularity of matrix Schu-
bert varieties [RRR`21];

‚ the support of pGwpxq conjecturally governs the support of Gwpxq [MSSD22, Conjec-
ture 1.3].
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With these motivations, there has been a recent surge in the study of pGwpxq [CY23,
DMSD22, Haf22, HMSSD23, PSW21, PY23, RRR`21, RRW23]. Any permutation can be
decomposed into decreasing runs. A permutation is called fireworks if the first number in
each decreasing run is increasing. For instance, 3167542 is fireworks while 6137542 is not.
A permutation is called inverse fireworks permutation if its inverse is fireworks. Pechenik,

Speyer, and Weigandt [PSW21] showed that each pGwpxq is an integer multiple of pGupxq for

some inverse fireworks permutation u. Thus, to understand all pGwpxq, one might focus on
pGupxq for inverse fireworks u.

As far as the authors are aware, there does not exist any combinatorial formula for pGwpxq,
besides extracting highest degree elements from a combinatorial formula for Gwpxq. We

provide the first direct combinatorial formula of pGwpxq for inverse fireworks w, involving
combinatorial objects we call bumpless vertical-less pipedreams (BVPDs). We prove our
formula by establishing a bijection between BVPDs and the highest degree elements from
MVPDpwq. Via the bijection betweenMVPDpwq and PDpwq, we also obtain a characterization
of highest degree PDs of inverse fireworks permutations.

1.2. Support of Grothendieck polynomials for inverse fireworks permutations.

The support of a polynomial f is the set of monomials whose coefficient in f is non-zero.
Mészáros, Setiabrata, and St. Dizier [MSSD22] made several conjectures on the support for
Gwpxq, including the following.

Conjecture 1.1. [MSSD22, Conjecture 1.2] Let w be an arbitrary permutation. Let m be

an monomial in the support of Gwpxq. If the degree of m is less than the degree of Gwpxq,
then there exists i such that mxi is in the support of Gwpxq.

The conjecture above is implied by another conjecture of Huh, Matherne, Mészáros and
St. Dizier [HMMSD22] that homogenized Grothendieck polynomials are Lorentzian (up to
appropriate normalization). We may translate Conjecture 1.1 combinatorially: For each M P
MVPDpwq that is not a top degree element, we may findM 1 P MVPDpwq such that wtM 1pxq “
wtMpxqxi for some i. We prove Conjecture 1.1 for an inverse fireworks permutation w

constructively: For each M P MVPDpwq, we give an explicit algorithm that constructs
M 1 P PDpwq.

The rest of the paper is structured as follows. In §2, we cover necessary background
regarding pipedreams and Gwpxq. In §3, we introduce marked vertical-less pipedreams and
use them to rephrase the PD formula. In §4, we introduce bumpless vertical-less pipedreams

and give a direct formula of pGwpxq. In §5, we prove Conjecture 1.1 for inverse fireworks
permutations.

2. Background

Definition 2.1. A pipedream (PD) [BB93, BJS93, FK94] is a tiling of an nˆn grid. The tile
pi, n ` 1 ´ iq is for i P rns. The cell pi, jq with j ą n ` 1 ´ i is . All other tiles can be
or . We trace the pipes in a PD from left to top as follows. The pipe entering from row p

is called pipe p. Suppose we see a where the pipe on the left (resp. bottom) has label p
(resp. q). If pipe p and q have not crossed before, we say they cross in this tile and let pipe
p (resp. q) exits from the right (resp. top). Otherwise, we let pipe p (resp. q) exits from the
top (resp. right). Notice that this rule is the same as saying pipe maxpp, qq exits from the
top and the other exits from the right.



GROTHENDIECK POLYNOMIALS OF INVERSE FIREWORKS PERMUTATIONS 3

After tracing the pipes, we may read off the labels of the pipes on the top edge of the PD
as a permutation w P Sn. We say this PD is associated with w´1. Let PDpwq be the set of
the pipedreams associated with w.

Example 2.2. The following is a pipedream of the permutation w with one-line notation
24513. Its inverse has one-line notation 41523.

1
2
3
4
5

4 1 5 2 3

We make pipe 3 blue and pipe 5 green. Notice that pipe 3 and pipe 5 cross at p3, 2q. However,
pipe 3 and pipe 5 do not cross at p2, 3q since they already crossed.

For a PD P , let wtypP q be the set of pi, jq that is in P . Define

wtP pxq “
ź

pi,jqPwtypP q

xi, wtP px,yq “
ź

pi,jqPwtypP q

pxi ` yj ´ xiyjq

For w P Sn, let ℓpwq be the number of i ă j such that wpiq ą wpjq. Following [FK94]
and [KM05], Grothendieck polynomial Gwpxq and double Grothendieck polynomial Gwpx,yq
can be defined as

Gwpxq :“
ÿ

PPPDpwq

p´1q|wtypP q|´ℓpwqwtP pxq,

Gwpx,yq :“
ÿ

PPPDpwq

p´1q|wtypP q|´ℓpwqwtP px,yq.
(1)

Example 2.3. The following are all the pipedreams of the permutation w “ 2413:

Therefore,

Gwpxq “ x1x
2
2 ` x2

1x2 ´ x2
1x

2
2

Gwpx,yq “ px1 ` y1 ´ x1y1qpx2 ` y1 ´ x2y1qpx2 ` y2 ´ x2y2q

` px1 ` y1 ´ x1y1qpx2 ` y1 ´ x2y1qpx1 ` y3 ´ x1y3q

´ px1 ` y1 ´ x1y1qpx2 ` y1 ´ x2y1qpx2 ` y2 ´ x2y2qpx1 ` y3 ´ x1y3q

We make one simple observation on PDs that will be useful later.

Lemma 2.4. Say three pipes enter a row of a PD from the bottom: Pipe a enters on the left

of pipe b and pipe b enters on the left of pipe c. Suppose pipe a and pipe b have not crossed,

but pipe a and pipe c have crossed. Then pipe b and pipe c must have crossed.

Proof. Since pipe a enters the row on the left of pipe b and they did not cross, we have a ă b.
Since pipe a enters the row on the left of pipe c and they have crossed, we have c ă a. Thus,
c ă a ă b. Since pipe b enters the row on the left of pipe c, they have crossed. �
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The degree of Gwpxq was given by the statistic rajpwq defined by Pechenik, Speyer, and
Weigandt [PSW21]. In other words, among PDs in PDpwq, the maximal number of weighty

tiles is rajpwq. We define pGwpxq as
ř

P wtP pxq where the sum is over all P P PDpwq with

rajpwq weighty tiles. Up to a sign, pGwpxq agrees with the top degree component of Gwpxq.
In this paper, we need the following two properties of the raj statistic.

Proposition 2.5 ([PSW21, Proposition 3.8]). For w P Sn, rajpwq “ majpwq if and only if w

is fireworks. Here, majpwq is the major index of w, defined as
ř

i:wpiqąwpi`1q i.

Corollary 2.6 ([PSW21, Corollary 4.5]). For w P Sn, rajpwq “ rajpw´1q.

3. Marked Vertical-less Pipedreams

We introduce combinatorial objects which we call marked vertical-less pipedreams (MVPD).
An MVPD can be obtained by removing certain pipes from a PD. We rephrase (1) and obtain
MVPD formulas for Gwpxq and Gwpx,yq in Corollary 3.7.

Definition 3.1. A vertical-less pipedream (VPD) consists of the following six tiles:

, , , , , ,

on an nˆn grid. Notice that we are not using the vertical tile . The pipes of a VPD enter
from the left edge of the n ˆ n grid and exit from the top edge. We trace pipes from left
to top in the same way as PDs. The pipe entering from row p is called pipe p. A marked

vertical-less pipedreams (MVPD) is a VPD where some are marked as ‚ . The pipe in a
marked tile must have a on the left of this tile.

The column-to-row code of a MVPD M is a sequence of n numbers. If there is no pipe
exiting at column c of M , then the cth entry is 0. Otherwise, say pipe r exits in column c,
then the cth entry is r. When drawing a MVPD, we omit blank rows on the bottom and
blank columns to the right.

Example 3.2. Suppose n “ 8. The following is a MVPD which has column-to-row code
p0, 0, 0, 4, 0, 3, 0, 6q. Notice that p1, 2q, p2, 1q, and p5, 1q cannot be marked while p3, 4q may or
may not be marked.

‚

‚ ‚

For a MVPD M , we let wtypMq be the set of pi, jq that is , or ‚ in M . We define

wtMpxq “
ź

pi,jqPwtypMq

xi, wtMpx,yq “
ź

pi,jqPwtypMq

pxi ` yj ´ xiyjq

We associate certain MVPDs to each permutation w P Sn. The left-to-right maximums

of w P Sn are the numbers wpiq such that wpjq ă wpiq for all j ă i. For instance, the
left-to-right maximums of the permutation with one-line notation 2143 are 2 and 4.
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Remark 3.3. Notice that in the one-line notation of a permutation, its left-to-right maximums
must increase from left to right. Consequently, in P P PDpwq, pipes labeled by left-to-right
maximums of w´1 cannot cross.

Take w P Sn. We start from pw´1p1q, ¨ ¨ ¨ , w´1pnqq and turn the left-to-right maximums
of w´1 into 0. Let α1pwq be the resulting sequence. Finally, define MVPDpwq as the set of
MVPDs with column-to-row code α1pwq.

Example 3.4. Take w P Sn such that w´1 has one-line notation 3142. We have α1pwq “
p0, 1, 0, 2q. The set MVPDpwq has the following three elements:

‚

We describe a bijection from PDpwq to MVPDpwq. Take P P PDpwq for some w P Sn. Let
p1, ¨ ¨ ¨ , pk be the left-to-right of w´1. We may remove the pipes p1, ¨ ¨ ¨ , pk. If a becomes

a after the removal, we mark it as ‚ . Let ΦpP q be the resulting tiling.

Example 3.5. Suppose n “ 8. Consider w P S8 where w´1 has one-line notation 12547386.
The left-to-right maximums of w´1 are 1, 2, 5, 7 and 8. We consider the following P P PDpwq
where pipe 1, pipe 2, pipe 5, pipe 7 and pipe 8 are colored red.

Readers may check ΦpP q would be the MVPD in Example 3.2.

Proposition 3.6. The map Φ is a bijection from PDpwq to MVPDpwq that preserves wtyp¨q

Proof. Take any P P PDpwq and consider ΦpP q. First, if both P and ΦpP q has pipe p, then
it travels the same in P and ΦpP q. We now check ΦpP q P MVPDpwq.

‚ We make sure ΦpP q has no . Suppose to the contrary that ΦpP q at pi, jq is a ,
then P must have a at pi, jq. Let pipe p (resp. q) be the pipe going horizontally
(resp. vertically) in this tile. Then we know pipe p is removed by Φ, so p is a left-to-
right maximum of w´1. However, since pipe p and pipe q crossed in this tile, we know
p ă q and q appears on the left of p in the one-line notation of w´1, contradicting to
p being a left-to-right maximum of w´1.

‚ Assume pipe p has ‚ at pi, jq of ΦpP q, we check pipe p has a before. We know P

has a at pi, jq. Let pipe q be the other pipe in pi, jq of P , so this pipe is removed
by Φ. We know pipe p and pipe q already crossed before pi, jq in P , say at pi1, j1q.
Then after removing pipe q, the pi1, j1q becomes in ΦpP q.
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We have checked ΦpP q is a valid MVPD. Clearly, ΦpP q has column-to-row code α1pwq, so
it is in MVPDpwq. We check Φ preserves wtyp¨q. Take a in P . We check it becomes a
weighty tile in ΦpP q. Say pipe p exits from the top and pipe q exits from the right of this
. By 3.3, it is impossible that both pipe p and pipe q are removed by Φ, so this will

not become a . It also cannot become a : If so, we know q is a left-to-right maximum
in w´1, q ă p, and q ends up on the right of p in w´1. This is a contradiction. It is also
obvious that this cannot be mapped to or by the rules of Φ. Therefore Φ maps
to weighty tiles. On the other hand, for any in P , they cannot be mapped to , , or
‚ by the rules of Φ.
Thus, Φ is a wtyp¨q preserving map from PDpwq to MVPDpwq. It remains to construct its

inverse. Take M P MVPDpwq. We change the cell pi, jq based on the following:

‚ If it is ‚ or , it becomes .
‚ If it is , we know i ` j ď n ` 1. If i ` j ă n, we change it into .
‚ If it is , we turn it into .
‚ Finally, suppose it is . If i ` j ă n, we turn it into . If i ` j “ n, we turn it into

.

Clearly, we obtain a PD P by adding pipes to each tile. We claim for each pipe in M , it
goes in the same way in both P and M . In addition, the added pipes in P belong to pipes
which do not exist in M . We prove by induction on the tiles from bottom to top, and left
to right in each row. Consider the tile pi, jq

‚ If pi, jq is a containing pipe p in M , it becomes a in P . We need to verify
that pipe p goes horizontally in pi, jq of P . Let pipe q be the pipe entering from the
bottom of pi, jq in P , so pipe q does not exist in P . Assume toward contradiction
that p does not go horizontally in pi, jq. Then pipe p and pipe q have already crossed,
where the pipe p travels vertically. Then the corresponding cell in M would be a ,
which is impossible.

‚ If pi, jq is a ‚ containing pipe p in M , it becomes a in P . We need to verify that
pipe p does not go vertically in pi, jq of P . Let pipe q be the pipe entering from the
left of pi, jq in P , so pipe q does not exist in P . We need to show pipe p and q have

crossed before. Since pi, jq is ‚ in M , we may find a containing pipe p under row
i. In P , it becomes a where pipe p crosses with some added pipe, say pipe t. If
t “ q, we are done. Otherwise, we know the added pipes cannot cross. Thus, the
three pipes enter row i with the order t, q, p from left to right. By Lemma 2.4, we
know pipe q and p have crossed.

‚ The other cases of pi, jq is straightforward to check.

Say P P PDpuq. The claim above says the kth entry of α1pwq, if non-zero, agrees with
u´1pkq. Since the added pipes are not crossing, we know u´1pkq is obtained from α1pwq by
turning 0s into the missing numbers in increasing order, which yields w´1. Thus, u “ w and
the map defined above sends MVPDpwq to PDpwq. It is clearly the inverse of Φ. �
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Corollary 3.7. For w P Sn, we have

Gwpxq “
ÿ

MPMVPDpwq

p´1q|wtypMq|´ℓpwqwtMpxq,

Gwpx, yq “
ÿ

MPMVPDpwq

p´1q|wtypMq|´ℓpwqwtMpx, yq.

Proof. Follows from (1) and Proposition 3.6. �

4. Bumpless Vertical-less Pipedreams

4.1. Describing the BVPD formula. We introduce bumpless vertical-less pipedreams

(BVPD). They consist of tilings where the following five types of tiles are placed

, , , ,

on an n ˆ pn ´ 1q grid. The pipes of a BVPD enter from the left edge and exit from the
top edge. We trace pipes from left to top. For each , we trace the pipes in the same way
as PDs and MVPDs. We name the pipe entering from row p as pipe p. When drawing a
BVPD, we omit blank rows on the bottom and blank columns to the right.

Example 4.1. Let n “ 6. The following is a BVPD

with pipe 2 going to column 5 and pipe 3 going to column 4.

The column-to-row code of a BVPD is a sequence of n ´ 1 numbers, defined similarly as
that of a MVPD. The column-to-row code of the BVPD in Example 4.1 is p0, 0, 0, 3, 2q.

Take w P Sn be inverse fireworks. We obtain a sequence αpwq as follows. We start from
the sequence pw´1p1q, ¨ ¨ ¨ , w´1pnqq and set the first number in each decreasing run to be 0.
Then αpwq is obtained by removing the first entry. Notice that αpwq can be obtained from
α1pwq by removing the first entry. Let BVPDpwq be the set of all BVPDs with column-to-row
code αpwq.

Example 4.2. Say n “ 6 and w has one-line notation 165234. Thus, w´1 has one-line
notation 145632 where 1, 4, 5 and 6 are the first numbers in the decreasing runs. We have
αpwq “ p0, 0, 0, 3, 2q, so BVPDpwq consists of all BVPDs with pipe 2 going to column 5, pipe
3 going to column 4, and there are no other pipes. There are six such BVPDs:

x2
1x

4
2x

3
3 x3

1x
3
2x

3
3 x4

1x
2
2x

3
3
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x3
1x

4
2x

2
3 x4

1x
3
2x

2
3 x4

1x
4
2x

1
3

Finally, define the weighty tiles of a BVPD B, denoted as wtypBq, as the set of pi, jq that
is , or in B. Let the weight of B, denoted as wtBpxq, be the monomial Πpi,jqPwtypBq xi.
We write the weight of each BVPD under itself in Example 4.2.

Theorem 4.3. For inverse fireworks w, we have

pGwpxq “
ÿ

BPBVPDpwq

wtpBq.

Continuing on Example 4.2. If w has one-line notation 165234, then

pGwpxq “ x2
1x

4
2x

3
3 ` x3

1x
3
2x

3
3 ` x4

1x
2
2x

3
3 ` x3

1x
4
2x

2
3 ` x4

1x
3
2x

2
3 ` x4

1x
4
2x

1
3.

Theorem 4.4. For w inverse fireworks, there exists a bijection Ψ from BVPDpwq to {PDpwq
that preserves the positions of weighty tiles.

Roughly speaking, for B P BVPDpwq, ΨpBq is the pipedream with a at row i column j

for each pi, jq P wtypBq and no elsewhere. This result also characterizes the pipedreams
of w with the maximal number of when w is inverse fireworks.

4.2. Proofs of Theorem 4.3 and Theorem 4.4. We start with one simple property on
the number of weighty tiles in a MVPD. For w P Sn, define rpwq :“

ř
i i ´ 1 where i ranges

over all number such that the ith number in α1pwq is non-zero.

Lemma 4.5. Take M P MVPDpwq. Let k be the number of and in M . We have

|wtypMq| “ rpwq ´ k.

Proof. We first associate each tile in M that is not or to each pipe. These tiles must

be , , , ‚ or . We associate each such tile to the pipe that exits from the right.
Take an arbitrary pipe p and suppose it goes to column cp. In other words, the cth number

in α1pwq is p. For each column i, we count the number of cells associated with pipe p in this
column:

‚ If the pipe p exits column i and goes to column i`1 (i.e. 1 ď i ă cp), there is exactly
one tile associated with pipe p in column i.

‚ Otherwise (i.e. i ě cp), there is no tile associated with pipe p.

Now there are cp ´ 1 tiles associated with the pipe p. Let kp be the number of and
associated with pipe p. The number of weighty tiles associated with p is pcp ´ 1q ´ kp. We
have

|wtypMq| “
ÿ

pipes p in M

wtppq “
ÿ

pipes p in M

pcp ´ 1q ´ kp

“
ÿ

pipes p in M

pcp ´ 1q ´
ÿ

pipes p in M

kp “ rpwq ´ k. �
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Let {MVPDpwq be the subset of MVPDpwq with maximal number of weighty tiles. Recall

that rajpwq is the degree of Gwpxq, so an element of {MVPDpwq has rajpwq weighty tiles. We

can describe {MVPDpwq of inverse fireworks w as follows.

Lemma 4.6. Let w be an inverse fireworks permutation. Then {MVPDpwq consists of ele-

ments in MVPDpwq without and .

Proof. By Lemma 4.5, it remains to show rpwq is the maximal number of weighty tiles of
an element in MVPDpwq, which is rajpwq. By Corollary 2.6, rajpwq “ rajpw´1q. Since w´1 is
fireworks, by Proposition 2.5, rajpw´1q “ majpw´1q. It remains to check rpwq “ majpw´1q.

Recall that rpwq “
ř

iPIpi´ 1q, where I “ ti : ith entry of α1pwq is not 0u. In other words,
I consists of all i such that w´1piq is not a left-to-right maximum of w´1. Since w´1 is
fireworks, I consists of i such that w´1piq is not the first number in its decreasing run. Then
we have

ti ´ 1 : i P Iu “ tj : w´1piq is not the last number in its decreasing runu

“ tj : w´1pjq ą w´1pj ` 1qu.

Thus, rpwq “
ř

iPIpi ´ 1q “
ř

j:w´1pjqąw´1pj`1q j “ majpw´1q. �

Corollary 4.7. The first column of any M P {MVPDpwq only consists of and .

Proof. Suppose not. Say pipe p has a in column 1 of M . We know w´1p1q is a left-to-right
maximum in w´1, so the first entry in α1pwq is 0. In other words, pipe p must exit column
1. Find the cell in column 1 where pipe p exits enters from the bottom and exits from the

right. By M P {MVPDpwq and Lemma 4.6, this cell can only be where the two pipe or ‚ .
It cannot be a since pipe p has not crossed with the pipe entering from the left. It cannot

be a ‚ since pipe p does not have a before. Contradiction. �

Now it remains to establish a bijection from {MVPDpwq to BVPDpwq. We describe the map

ΦMÑB as follows. Take M P {MVPDpwq, we remove its first column and change all ‚ into
, obtaining a tiling B. The inverse of this map, denoted as ΦBÑM is also straightforward:

Add a column on the left of B consisting of and and change all in B into ‚ .

Proposition 4.8. The maps ΦMÑB and ΦBÑM are bijections between {MVPDpwq and BVPDpwq
that preserve wtyp¨q

Proof. Say ΦMÑB sends M P {MVPDpwq to B. Since M has neither nor , B is a BVPD.
Recall that αpwq is obtained from α1pwq by removing the first 0. Since M has column-to-row
code α1pwq, we know B has column-to-row code αpwq, so B P BVPDpwq. The two maps
are clearly inverses of each other. To show the bijections preserve wtyp¨q, we present the
following example. �

Example 4.9. The left diagram is M P {MVPDpwq and the left diagram is ΦMÑBpMq “ B P
BVPDpwq. Their weighty tiles (highlighted yellow) agree.
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‚

‚

‚

‚

‚

‚

‚

‚

‚

Now we prove the main results of this section.

Proof of Theorem 4.3. By Corollary 3.7, pGwpxq “
ř

MP {MVPDpwq
wtMpxq. Then by Proposi-

tion 4.8,
ř

MP {MVPDpwq
wtMpxq “

ř
BPBVPDpwq wtBpxq. �

Proof of Theorem 4.4. Take B P BVPDpwq. To obtain P P {PDpwq, we simply apply ΦBÑM

to B, followed by the bijection from MVPDpwq to PDpwq. Both maps preserve wtyp¨q, so
wtypBq “ wtypP q. �

5. Proof of Conjecture 1.1 for inverse fireworks permutations

In this section, we prove Conjecture 1.1 for inverse fireworks w. Our approach is construc-

tive: For M P MVPDpwqz {MVPDpwq, we construct M 1 such that wtMpxqxi “ wtM 1pxq for
some i using “droop moves”. In Section 5.1, we develop some general properties of MVPDs
and define droop moves on MVPDs. Then we give the construction in Section 5.2.

5.1. Properties of MVPD. Let w P Sn be an arbitrary permutation in this section. We
start with two observations on MVPDpwq.

Lemma 5.1. Take M P MVPDpwq. For every pipe, we can find a in M containing that

pipe.

Proof. Consider the pipe from row r of M . We know r appears in α1pwq, so r is not a left-
to-right maximum in w´1. Say m ą r is a number on the left of r in w´1. In the pipedream
corresponding to M , there must be a where the pipe from row r goes from left to right
and the pipe from row m goes from bottom to top. To obtain M from this pipedream, we
remove the pipe from row m, so this tile becomes a . �

We say a of M is a real crossing if its two pipes really cross in it (i.e. the pipe entering
from the bottom exits from top). Otherwise, we say the is a fake crossing .

Lemma 5.2. Take M P MVPDpwq. Say pipe p and pipe q have a real crossing in pi, jq and

a fake crossing in pi1, j1q. We consider the region enclosed by the two pipes from pi, jq to

pi1, j1q. For any pipe that appears in this region, it must cross with both pipe p and pipe q.

Proof. For a pipe t to enter or exit this region, it must cross with pipe p or pipe q. Since
two pipes cannot cross more than once, pipe t must cross both pipe p and pipe q. �

Next, we define the droop moves on MVPDs, which look similar to the droop moves on
bumpless pipedreams introduced in [LLS21].

Definition 5.3. Take M P MVPDpwq. We define drooppi,jqpMq if the following are all satisfied
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‚ The tile pi, jq contains a pipe entering from the bottom and exits from the right (i.e.

It is a , ‚ , or a fake crossing).
‚ The tile pi, j ` 1q is a .
‚ Let i1 ą i be the smallest such that pi1, jq is not . Then pi1, jq is a .

For each i ă r ă i1, we know pr, jq is a . A simple induction would imply that pr, j ` 1q

has no pipe entering from the bottom. Thus, pr, j ` 1q is and pi1, j ` 1q is , ‚ or .
The operation droopp¨q does the following to column j and j ` 1 between row i and row i1.

‚ Change pi, jq from or fake crossing to . Change pi, jq from or ‚ to .
‚ Change pi, j ` 1q from to .
‚ For i ă r ă i1, change pr, jq from to and change pr, j ` 1q from to .
‚ Change pi1, jq from to .

‚ Change pi1, j ` 1q from or ‚ to . Change pi1, j ` 1q from to .

We also define droop1
pi,jqpMq on such pi, jq and M . It first performs drooppi,jq. Then notice

that the pipe in pi, j ` 1q of drooppi,jqpMq must have a in pr, jq for some i ă r ď i1. We

may mark the pipe in pi, j ` 1q, obtaining a valid MVPD droop1
pi,jqpMq.

Example 5.4. We give two examples of the effect of droop1
pi,jq and drooppi,jq.

i

i1

j

droop1
pi,jq

ÝÝÝÝÝÑ

‚i

i1

j

‚

i

i1

j

drooppi,jq
ÝÝÝÝÝÑ

i

i1

j

Lemma 5.5. Take M P MVPDpwq. Then drooppi,jqpMq and droop1
pi,jqpMq are both in

MVPDpwq if they are defined.

Proof. Let i1 ą i be the smallest such that pi1, jq is not . We just need to show that the
same pipe exits from the right edge of pr, j ` 1q for i ď r ă i1 in M and drooppi,jqpMq. To
prove this, we claim: For i ă r ď i1, if a pipe exits from the top of pr, jq in M , then the same
pipe exits from the top of pr, j ` 1q in drooppi,jqpMq. We prove by induction on r. The base
case when r “ i1 is immediate. Now suppose i ă r ă i1. Say pipe p enters pr, jq from the left
and pipe q enters pr, jq from the bottom in M . Then pipe maxpp, qq exits from the the top
of pr, jq. The other pipe exits from the right of pr, j ` 1q. By our inductive hypothesis, pipe
p enters pr, j ` 1q from the left and pipe q enters pr, j ` 1q from the bottom in drooppi,jqpMq.
Pipe maxpp, qq exits from the the top of pr, j ` 1q, and the other pipe exits from the right.
Our inductive step is finished. �

Finally, we study a special family of MVPDs.

Definition 5.6. A M P MVPDpwq is called saturated if it satisfies both of the following.

‚ For any in M , the pipe in it does not have before.
‚ For any , the two pipes in it do not cross in M .
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In other words, an M P MVPDpwq is not saturated if we can turn one of its to or

to ‚ and still remain in MVPDpwq.

Lemma 5.7. Take a saturated M P MVPDpwq. Say a pipe p enters the tile pi, jq from the

bottom and exits from the right. Then pi, j ` 1q cannot be a real crossing.

Proof. Suppose there exists such pi, jq. We pick one such pi, jq where i is maximal. Say pipe
p enters from the bottom of pi, jq and say it crosses with pipe q in pi ` 1, jq. We know these
two pipes have not crossed before pi, j ` 1q. Moreover, since M is saturated, there is no
in M involving pipe p and pipe q. As a conclusion, under row i, there is no tile containing
both pipe p and pipe q.

Find i1 ą i such that pipe p enters on the left edge of pi1, jq. We know pipe p goes from
bottom to top of pr, jq for i ă r ă i1. Say pipe q enters on the left edge of pi2, j ` 1q. We
have i2 ą i since otherwise, pi2, jq would be a tile containing both pipe p and pipe q. Pipe q
goes from bottom to top of pi2, j ` 1q, so this tile is a real crossing. Consider the tile pi1, jq.
It contains pipe p which enters on the left and exits on the top. Thus, it also must contains
a pipe entering from the bottom and exits on the right. We reach a contradiction since we
picked the maximal i. �

Here is an illustration of the proof of Lemma 5.7. We make pipe p green and pipe q red.

i

i1

j

5.2. Construction. Fix inverse fireworks w in throughout this section. For each M P

MVPDpwqz {MVPDpwq, our goal is to construct M 1 such that wtM 1pxq “ wtMpxqxi for some i.
If M is not saturated, we can find the M 1 easily: Say M has an and the pipe in it has a

before, we simply mark the and obtain M 1. Otherwise, say M has a where the two
pipes in it cross somewhere else. We may turn this into and the resulting MVPD is still
in MVPDpwq. It remains to consider saturated M . Our construction relies on the operator
droop1

i,jp¨q, which requires us to find an occurrence of or in M . That is, a or

with a immediately on its right.

Lemma 5.8. Take a saturated M P MVPDpwqz {MVPDpwq. In M , there exists or .

Proof. Since M R {MVPDpwq, by Lemma 4.6, M must have a or . Let pi, jq be the
highest, or one of the highest, such tile. We prove pi, j ` 1q must be by contradiction.
Suppose pi, j ` 1q is not a . Let pipe p be the pipe that enters pi, jq from the bottom and
exits on the right. By Lemma 5.7, pi, j ` 1q cannot be a real crossing. Thus, pi, j ` 1q can be
a fake crossing, a , or a . In any case, pipe p must exits on the top of pi, j ` 1q. Then we
present two different arguments based on whether pi, jq is or . Both arguments follow
the following three steps:

‚ Step 1: Show pipe p must exits column j ` 1. Say it exits from the right edge of
pi1, j ` 1q for some i1 ă i.
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‚ Step 2: We know pi1, j ` 1q cannot be or by how we picked pi, jq. We show

pi1, j ` 1q cannot be an ‚ , so it must be a fake crossing.
‚ Step 3: Find a contradiction.

We start with the case where pi, jq is a bump. Let pipe q be the pipe exiting from the top
of pi, jq. Since M is saturated, we know pipe p and pipe q never cross in M , so q ă p. Now
we perform the three steps and eventually show pipe p and pipe q must cross, which would
be a contradiction.

‚ Step 1: Suppose pipe p does not exit column j ` 1. Since pipe p and q cannot cross,
pipe q does not exit column j. In other words, αpj ` 1q “ p and αpjq “ q. Then
w´1pj ` 2q “ p and w´1pj ` 1q “ q. Since q ă p, p is actually the first number in
its decreasing run in w´1, so p cannot appear in αpwq. We reach a contradiction, so
pipe p must exit column j ` 1.

‚ Step 2: We know pipe p goes from the bottom to top in pr, j ` 1q for i1 ă r ă i.
Since pipe q cannot cross with pipe p, it must also go from bottom to top in pr, jq
for i1 ă r ă i. Thus, pipe q enters pi1, jq from the bottom. The tile pi1, jq must have
some pipe exiting from the right. Thus, pi1, j ` 1q has a pipe entering from the left,

so it cannot be ‚ . It must be a fake crossing.
‚ Step 3: Let pipe t be the pipe that enters pi1, j ` 1q from the left. Since pi1, j ` 1q
is a fake crossing, pipe t and pipe p must have a real crossing under row i. Then
pipe t must exits row i on the left of pipe p. Since pipe p exits row i on column
j ` 1 and pipe q exits row i on column j, we know pipe t exits row i on the left of
column j. Now consider the region enclosed by pipe p and t from their real crossing
to pi1, j ` 1q. Pipe q appears in this region. By Lemma 5.2, pipe q crosses with pipe
p. Contradiction.

Now assume pi, jq is . By M is saturated, we know pipe p does not have a before
pi, jq. We perform the three steps.

‚ Step 1: If pipe p does not exits column j ` 1, then it does not have a in M ,
contradicting Lemma 5.1.

‚ Step 2: In pi1, jq, the pipe p still does not have a yet, so pi1, jq cannot be ‚ . It
must be a fake crossing.

‚ Step 3: Say pi1, j`1q is a fake crossing between pipe p and pipe t. Pipe p must have a
real crossing under row i where pipe p goes horizontally. In other words, we can find
a real crossing pr`, c`q where pipe p goes horizontally with r` ą i. Take the pr`, c`q
where c` is maximal. Thus, from pr`, c`q to pi, j ` 1q, the pipe p is not allowed to
travel horizontally in any tile. In other words, if pipe p enters a tile from the left, it
must exit from the top.
Next, we argue for i ď r ď r`, when pipe p exits row r, there is a pipe exiting

from the cell on its left, which has already crossed with pipe p.
We prove our claim by induction. The base case is when r “ r`. We know pr`, c`q

is a real crossing. Since pipe p enters pr`, c` ` 1q from the left, it exits row r` from
pr`, c` `1q. Indeed, pr`, c`q has a pipe exiting from the top, which just crossed with
pipe p. Now take i ď r ă r`. Say pipe p enters from the bottom of pr, cq. By our
inductive hypothesis, another pipe enters pr, c ´ 1q from the bottom. Say it is pipe
s If pipe p goes vertically in pr, cq, pipe s must go vertically in pr, c ´ 1q since if it
exits on the right, pr, cq would be a fake crossing. Now suppose pipe p exits pr, cq on
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the right. Since pr, c ´ 1q has a pipe entering from the bottom, it must has a pipe
exiting from the right. Then pr, cq can be a fake crossing or a . Consider the region
enclosed by pipe t and pipe p from their real crossing to pi1, jq. The other pipe in
pr, cq is either pipe t, or lies in this region. In either case, it must cross with pipe p.
Since M is saturated, pr, cq is not a , so it is a fake crossing. Pipe p exits from the
top of pr, c ` 1q and some pipe that has crossed with it exits from the top of pr, cq.
Finally, our claim implies when pipe p exits pi, j ` 1q from the top, there must be

a pipe that exits pi, jq from the top. This contradicts to our assumption that pi, jq is
. �

Now we describe our algorithm. Take a saturatedM P MVPDpwqz {MVPDpwq. By Lemma 5.8,
we know M must have a or . We let pi, jq and pi, j ` 1q be the lowest such occur-
rence where we first maximize i, and then j. We check droop1

pi,jqpMq is defined. The first
two conditions in Definition 5.3 are immediate. For the last condition, we let i1 ą i be the
smallest such that pi1, jq is not . It can be or . Assume it is a toward contradiction.
Since pi1 ´ 1, j ` 1q is , we know pi1, j ` 1q is also a . This contradicts the maximality of
i. Thus, pi1, jq is a and drooppi,jqpMq is well-defined.

Next, the algorithm computes droop1
pi,jqpMq, which is in MVPDpwq by Lemma 5.5. We

compare the weighty tiles of M and droop1
pi,jqpMq:

‚ The tile pi, jq is not weighty in M and droop1
i,jpMq. The tile pi, j ` 1q is weighty in

M and droop1
i,jpMq.

‚ For i ă r ă i1, the tile pr, jq and pr, j ` 1q are weighty in M and droop1
i,jpMq.

‚ The tile pi1, jq is not weighty in M but becomes weighty in droop1
i,jpMq. The tile

pi1, j ` 1q could be either weighty or not in M , but is not weighty in droop1
i,jpMq.

If droop1
i,jpMq has one more weighty tile than M , we let M 1 “ droop1

i,jpMq and terminate.
Then wtM 1pxq “ wtMpxqxi1 . Otherwise,

wtypdroop1
i,jpMqq “ pwtypMqztpi1, j ` 1uq Y tpi1, jqu,

so droop1
i,jpMq and M have the same number of weighty tiles. If droop1

i,jpMq is not saturated,

then we change a or a into a weighty tile and obtain M 1. Otherwise, we update the
variable M into droop1

pi,jqpMq and repeat the algorithm.
It remains to show the algorithm eventually terminates. Let M1,M2, ¨ ¨ ¨ be the MVPDs

in the start of each iteration. We know wtypMkq is obtained from wtypMk´1q by turning an
pr, cq into pr, c ´ 1q. Thus, the algorithm must terminate.

Example 5.9. The following is an example of the algorithm. We start with a saturated

M P MVPDpwqz {MVPDpwq where w´1 has one-line notation 14253. We first apply droop1
p1,1q

and obtain anotherM2 P MVPDpwq. Notice thatM2 is also saturated and wtMpxq “ wtM2
pxq.

We then apply droop1
p2,2q and obtain M 1. Notice that wtM 1pxq “ wtMpxqx3.

‚

‚
droop1

p1,1q
ÝÝÝÝÝÑ

‚ ‚
droop1

p2,2q
ÝÝÝÝÝÑ

‚ ‚

‚
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