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Abstract

Lascoux polynomials are K-theoretic analogues of the key polynomials. They
both have combinatorial formulas involving tableaux: reverse set-valued tableaux
(RSVT) rule for Lascoux polynomials and reverse semistandard Young tableaux
(RSSYT) rule for key polynomials. Furthermore, key polynomials have a simple
algorithmic model in terms of Kohnert diagrams, which are in bijection with RSSYT.
Ross and Yong introduced K-Kohnert diagrams, which are analogues of Kohnert
diagrams. They conjectured a K-Kohnert diagram rule for Lascoux polynomials.
We establish this conjecture by constructing a weight-preserving bijection between
RSVT and K-Kohnert diagrams.

Mathematics Subject Classifications: 05E05

1 Introduction

Fix a positive integer n throughout this paper. A weak composition of length n is a
sequence of n non-negative integers. If α is a weak composition, we use αi to denote its
ith entry.

Key polynomials κα are homogeneous polynomials labeled by weak compositions.
They were first introduced by Demazure [7] as the characters of the Demazure modules.
Further studies [11, 16, 15, 20, 10, 13, 14, 3, 4] provided several combinatorial formulas.

Lascoux polynomials L
(β)
α are K-theoretic generalizations of key polynomials [12].

They are inhomegeneous polynomials with an extra variable β. Setting β = 0 in L
(β)
α

yields κα. There are several existing combinatorial formulas for L
(β)
α involving set-valued

skyline fillings [18] and set-valued tableaux [6, 26]. In this paper, we will define Lascoux
polynomials by a combinatorial formula involving reverse set-valued tableaux (RSVT).
It first appeared implicitly in [6] and was rediscovered by Shimozono and the second
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author [24]. Specifically, for each weak composition α, there is a set RSVT(α), which

consists of certain RSVT satisfying a left key condition (see subsection 2.1). Then L
(β)
α

can be written as a sum over RSVT(α):

L(β)
α :=

∑
T∈RSVT(α)

βex(T )xwt(T ) .

Ross and Yong [21] defined a generalization of Kohnert’s move on diagrams [11]. We
call them K-Kohnert moves. Repeatedly applying K-Kohnert moves on the key diagram
of α yields a set of diagrams, which is denoted as KKD(α) (see subsection 2.3).

Conjecture 1. [21] The Lascoux polynomials indexed by α, is given by

L(β)
α =

∑
D∈KKD(α)

βex(D)xwt(D) .

Pechenik and Scrimshaw [19] proved a special case of this conjecture where all positive
numbers in α are the same. This paper will prove the conjecture for all α.

Theorem 2. Conjecture 1 is true.

To prove this theorem, we define two maps: Ψα on KKD(α) (see subsection 3.1) and
Φα on RSVT(α) (see subsection 3.2). We will show Ψα (resp. Φα) is a well-defined map
to RSVT(α) (resp. KKD(α)). Finally, we establish the following.

Theorem 3. The maps Ψα : KKD(α) → RSVT(α) and Φα : RSVT(α) → KKD(α) are
mutually inverses of each other. Moreover, they preserve wt(·) and ex(·).

Kohnert rules were originally developed by Kohnert [11] to compute key polynomials,
which repeatedly applies Kohnert moves on the key diagram of a weak composition.
There exist other Kohnert rules. For example, Kohnert also defined a Kohnert rule for
the Schubert polynomials, which repeatedly applies Kohnert moves on the Rothe diagram
of a permutation. This gave the first monomial positive formula for Schubert polynomials.
Armon, Assaf, Bowling, and Ehrhard [1] proved the characters of flagged Schur modules
for northwest diagrams can be computed using Kohnert rules.

The K-Kohnert rule discussed in this paper is a K-theoretic generalization of the
Kohnert rule for key polynomials, which is also the first proven K-Kohnert rule. It would
be interesting to extend Kohnert technology to the rest of the K-world. For example,
the K-theoretic generalization of Schubert polynomials are the Grothendieck polynomials
and the corresponding K-Kohnert rule was also conjectured by Ross and Yong [21].

The paper is organized as follows. In Section 2, we review related combinatorial rules
for κα and L

(β)
α . In Section 3, we define two maps Ψα and Φα on KKD(α) and RSVT(α)

respectively. The following sections will prove Theorem 3. In Section 4, we introduce
a partial order on all weak compositions. We call it the Bruhat order and show it is
equivalent to the left swap order in [3]. In Section 5, we describe the sets KKD(α) and
RSVT(α) recursively using the Bruhat order. In Section 6, we introduce two auxiliary

the electronic journal of combinatorics 30(4) (2023), #P4.26 2



operators ]g and [e on KD(α) and discuss their properties. In Section 7, we give recursive
descriptions of maps Ψα and Φα in terms of ]g and [e. Then we show Ψα (resp. Φα) is
a well-defined map to RSVT(α) (resp. KKD(α)) using the recursive definitions developed
in Section 5. Finally we prove Theorem 3.

2 Background

2.1 RSSYT(α) and RSVT(α)

Given a partition λ = (λ1 > λ2 > · · · > λ` > 0), a Young diagram of shape λ is a finite
collection of boxes, aligned at the left, in which the ith row has λi boxes. We use English
convention for our Young diagrams and tableaux, so the first row is the highest row.

A reverse semistandard Young tableau of shape λ is a filling of the Young diagram λ
with positive numbers such that

(i) each box contains exactly one number,

(ii) the entries in each row weakly decrease from left to right, and

(iii) the entries of each column strictly decrease from top to bottom.

Let RSSYTλ be the set of all the reverse semistandard Young tableaux of shape λ.
Following [22], we introduce another set of tableaux where a box might have more than

one number. A reverse set-valued tableau of shape λ is a filling of the Young diagram λ
with positive numbers such that

(i) each box contains a finite and non-empty set of positive integers,

(ii) if a set A is to the left of a set B in the same row, then min(A) > max(B), and

(iii) if a set C is below a set A in the same column, then min(A) > max(C).

Let RSVTλ be all the reverse set-valued tableaux of shape λ.
Let the weight vector for T be the weak composition whose ith component is the the

total number of appearances of i in T , denoted by wt(T ). Given any weak composition
α, let |α| =

∑
i>1 αi. Given T ∈ RSVTλ, define L(T ) to be the element in RSSYTλ

constructed by only keeping the largest number in each box of T . We call these numbers
the leading numbers of T . Any number in T that is not a leading number is called a extra
number . Let the excess of T be the number of extra numbers in T , so we can denote it
by ex(T ) = |wt(T )| − |λ|.

Next we give the definition of left key of T , denoted by K−(T ), where T is a RSSYT.
It was first given in [25, Section 5]. We give the description as in [24, Definition 3.11].

Definition 4. Let C1, C2 be two adjacent columns of a RSSYT with C1 on the left. We
may view C1 and C2 as sets. We define C1 C C2 as follows. Assume C2 = {a1 < a2 <
· · · < am}. Start by finding the smallest b1 ∈ C1 such that b1 > a1. Then find the smallest
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b2 ∈ C1 such that b2 > a2 and b2 > b1. Continue until we find all b1, b2, . . . , bm. Then
C1 C C2 := b1 < b2 < . . . bm. Let C1, . . . Ck be k columns in a RSSYT, then we can define
recursively,

C1 C C2 · · ·C Ck := C1 C (C2 C · · ·C Ck).

Given a reverse semistandard Young tableau T with columns C1, C2, . . . , Cn. Then its
left key K−(T ) is a RSSYT constructed by taking C1 C C2 · · ·C Ck as its kth column.

Given a reverse set-valued tableau T , its left key K−(T ) is defined as K−(L(T )).

Example 5. Consider the following T ∈ RSVT(3,2). We have wt(T ) = (2, 2, 2, 1, 0, 1) and
ex(T ) = 3. We can also compute L(T ) and its left key.

T = 64 32 2
31 1

, L(T ) = 6 3 2
3 1

, K−(T ) = K−(L(T )) = 6 6 3
3 3

.

Given a weak composition α = (α1, α2, . . . , αn), let α+ be the partition obtained from
α by sorting the numbers in decreasing order and ignoring the trailing 0’s. Define the
key tableau for α to be the unique element in RSSYTα+ whose jth column consists of the
numbers {i|αi > j}. Denote this tableau by key(α).

Remark 6. For any reverse set-valued tableau T , K−(T ) is a key tableau for some weak
composition α.

With the above concepts, we now define the subsets of RSSYTα+ and RSVTα+ that
will be used to compute κα and L

(β)
α .

RSSYT(α) := {T ∈ RSSYTα+ : K−(T ) 6 key(α)}
RSVT(α) := {T ∈ RSVTα+ : K−(T ) 6 key(α)}

Here the 6 relation means entry-by-entry comparison. For example, T in Example 5 is
in RSVT((0, 0, 2, 0, 0, 3)) but not in RSVT((0, 2, 0, 0, 3)).

We now list the combinatorial formulas in [16, 15, 20] for key polynomials , and in [6, 24]
for Lascoux polynomials labeled by a weak composition α:

κα :=
∑

T∈RSSYT(α)

xwt(T ) , L(β)
α :=

∑
T∈RSVT(α)

βex(T )xwt(T ) .

2.2 Viewing RSVT(α) as a pair of diagrams

In this subsection, we introduce another perspective on RSVT(α). A diagram is a finite
subset of N × N. We may represent a diagram by putting a box at row r and column c
for each (c, r) in the diagram. We adopt the convention where columns begin at 1 from
the left and rows begin at 1 from the bottom. The weight of a diagram D, denoted as
wt(D), is a weak composition whose ith entry is the number of boxes in its ith row.

A diagram pair is an ordered pair D = (D1, D2) such that D1 and D2 are disjoint
diagrams. We may represent D by putting a box at (c, r) for each (c, r) ∈ D1 and putting

the electronic journal of combinatorics 30(4) (2023), #P4.26 4



a box with label X at (c, r) for each (c, r) ∈ D2. Cells in D1 are called Kohnert cells . Cells
in D2 are called ghost cells . The weight of D, denoted as wt(D), is a weak composition
whose ith entry is the number of Kohnert cells and ghost cells in its ith row. Let the excess
of D, denoted by ex(D), be |D2|.

Now we embed the set of RSVT into the set of diagram pairs. Given an RSVT T , we
send it to (L,E). The set L (resp. E) consists of all (r, c) such that r is a leading (resp.
extra) number in column c of T . This map is injective. If we know (L,E) is the image of
some RSVT T , we can uniquely recover T : First, for each c, build a column that consists
of r such that (c, r) ∈ L. The column should be decreasing from top to bottom. Then for
each (c, r) ∈ E, put r in the lowest cell whose largest number is larger than r. This will
be column c of T . Now we may view each RSV T as a diagram pair. We write T = (L,E)
to denote this correspondence. It is clear that this correspondence preserves wt(·) and
ex(·).

Example 7. Let T be the RSVT in the previous example. It corresponds to the diagram
pair ({(1, 3), (1, 6), (2, 1), (2, 3), (3, 2)}, {(1, 1), (1, 4), (2, 2)}), which can be presented as

6 ·
5
4 X
3 · ·
2 X ·
1 X ·

We put a circled number on the left of the diagram to indicate the row number. Viewing
T as a diagram pair, we have wt(T ) = (2, 2, 2, 1, 0, 1) and ex(T ) = 3, which agrees with
Example 5.

We may also view RSSYT(α) as a subset of RSVT(α). Thus, RSSYT(α) is the set of
diagram pairs (L, ∅) ∈ RSVT(α). With this convention, we have the following observation.

Remark 8. If the diagram pair (L,E) is in RSVT(α) then (L, ∅) ∈ RSSYT(α).

2.3 KD(α) and KKD(α)

We give another combinatorial definition of key polynomials due to Kohnert [11]. A
diagram pair is called a key diagram pair if its Kohnert cells are left-justified and has no
ghost cells. Given a weak composition α, we let Dα the key diagram pair associated to
α: On its row i, there are αi left-justified Kohnert cells and no ghost cells.

Next, we define a Kohnert move on a diagram pair with no ghost cells: Select the
rightmost box in any row and move it downward to the first position available, possibly
jumping over other cells as needed. Let KD(α) be the closure of {Dα} under all possible
Kohnert moves.

Theorem 9. [11] The key polynomial indexed by α, is given by

κα =
∑

D∈KD(α)

xwt(D)
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Remark 10. There is a natural identification between KD(α) and RSSYT(α) which yields
KD(α) = RSSYT(α). Take T ∈ RSSYT(α). By our convention in the previous subsection,
T is viewed as a diagram pair (L, ∅). This result is well-known to experts. For example,
it follows from work done in [3]. For completeness, we will recover this result in Section
5.

Example 11. Let α = (0, 2, 1), then

key(α) = 3 2
2

, D(α) =
3 ·
2 · ·
1

, thus we obtain:

KD(α) =

{
3 ·
2 · ·
1

,
· ·
·

, ·
·
·

,
·
· ·

, ·

· ·

}
, and

RSSYT(α) =

{
3 2
2

, 2 2
1

, 3 1
2

, 2 1
1

, 3 1
1

}
.

If we view each RSSYT as a diagram pair, it is clear that RSSYT(α) = KD(α).

Ross and Yong [21, Section 1.2] generalized Kohnert moves. We state their construc-
tion below.

A K-Kohnert move is an operation on a diagram pair. It selects the rightmost cell
in a row. The selected cell cannot be a ghost cell. Then move this cell downward to
the first position available. It can jump over other Kohnert cells, but cannot jump over
any ghost cells. After the move, it may or may not leave a ghost cell at the original
position. When a K-Kohnert move leaves a ghost cell, we also refer to it as a ghost move.
Let KKD(α) be the closure of {Dα} under all possible K-Kohnert moves. We make the
following observations.

Remark 12. Let α be a weak composition. We have

• KD(α) ⊆ KKD(α).

• If (K,G) ∈ KKD(α), then (K, ∅) ∈ KD(α).

Remark 13. Usually, an element of KD(α) is viewed as a diagram. We defined KD(α) as
a set of diagram pairs so we can work with KD(α) and KKD(α) using the same technique.
In particular, with our convention, KD(α) is viewed as a subset of KKD(α).

Ross and Yong [21] conjectured a formula for Lascoux polynomials involving K-
Kohnert diagrams.

Conjecture 14. [21] The Lascoux polynomial indexed by α is given by

L(β)
α =

∑
D∈KKD(α)

βex(D)xwt(D) .
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We prove this conjecture by establishing bijections between KKD(α) and RSVT(α) that
preserve wt(·) and ex(·). Moreover, when restricted to KD(α) ⊆ KKD(α) and RSSYT(α) ⊆
RSVT(α), our bijections restrict to the identity maps. We will describe our bijections in
the next two subsections.

Example 15. Continuing Example 11 for α = (0, 2, 1), we get

KKD(α) = KD(α)
⋃{ 3 X

2 · ·
1 ·

, ·
· X
·

,
· X
· ·

, X
·
· ·

, ·
X
· ·

, X
· X
· ·

}
, and

RSVT(α) = RSSYT(α)
⋃{

3 2
21

, 3 21
2

, 2 21
1

, 32 1
1

, 3 1
21

, 3 21
21

}
.

Viewing the 6 elements in RSVT(α) with at least one extra number as diagram pairs, we
obtain the following. Note they are different from the elements in KKD(α) with at least
one ghost cell.

{ 3 ·
2 · ·
1 X

, ·
· ·

X

,
· ·
· X

, ·
X
· ·

, ·
·
X ·

, ·
· ·
X X

}

Thus, Conjecture 1 is correct when α = (0, 2, 1) since∑
D∈KKD(α)

βex(D)xwt(D) =
∑

T∈RSVT(α)

βex(T )xwt(T ).

2.4 Kohnert Tableaux

Assaf and Searles introduced Kohnert tableaux in [3]. We will use Kohnert tableaux to
prove the correctness of our bijections.

Definition 16. [3, Definition 2.3] Let α be a weak composition. A Kohnert tableau with
content α is a key diagram filled by numbers such that:

1. Column c of the tableau consists of numbers {i : αi > c}, with each number ap-
pearing exactly once.

2. If a number i appears in row r, then i > r.

3. If a number i appears in (c, r) and (c+ 1, r′), then r > r′.

4. Let i, j appear in column c with j > i and j is lower than i. Then there is an i in
column c+ 1 that is strictly above the j in column c.

Let KT(α) be the set of all Kohnert tableaux with content α.
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Assaf and Searles constructed bijections between KT(α) and KD(α) in [3]. For each
T ∈ KT(α), we may ignore its numbers and view each cell as a Kohnert cell. By [3,
Lemma 2.4], the resulting diagram pair is in KD(α).

The inverse of the map above is called Kohnert Labeling with respect to α, denoted as
Labelα(·). We may describe it as the following algorithm on certain diagram pairs.

Let D be an arbitrary diagram pair such that column c of D has |{i : αi > c}| Kohnert
cells and no ghost cells. Initialize sets S1, S2, . . . as Sc = {i : αi > c}. Iterate through
boxes of D from right to left, and from bottom to top within each column. For the box
(c, r), find the smallest i ∈ Sc such that i does not appear at (c + 1, r′) for all r′ > r.
We remove i from Sc and fill i in (c, r) of D. If no such i exists or i < r, terminate the
algorithm. After all boxes are filled, output the final tableau.

By [3, Lemma 2.6, Lemma 2.7, Theorem 2.8], the labeling algorithm on D produces
an output if and only if D ∈ KD(α). Moreover, if we restrict the algorithm on KD(α),
then this is a bijection from KD(α) to KT(α) whose inverse is described above.

Example 17. Let α = (0, 2, 1), we have

KT(α) =

{
3 3
2 2 2
1

,
2 2
3

, 3
2

2

,
3
2 2

, 3

2 2

}
,

where the relative order in the sets corresponds to KD(α) from Example 11 under the
above labeling algorithm.

3 Describing the maps

For each composition α, we have introduced two sets of diagram pairs: KKD(α) and
RSVT(α). We will define two maps: Ψα on KKD(α) and Φα on RSVT(α). In Section 7,
we will show the image of Ψα (resp. Φα) lies in RSVT(α) (resp. KKD(α)).

3.1 An informal description of Ψα

In this section, we describe a map Ψα from KKD(α) to the set of all diagram pairs. First,
we describe an operator on KD(α). Let G be a diagram. Then ]G(·) acts on KD(α) in the
following way: Take D ∈ KD(α). Iterate through cells of G from right to left. Within
each column, go from bottom to top. For (c, r) ∈ G, search for the largest r′ 6 r such
that (c, r′) satisfies both of the following:

• The cell (c, r′) is a Kohnert cell in D, and

• If we raise the cell (c, r′) to (c, r), the resulting diagram is still in KD(α).

After finding such r′, we move cell (c, r′) to (c, r). After iterating over all cells in G,
we denote the final Kohnert diagram by ]G(D). If we cannot find such an r′ during an
iteration, then ]G(D) is undefined.
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Example 18. Let D be the fourth Kohnert diagram in Example 11. Let G be the diagram
{(1, 3), (2, 2)}. We may compute ]G(D) as follows. We label (c, r) and (c, r′) involved in
each step above and below the arrows.

3
2 ·
1 · ·

(2,2)−−→
(2,1) · ·

·

(1,3)−−→
(1,1)

·
· ·

Now, we may describe the map Ψα. Take D = (K,G) ∈ KKD(α). Compute (L, ∅) =
]G((K, ∅)) ∈ KD(α). Then Ψα(D) := (L, (K tG)− L).

Example 19. Let D = (K,G) be the last diagram pair in Example 15. The previous
example shows ]G(K) = ({(1, 2), (1, 3), (2, 2)}, ∅). Thus, D is sent to the diagram pair
({(1, 2), (1, 3), (2, 2)}, {(1, 1), (2, 1)}). Notice that this diagram pair corresponds to the
following RSVT:

3 ·
2 · ·
1 X X

=

3 21
21 .

We say this is an informal description of Ψα since the map is not obviously well-defined.
It seems possible that ]G((K, ∅)) is undefined. In Section 7, we will provide an alternative
description of the map Ψα and check the following.

Lemma 20. The map Ψα is a well-defined map from KKD(α) to RSVT(α).

3.2 An informal description of Φα

The map Φα can be described similarly on RSVT(α). First, we need an analogue of the
]G(·) operator. Let E be a diagram. Then [E(·) acts on KD(α) in the following way: Take
D ∈ KD(α). Iterate through cells of E from left to right. Within each column, go from
top to bottom. For (c, r) ∈ E, search for the smallest r′ > r such that (c, r′) satisfies both
of the following:

• The cell (c, r′) is a Kohnert cell in D, and

• If we drop the cell (c, r′) to (c, r), the resulting diagram is still in KD(α).

After finding such r′, we move cell (c, r′) to (c, r). After iterating over all cells in E,
we denote the final Kohnert diagram by [E(D). If we cannot find such an r′ during an
iteration, then [E(D) is undefined.

Example 21. Let D be the first Kohnert diagram in Example 11. Let E be the diagram
{(1, 1), (2, 1)}. We may compute [E(D) as follows. We label (c, r) and (c, r′) involved in
each step above and below the arrows.

3 ·
2 · ·
1

(1,1)−−→
(1,3) · ·

·

(2,1)−−→
(2,2) ·

· ·
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Now, we may describe the map Φα. Take T ∈ RSVT(α) and we may write T as a
diagram pair (L,E). Compute (K, ∅) = [E((L, ∅)). Then Φα(T ) := (K, (L t E)−K).

Example 22. Let T be the last RSVT in Example 15. We may write T = (L,E) as
({(1, 2), (1, 3), (2, 2)}, {(1, 1), (2, 1)}). The previous example computes (K, ∅) = [E((L, ∅)).
Thus, (L t E)−K = {(1, 3), (2, 2)} and T is sent to

3 X
2 · X
1 · ·

Notice that this is an element of KKD(α).

Again, Φα is not obviously well-defined. In Section 7, we will provide an alternative
description of the map Φα and check the following.

Lemma 23. The map Φα is a well-defined map from RSVT(α) to KKD(α).

Now we restate our main result. The proof is also in Section 7.

Theorem 24. The maps Ψα : KKD(α) → RSVT(α) and Φα : RSVT(α) → KKD(α) are
mutually inverses of each other. Moreover, they preserve wt(·) and ex(·).

4 Bruhat Order on Weak Compositions

Partial order on weak compositions has been studied in [3, 2, 8, 9]. In this section, we give
a definition via the key tableau associated to the weak composition. In subsection 4.1, we
also study m(α, S) (resp. M(α, S)) which is the unique minimum (resp. maximum) weak
composition in a certain set of weak compositions. In subsection 4.2, we use properties
of M(α, S) to show that our Bruhat order is equivalent to the left swap order defined
in [3, 2], which implies that the Bruhat order is equivalent to the inclusion order on
KD(α),KKD(α),RSSYT(α) and RSVT(α).

4.1 Bruhat order

We may define a partial order on all weak compositions.

Definition 25. Let α, γ be two weak compositions. We define α 6 γ if key(α) and key(γ)
have the same shape and key(α) 6 key(γ) entry-wise. This order is called the Bruhat
order .

Remark 26. The Bruhat order is originally defined on permutations of [n]. We may view
such permutations as weak compositions via their one-line notations. From this perspec-
tive, if u, v are two permutations of [n], then key(u) and key(v) both have shape (n, n −
1, · · · , 1). The following is a well-known result (see for instance [5, Theorem 2.6.3],[17,
Theorem 2.1.11] and [23, Lemma 3.1]): the permutation u is less than or equal to v in
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the classical Bruhat order if and only if key(u) 6 key(v) entry-wise. In other words, the
Bruhat order on weak compositions is a generalization of the classical Bruhat order on
permutations.

Definition 27. For S ⊆ [n], let 1S be the weak composition whose ith entry is 1 if i ∈ S
and 0 otherwise. For a weak composition α, the support of α is the set {i|αi > 0}, denoted
as supp(α).

Weak compositions with only 0s and 1s are in natural bijection with subsets of [n].
The bijections are S 7→ 1S and α 7→ supp(α). With the Bruhat order above, we may
define a partial order on subsets of [n].

Definition 28. For S, S ′ ⊆ [n], we say S 6 S ′ if 1S 6 1S′ .

Throughout the paper, the binary operator 6 on sets refers to their Bruhat order of
their indicator function.

We have other alternative descriptions of this order.

Lemma 29. Take S, S ′ ⊆ [n]. The following are equivalent:

1. S 6 S ′

2. |S| = |S ′| and for each j ∈ [|S|], the jth largest number in S is at most the jth

largest number in S ′.

3. |S| = |S ′| and for each s ∈ S, |[s, n] ∩ S| 6 |[s, n] ∩ S ′|.

Proof. We first prove statement 1 and 2 are equivalent. By definition S 6 S ′ if and only
if key(1S) 6 key(1S′). The number on row j column 1 of key(1S) (resp. key(1S′)) is the
jth largest number in S (resp. S ′). Thus, key(1S) 6 key(1S′) is equivalent to statement 2.

Next, we show the statements 2 and 3 are equivalent. Assume the statement 2 is true.
Let s ∈ S be the jth largest number in S. Then |[s, n] ∩ S| = j. Since the jth largest
number in S ′ is at least s, |[s, n]∩ S ′| > j. Now assume statement 3 is true. Let s be the
jth largest number in S. We know there are at least j numbers in [s, n] ∩ S ′, so the jth

largest number in S ′ is at least s.

Take S ⊆ [n] and a weak composition α. Consider the set {γ : γ > α, supp(γ) ⊆ S}.
Let m(α, S) be the unique minimum element in the set, if it exists. Later, we will show
m(α, S) exists as long as the set is non-empty. First, we introduce an algorithm to compute
m(α, S) or assert it does not exist. Initialize list to be an empty list and initialize σ to
be the weak composition with all 0s. Iterate over i = 1, . . . , n. Perform the following two
processes in each iteration:

• (Adding process): If αi > 0, then add αi to list.

• (Removing process): If i ∈ S and list is non-empty, then remove max(list) from
list and assign it to σi.
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After all iterations, if list is empty, then m(α, S) is σ. Otherwise, such m(α, S) does not
exist.

Example 30. Let n = 7, α = (1, 3, 0, 2, 0, 0, 2) and S = {3, 4, 5, 6, 7}. Then we trace σ
and list during the algorithm:

• Before iteration 1: σ = (0, 0, 0, 0, 0, 0, 0); list is empty.

• After iteration 1: σ = (0, 0, 0, 0, 0, 0, 0); list contains 1.

• After iteration 2: σ = (0, 0, 0, 0, 0, 0, 0); list contains 1, 3.

• After iteration 3: σ = (0, 0, 3, 0, 0, 0, 0); list contains 1.

• After iteration 4: σ = (0, 0, 3, 2, 0, 0, 0); list contains 1.

• After iteration 5: σ = (0, 0, 3, 2, 1, 0, 0); list is empty.

• After iteration 6: σ = (0, 0, 3, 2, 1, 0, 0); list is empty.

• After iteration 7: σ = (0, 0, 3, 2, 1, 0, 2); list is empty.

Since the list is empty after the iterations, the algorithm outputs

m(α, S) = (0, 0, 3, 2, 1, 0, 2).

We take steps to show this algorithm is correct. We start with the following observa-
tion, which connects this algorithm with the C operator in Definition 4.

Lemma 31. Assume the algorithm outputs m(α, S) = σ. Let Tc (resp. Ac) be the set
consisting of numbers in column c of key(σ) (resp. key(α)). Then Tc = S C Ac.

Proof. We know i ∈ Ac if and only if during the adding process of the iteration i, a
number at least c is added to list. Similarly, i ∈ Tc if and only if during the removing
process of the iteration i, a number at least c is removed from list.

Assume Tc = {t1 < t2 < · · · < ts} and Ac = {a1 < a2 < · · · < as}. During the adding
process of iteration a1, the algorithm puts αa1 into list. This is the first time that list
gains a number at least c. Thus, t1 > a1. Moreover, assume there exists t ∈ S such that
a1 6 t < t1. During the removing process of iteration t, list has a number at least c. The
algorithm will remove a number at least c from list, contradicting to t /∈ Tc. Thus, t1 is
the smallest in S with t1 > a1.

Now consider tj with j > 1. During the removing process of tj, we remove a number
at least c for the jth time. Thus, we have added at least j such numbers to list, so
aj 6 tj. Now assume there is t < tj such that t ∈ S, t > aj, and t > tj−1. During the
removing process of iteration t, there is a number at least c in list, so such a number will
be removed. We have a contradiction since t /∈ Tc. Thus, tj is the smallest in S such that
tj > aj and tj > tj−1.
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Next, we investigate the condition for the algorithm to assert m(α, S) does not exist.

Lemma 32. The following are equivalent:

1. |S| > |supp(α)|. In addition, if we let S ′ ⊆ S consists of the largest numbers in S
with |S ′| = |supp(α)|, then S ′ > supp(α).

2. The algorithm asserts m(α, S) exists. (i.e. The list is empty when the algorithm
ends.)

3. There is a weak composition γ such that supp(γ) ⊆ S and γ > α.

Proof. First, assume |S| < |supp(α)|. We check the last two statements do not hold.

2. Consider the ith iteration. First, the size of list is increased by one if i ∈ supp(α).
Next, the size of list is fixed or decreased by one if i ∈ S. Throughout this algorithm,
list gains |supp(α)| numbers and loses at most |S| numbers. It is not empty when
the algorithm ends.

3. Assume such γ exists. We know |supp(γ)| = |supp(α)| > |S|, contradicting to
supp(γ) ⊆ S.

Now assume |S| > |supp(α)| and define S ′ as above. Suppose S ′ � supp(α). We check
the last two statements in the lemma do not hold.

2. By Lemma 29, there exists j ∈ supp(α) such that

|[j, n] ∩ supp(α)| > |[j, n] ∩ S ′| = |[j, n] ∩ S|.

Between the jth iteration and the last iteration inclusively, list gains |[j, n]∩supp(α)|
numbers and loses at most |[j, n]∩S| numbers. It is not empty when the algorithm
ends.

3. Assume such γ exists. By supp(γ) ⊆ S, we have S ′ > supp(γ) > supp(α). Contra-
diction.

Finally, assume S ′ > supp(α). We check the last two statements in the lemma are
true.

2. Assume when the algorithm ends, list is not empty. Find the largest j such that list
is not empty since the jth iteration. First, we know list is empty right before the
jth iteration. Second, we know a number is added to list during the jth iteration, so
j ∈ supp(α). By Lemma 29, |[j, n]∩supp(α)| 6 |[j, n]∩S ′| = |[j, n]∩S|. Between the
jth iteration and the last iteration inclusively, list gains |[j, n] ∩ supp(α)| numbers.
Since list is not empty since iteration j, list loses |[j, n]∩ S| numbers. Thus, list is
empty after the last iteration.
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3. From the previous statement, we know the algorithm will produce a weak composi-
tion σ. Just need to check supp(σ) ∈ S and σ > α. It is apparent that supp(σ) ⊆ S.
Since all positive numbers in α are assigned into σ, key(σ) and key(α) are of the
same shape. Next we show that σ > α by comparing key(σ) and key(α) column-by-
column: Let Tc (resp. Ac) be the set consisting of numbers in column c of key(σ)
(resp. key(α)). By Lemma 31, Tc = S C Ac. Thus, Tc > Ac.

Now we can prove the correctness of our algorithm.

Lemma 33. The algorithm correctly computes m(α, S). In other words, consider the set
{γ : γ > α, supp(γ) ⊆ S}.

• If list is empty after the iterations, then the output σ is the unique minimum in the
set.

• Otherwise, the set is empty.

Moreover, the second case happens only when the set is empty.

Proof. If list is not empty when the algorithm ends, {γ : γ > α, supp(γ) ⊆ S} = ∅ by the
previous lemma.

Now assume list is empty when the algorithm ends. Then the set is non-empty: By
the proof of the previous lemma, the output σ is in this set. We check σ is the least
element. Assume there is a γ in the set with γ � σ. Let T ′c consists of numbers in column
c of key(γ). Define Tc and Ac similarly for key(σ) and key(α) respectively. Then we can
find c such that T ′c � Tc. Let t′j be the jth smallest number in T ′c. Define tj and aj
similarly for Tc and Ac. Then we can find smallest j such that t′j < tj. Notice that t′j > a′j
and t′j ∈ S. Moreover, t′j > t′j−1 > tj−1 if j > 1. We have a contradiction to the fact
Tc = S C Ac from Lemma 31.

Corollary 34. Let α be a weak composition and S ⊆ [n]. m(α, S) exists if and only if

• |S| > |supp(α)|, and

• S ′ > supp(α), where S ′ consist of the largest numbers in S with |S ′| = |supp(α)|.

Proof. Follows from the previous two lemmas.

Analogously, we may also look at the set {γ : γ 6 α, supp(γ) ⊆ S}. Similarly, if it is
non-empty, it will contain a unique maximum element. Let M(α, S) be this element. To
compute it, we only need to slightly change our algorithm above: Let i go from n to 1,
instead of 1 to n. Similar to Corollary 34, we have the following for M(α, S).

Corollary 35. Let α be a weak composition and S ⊆ [n]. M(α, S) exists if and only if

• |S| > |supp(α)|, and

• S ′ 6 supp(α), where S ′ consist of the smallest numbers in S with |S ′| = |supp(α)|.
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Proof. The proof is similar to the proof of Corollary 34.

We end this subsection by a property that connects m(γ, S) and M(α, S). Let γ be
a weak composition. We use γ to denote the weak composition obtained by decreasing
each positive entry of γ by 1.

Lemma 36. Let α, γ be two weak compositions. Take S ⊆ [n] with |S| = |supp(α)|. Then
the following are equivalent:

• m(γ, S) exists and α > 1S +m(γ, S).

• M(α, S) exists and M(α, S) > γ.

Proof. Assume the first statement is true. Notice supp(1S + m(γ, S)) = S, so M(α, S)
exists and

M(α, S) > 1S +m(γ, S).

Decrease each positive entry by 1 on both sides and get

M(α, S) > m(γ, S).

Then we get the second statement since m(γ, S) > γ.
Now assume the second statement is true. Notice supp(M(α, S)) ⊆ S, so m(γ, S)

exists and
M(α, S) > m(γ, S).

By |S| = |supp(α)|, supp(M(α, S)) = S, so

M(α, S) > 1S +m(γ, S).

Then we get the first statement since α >M(α, S).

4.2 Left swap order

Assaf and Searles [3] also defined a partial order on weak compositions called the left swap
order . In this subsection, we introduce this order and show that it is equivalent to the
Bruhat order.

Definition 37. [3, 2, Definition 2.3.4] A left swap on a weak composition α exchanges
two parts αi < αj with i < j. The left swap order on weak compositions is the transitive
closure of the relation γ � α whenever γ is a left swap of α.

When γ is obtained from α by exchanging the ith and jth parts of α, we write γ = (ij)α.

Proposition 38. [2, Prop. 2.3.9] Given weak compositions α, γ, we have γ � α if and
only if the key diagram pair of γ is in KD(α).

To show the equivalence between the left swap order and the Bruhat order, we need
a few lemmas. We start with the following, which summarizes how M(α, S) is changed
when we changes S in a nice way.
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Lemma 39. Let α be a weak composition and S ⊆ [n] with S 6 supp(α). Take g /∈ S
such that |[g, n] ∩ supp(α)| > |[g, n] ∩ S|. Then there exists s ∈ S such that s < g and

M(α, S ′) = (s g)M(α, S),

where S ′ = (S t {g})− {s}. In particular, M(α, S)is a left swap of M(α, S ′).

Proof. Run the algorithm that computes M(α, S). After initialization, the algorithm
iterates from i = n to i = 1. Right after the iteration with i = g, the algorithm has put
|[g, n] ∩ supp(α)| numbers to list and has removed at most |[g, n] ∩ S| numbers from list.
Since |[g, n]∩ supp(α)| > |[g, n]∩S|, the list is non-empty. Let x be the largest number in
the current list. Then this x will be picked sometime in the future. Let s ∈ S ∩ [1, g) be
the largest such that in the iteration i = s, the algorithm assigns x to σi. We may run the
algorithm to compute M(α, (S t {g})−{s}). It behaves the same as on M(α, S), except
it assigns x to σg and keeps σs = 0. Thus, M(α, (S t {g})− {s}) = (g s)M(α, S).

We know from definition that M(α, S) 6 α. The next lemma will describe their
relationship in the left swap order.

Lemma 40. Let α be a weak composition. Let S be a set such that S 6 supp(α). Then
M(α, S) � α.

Proof. Find the smallest g > 1 such that [g, n] ∩ S = [g, n] ∩ supp(α). Prove this lemma
by induction on g. For the base case, we assume g = 1. Then supp(α) = S which implies
M(α, S) = α.

Next, assume g > 1. Since [g − 1, n] ∩ S 6= [g − 1, n] ∩ supp(α) and S 6 supp(α), we
know g−1 ∈ supp(α)−S. Thus, |[g−1, n]∩S| < |[g−1, n]∩supp(α)|. By Lemma 39, there
exists s ∈ S such that if we let S ′ = (S − {s}) t {g − 1}, we have M(α, S) � M(α, S ′).
Notice that [g − 1, n] ∩ S ′ = [g − 1, n] ∩ supp(α). We may apply our inductive hypothesis
and get M(α, S) �M(α, S ′) � α.

Finally, we need the following intuitive lemma, which says both partial orders are
preserved by the operator α 7→ α.

Lemma 41. Given weak compositions α and γ with supp(α) = supp(γ). Then we have

• γ 6 α if and only if γ 6 α.

• γ � α if and only if γ � α.

Proof. Immediate from definitions.

Now we are ready to prove the equivalence of these two partial orders.

Proposition 42. Given weak compositions α and γ, we have γ � α if and only if γ 6 α.

the electronic journal of combinatorics 30(4) (2023), #P4.26 16



Proof. First we show if γ � α, then γ 6 α. It suffices to show when γ is a left swap of α.
Say γ = (i j)α where i < j and αi < αj. Let Tc (resp. T ′c) consists of numbers in column
c of key(α) (resp. key(γ)). When c 6 αi or c > αj, we have Tc = T ′c. When αi < c 6 αj,
T ′c is obtained from Tc by replacing j with i. Therefore key(γ) 6 key(α) and γ 6 α.

Next we assume γ 6 α and show γ � α. We prove by induction on max(α). If
max(α) = 0, then α, γ only contain 0s. Our claim is immediate. Now assume max(α) > 0.
We consider two cases.

• If supp(γ) = supp(α), then γ 6 α by Lemma 41. By our inductive hypothesis,
γ � α. By Lemma 41 again, γ � α.

• Assume supp(γ) 6= supp(α). Let S = supp(γ). First, notice that γ 6 M(α, S)
and these two weak compositions have the same support. By the previous case,
γ � M(α, S). It remains to check M(α, S) � α, which follows from S 6 supp(α)
and Lemma 40.

Consequently, we know several statements are equivalent to γ 6 α.

Corollary 43. Given weak compositions α, γ, the following are equivalent:

1. γ 6 α;

2. KD(γ) ⊆ KD(α);

3. KKD(γ) ⊆ KKD(α);

4. RSSYT(γ) ⊆ RSSYT(α);

5. RSVT(γ) ⊆ RSVT(α).

Proof. We show the following directions.

• (1)⇐⇒ (2) This follows from Propositions 38 and 42.

• (1)⇐⇒ (4) This is true by definition.

• (1)⇐⇒ (5) This is true by definition.

• (2) =⇒ (3) This is true by definition.

• (3) =⇒ (2) Since KKD(γ) ⊆ KKD(α) and KD(γ) ⊆ KKD(γ), we have KD(γ) ⊆
KKD(α). Since there is no ghost cells in elements of KD(γ), we have KD(γ) ⊆ KD(α).
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5 Recursive descriptions of KKD(α) and RSVT(α)

To check our maps Φα and Ψα are well-defined, we need to study their domains. In this
section, we give necessary and sufficient criteria on when a diagram pair is in KKD(α)
(resp. RSVT(α)). Our criteria will be recursive.

For a diagram pair D = (K,G), we can send it to a triple (K1, G1, d) where K1, G1

are disjoint subsets of [n] and d is a diagram pair. They are defined as follows:

• K1 := {r : (1, r) ∈ K}

• G1 := {r : (1, r) ∈ G}

• d is the diagram pair with a Kohnert cell (resp. ghost cell) at (c, r) if D has a
Kohnert cell (resp. ghost cell) at (c+ 1, r) with c > 1.

The map D → (K1, G1, d) is invertible: given disjoint K1, G1 ⊆ [n] and a diagram pair
d, we can uniquely recover D. Thus, we may identify a diagram pair with its image and
write D = (K1, G1, d).

Fix a weak composition α in this section. An element of KKD(α) or RSVT(α) can
be written as (K1, G1, d). We will find conditions on this triple to determine when
(K1, G1, d) ∈ KKD(α) and RSVT(α).

5.1 Describing KKD(α)

First, we describe the condition for a diagram pair (K1, G1, d) to live in KKD(α).

Theorem 44. The diagram pair (K1, G1, d) is in KKD(α) if and only if it satisfies:

1. K1 and G1 are disjoint subsets of [n].

2. K1 6 supp(α).

3. For each g ∈ G1, |[g, n] ∩ supp(α)| > |[g, n] ∩K1|.

4. d ∈ KKD(M(α,K1))

The rest of this subsection proves it. First, we want to show if a diagram pair D
satisfies these conditions, then D ∈ KKD(α). This can be implied from the following
lemma:

Lemma 45. If D = (K1, G1, d) satisfies conditions (1)-(4) in Theorem 44, then we can
find γ 6 α such that D ∈ KKD(γ). Moreover, γi = 0 if i /∈ K1 tG1.

Notice D ∈ KKD(γ) ⊆ KKD(α) by Corollary 43. Thus, this lemma implies the reverse
direction of Theorem 44.

The proof involves doing reverse K-Kohnert moves on diagram pairs (K,G). We
describe it below. Given a Kohnert cell (c, r) ∈ K, we look for the smallest r′ > r such
that
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• (c, r′) /∈ K

• there does not exist a c′ > c such that (c′, r′) ∈ K tG

• (c, r′′) /∈ G for all r < r′′ < r′

If not such r′ exist, then the reverse K-Kohenrt move is undefined on (c, r). If such r′

exist, we turn (c, r′) into a Kohnert cell and remove (c, r) from K. When (c, r′) /∈ G, this
is the reverse Kohnert move for (c, r); when (c, r′) ∈ G, this is the reverse ghost move for
(c, r).

Clearly, the reverse K-Kohnert move reverses the effect of a K-Kohnert move.

Proof. We describe an algorithm that turns D into a key diagram pair of some weak com-
position γ via reverse K-Kohnert moves. First, we consider d. Since d ∈ KKD(M(α,K1)),
we may do reverse K-Kohnert moves on d to obtain the key diagram pair of M(α,K1).

Now, Kohnert cells in D form the key diagram pair of M(α,K1). If G1 is empty, we
are done. Otherwise, let g = min(G1). By Lemma 39, we can find k ∈ K1 ∩ [1, g) such
that M(α, (K1 t {g}) − {k}) = (g k)M(α,K1). We perform reverse K-Kohnert moves
to lift the entire row k of D to row g, and remove the ghost at (1, g). Next we assign
(K1 t {g}) − {k} to K1 and assign G1 − {g} to G1. Now, Kohnert cells in D still form
the key diagram pair of M(α,K1). We may repeat the steps above until G1 is empty.
The resulting diagram pair is a key diagram pair for some weak composition γ. Clearly,
γi = 0 if (1, i) was not a cell in D.

Proof of Theorem 44. The reverse direction is already shown. For each D = (K1, G1, d) ∈
KKD(α), we need to show the four conditions are satisfied. We prove by induction on
max(α). When max(α) = 0, the claim is immediate.

Assume the statement is true for any weak composition whose maximum entry is less
than max(α). For any D ∈ KKD(α), we want to check it satisfies the four conditions.
Condition (1) is immediate. We prove the other conditions by an induction on K-Kohnert
moves. If D is the key diagram pair of α, then the last three conditions are immediate.
Now assume (K1, G1, d) ∈ KKD(α) satisfies the last three conditions. Perform one K-
Kohnert move and obtain (K ′1, G

′
1, d
′). We want to show (K ′1, G

′
1, d
′) also satisfies the last

three conditions. If the K-Kohnert move is not on column 1, then K1 = K ′1 and G1 = G′1,
which gives us the second and the third condition. Notice that d′ is obtained from d by
one K-Kohnert move, so the last condition is also satisfied.

Now suppose the K-Kohnert move is on column 1. K ′1 = (K1 − {i}) t {j} with i > j,
and G′1 is either G1 or G1 t {i}. We check the last three conditions below.

2. supp(α) > K1 > K ′1.

3. We check |[g, n] ∩ supp(α)| > |[g, n] ∩K ′1|, for each g ∈ G1 t {i}.
If g ∈ G1, we have

|[g, n] ∩ supp(α)| > |[g, n] ∩K1| > |[g, n] ∩K ′1|.
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For g = i, we have

|[i, n] ∩ supp(α)| > |[i, n] ∩K1| > |[i, n] ∩K ′1|.

4. We have d′ = d ∈ KKD(M(α,K1)). By our inductive hypothesis, d satisfies all
four conditions of KKD(M(α,K1)). Using Lemma 45, we may perform reverse K-
Kohnert moves on d and get the key diagram pair of γ 6 M(α,K1). Since we can
make a K-Kohnert move on (1, i), d has no cells on row i. Thus, we know γi = 0.
To show d ∈ KKD(M(α,K ′1)), we show γ 6M(α,K ′1).

Let T = key(M(α,K1)). For each column of T that contains i, we replace i by the
largest i′ such that i′ < i and i′ is not in this column. Then we sort the column
into strictly decreasing order. Let T ′ be the resulting tableau. It is clear that T ′ is
a key. Let σ = wt(T ′). We make two observations about T ′ and σ:

• Column 1 of T ′ consists of K ′1, so supp(σ) = K ′1.

• The tableau T ′ is entry-wise less than T . Thus, σ 6M(α,K1) 6 α.

By definition, these two observations yield σ 6M(α,K ′1).

It remains to check γ 6 σ. Let g1 > · · · > gs be the numbers in column c of key(γ).
By γi = 0, none of these numbers is i. Let t1 > · · · > ts (resp. t′1 > · · · > t′s)
be numbers in column c + 1 of T (resp. T ′). By γ 6 M(α,K1), we know gk 6 tk
for 1 6 k 6 s. If i is not in column c + 1 of T , then we are done. Otherwise,
assume ta = i. We know t′1, . . . , t

′
s are obtained from t1, . . . , ts by changing ta, . . . , tb

into ta − 1, . . . , tb − 1. Since ga 6 i and ga 6= i, we have ga 6 i − 1 = t′a. Then
ga+1 6 i− 2 = t′a+1. Following this argument, we have gk 6 t′k for 1 6 k 6 s. Thus,
γ 6 σ 6M(α,K ′1).

5.2 Describing RSVT(α)

Take T ∈ RSVT(α) and write T as (L1, E1, t). First, we notice the following relation
between K−(T ), K−(t) and L1:

Lemma 46. Assume T = (L1, E1, t) ∈ RSVT(α). Assume K−(t) = key(γ). Then
wt(K−(T )) = 1L1 +m(γ, L1).

Proof. Let S = key(1L1 + m(γ, L1)). View S and T as tableaux. Let Tc be the set
consisting of leading numbers in column c of T , so T1 = L1. It suffices to show that
K−(T ) = S. We compare these two tableaux column by column. Apparently, column 1
of K−(T ) and column 1 of S both consist of L1.

Consider the column c of K−(T ) and S for c > 1. Column c of S agrees with column
c − 1 of key(m(γ, L1)). Let key(γ)c−1 consists of numbers in column c − 1 of key(γ). By
Lemma 31, column c−1 of key(m(γ, L1)) consists of L1Ckey(γ)c−1. Since key(γ) = K−(t),
we have key(γ)c−1 = T2 C · · ·C Tc. Thus, column c of S consists of L1 C T2 C · · ·C Tc =
T1 C T2 C · · ·C Tc, which agrees with column c of K−(T ).
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Theorem 47. The diagram pair (L1, E1, t) is in RSVT(α) if and only if it satisfies:

1. L1 and E1 are disjoint subsets of [n].

2. L1 6 supp(α).

3. Let L′1 be the set of row indices of Kohnert cells in column 1 of t. For each e ∈ E1,
|(e, n] ∩ L1| > |(e, n] ∩ L′1|.

4. t ∈ RSVT(M(α,L1))

Proof. First, we show that if T = (L1, E1, t) ∈ RSVT(α), then the four conditions are
satisfied.

1. L1 and E1 are clearly disjoint.

2. Notice that column 1 of K−(T ) consists of numbers in L1, while column 1 of key(α)
consists of numbers in supp(α). By K−(T ) 6 key(α), L1 6 supp(α).

3. View T as a tableau. For e ∈ E1, assume it is on row j column 1 of T . Then
|L1 ∩ (e, n]| = j. The set L′1 consists of leading numbers in column 2 of T . The jth

largest number in L′1, if exists, is the leading number at row j column 2 of T . Thus,
it is weakly less than e, so |(e, n] ∩ L′1| < j.

4. By T ∈ RSVT(α), K−(T ) 6 key(α). Let γ = wt(K−(t)). By Lemma 46, 1L1 +
m(γ, L1) 6 α. By Lemma 36,

wt(K−(t)) = γ 6M(α,L1).

Thus t ∈ RSVT(M(α,L1)).

Now, we check if we have T = (L1, E1, t) satisfying these four conditions, then T ∈
RSVT(α). We may construct T as a tableau. First, we build column 1 of T . We arrange
numbers in L1 into a strictly decreasing column. For each e ∈ E1, by condition 2,
|(e, n] ∩ L1| > 0. Then we put e on row |(e, n] ∩ L1|. Clearly, this column is an RSVT
with leading numbers from L1 and extra numbers from E1.

Next, we may build the tableau corresponding to t recursively. Let L′1 be the set of
leading numbers in column 1 of t. Put the column we just constructed on the left of t.
Only need to check all numbers in row j of our new column are weakly larger than the
leading number in row j column 1 of t, which is the jth largest number in L′1.

• Let e be an extra number on row j of our new column, By condition 3, |[e, n]∩L′1| <
j. Thus, the jth largest number in L′1 is at most e.

• By condition 4, if we let γ = wt(K−(t)), then γ 6 M(α,L1). By Lemma 36,
m(γ, L1) exists. Then by Corollary 34, the jth largest number in supp(γ) = L′1 is
weakly less than the jth largest number in L1, which is the leading number in row
j of our new column.
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Now we have constructed a tableau T which if viewed as a diagram pair, corre-
sponds to (L1, E1, t). It remains to check K−(T ) 6 key(α). Notice that K−(T ) =
key(1L1 + m(γ, L1)). By Lemma 36 and γ 6 M(α,L1), we have K−(T ) 6 key(α). Thus,
(L1, E1, t) ∈ RSVT(α).

The recursive descriptions of KKD(α) and RSVT(α) share many similarities. They
only differ at the third condition, which is the condition on the positions of ghost cells.
From this observation, we get the following result which was discussed in Remark 10.

Corollary 48. We have RSSYT(α) = KD(α).

Proof. We know KD(α) is the subset of KKD(α) containing all diagram pairs with no
ghost cells. By Theorem 44, KD(α) consists of (K1, ∅, d) such that

• K1 6 supp(α).

• d ∈ KD(M(α,K1)).

On the other hand, RSSYT(α) is the subset of RSVT(α) containing all diagram pairs
with no ghost cells. By Theorem 47, RSSYT(α) consists of (L1, ∅, t) such that

• L1 6 supp(α).

• t ∈ RSSYT(M(α,L1)).

An induction on max(α) yields KKD(α) = RSSYT(α).

This recursive description of RSVT(α) leads to the following lemma.

Lemma 49. Let T = (L,E) = (L1, E1, t) be an element in RSVT(α). If (L, ∅) ∈ KD(γ)
for another weak composition γ, then T ∈ RSVT(γ).

Proof. Prove by induction on max(γ). Notice that t is in RSVT(M(α,K1)). If we ignore
ghost cells of t, it is in KD(M(γ,K1)). By our inductive hypothesis, t ∈ RSVT(M(γ,K1)).

Now we check T = (L1, E1, t) satisfies the four conditions of RSVT(γ). Condition 1
and 3 are implied by T ∈ RSVT(α). Condition 2 follows from (L, ∅) ∈ KD(γ). The last
condition is checked in the previous paragraph.

Remark 50. Alternatively, we may prove Lemma 49 while viewing T as a tableau. Let T ′

be the tableau we get after keeping the smallest number in each cell of T . By (L, ∅) ∈
KD(γ), we know T ′ ∈ RSSYT(γ). Consequently, K−(T ) = K−(T ′) 6 γ, so T ∈ RSVT(γ).

6 Two operators on Kohnert diagrams

In order to prove the well-definedness and bijectivity of Ψα and Φα defined in Section 3,
we introduce two auxiliary operators ]g and [e on KD(α) and study their properties. Later
in Section 7, we will use these two operators to give alternative descriptions of Ψα and
Φα.
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6.1 Introducing the ]g operator

We define an operator ]g on KD(α) for each g ∈ [n].

Definition 51. For each g ∈ [n], define ]g : KD(α)→ KD(α)× [n]. Take D = (K1, ∅, d) ∈
KD(α). Find the largest k ∈ K1 ∩ [1, g] such that D′ = (K1 − {k} t {g}, ∅, d) is still in
KD(α). If such k exists, then ]g(D) := (D′, k). Otherwise, ]g(D) is undefined.

We would like to determine when ]g(D) is defined. This is partially answered by the
following lemma:

Lemma 52. Assume D = (K1, ∅, d) ∈ KD(α). If ]g(D) is defined, then |[g, n]∩supp(α)| >
|(g, n] ∩K1|.

The proof involves Kohnert tableaux from subsection 2.4.

Proof. Assume ]g(D) = (D′, k). Then in column 1 of D′, there are |(g, n] ∩ K1| + 1
cells weakly above row g. In Labelα(D′), these cells are filled by distinct number in
[g, n] ∩ supp(α). Thus, |[g, n] ∩ supp(α)| > |(g, n] ∩K1|.

Next, we will show the converse of this lemma. First, we introduce an algorithm
called sharp algorithm. Its input is a number g and D = (K1, ∅, d) ∈ KD(α) such that
|[g, n]∩ supp(α)| > |(g, n]∩K1|. It will output a diagram pair D′ with only Kohnert cells.
It will also output a filling of D′. Later, we will check the filling is a Kohnert tableau with
content α, which implies D′ ∈ KD(α). Finally, we will check D′ is the first component of
]g(D).

The sharp algorithm consists of five steps:

• Step 1: Compute Labelα(D).

• Step 2: Since |[g, n]∩ supp(α)| > |(g, n]∩K1|, there is a number m such that m > g
but m is weakly below row g in column 1. Find the highest such m. Let k be the
row index of this m.

• Step 3: Let D′ = ((K1 − {k}) t {g}, ∅, d). This is the first output.

• Step 4: To compute the filling, we start from Labelα(D) and move the m from (1, k)
to (1, g). The resulting filling satisfies the first three conditions from Definition 16.

• Step 5: If there is an u < m such that u,m violates condition four in column 1,
we find the smallest such u and swap it with m. Repeat this step until no such u
exists. The final filling will be the second output.

Example 53. Consider α = (0, 0, 0, 2, 2, 1, 1), and D ∈ KD(α) as shown below. Let g = 3.
The sharp algorithm gives m = 6 and k = 1. The output D′ is obtained by moving the
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Kohnert cell (1, k) to (1, g) in D. To obtain the filling, we need to first move m to row g
in Labelα(D). Next, swap m with 4 and then 5.

D =

7 ·
6
5 ·
4 ·
3 ·
2 ·
1 ·

, Labelα(D) =

7

5
4

5
4

6

−→

7

5
4
6 5

4

−→

7

5
6
4 5

4

−→

7

6
5
4 5

4

, D′ =

·

·
·
· ·
·

.

Lemma 54. The filling produced by the sharp algorithm is a Kohnert tableau with content
α. Consequently, the filling is Labelα(D′) and D′ ∈ KD(α).

Proof. We claim that after Step 4 and after each iteration of Step 5, the filling satisfies
the first three conditions of Definition 16. Moreover, if i < j violates the last condition
in column c, then j = m and c = 1.

After Step 4, the filling clearly satisfies the first three conditions. Now assume i < j
violates the last condition in column c. Clearly, c = 1 and m is i or j. Assume m is i,
then j is below row g in column 1. If j were below row k, then m, j would have violated
condition 4 before this move. On the other hand, if j were above row k, then we would
have picked j instead of m. In either case, we reach a contradiction. Thus, j must be m.

If there is a u such that u < m violates condition 4, we pick the smallest such u.
Assume our claim holds now. We need to show our claim is still true after we swap u and
m. We check the first three conditions:

1. Condition 1 clearly holds.

2. Only need to check condition 2 for m. Recall u < m. Since u satisfies condition 2
before the move, so does m after the move.

3. Only need to check condition 3 for u. Since u,m violate condition 4 before this swap,
and that u satisfies condition 3 before moving m to (1, g), there is no u in column
2 strictly above the m in column 1. Thus, after the move, u satisfies condition 3.

Now assume i < j violates condition 4 in column c. Clearly, c = 1 and one of i, j is u or
m. We just need to check u cannot be i or j and m cannot be i:

• Assume i = u. Then u, j would have violated condition 4 before the move, contra-
dicting to our claim.

• Assume j = u. Then i < u < m. Before the move, i,m violates condition 4. Then
we would have picked i and swapped it with m, rather than u. Contradiction.

• Assume i = m. If j were below m before the move, then m, j would have violated
condition 4 before the move. Now assume j were between u and m before the move.
Then u, j would have violated condition 4 before the move.
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Now our claim holds after each move. When the sharp algorithm terminates, there is
no violation of condition 4 with the form i,m. Thus, the filling satisfies condition 4, so it
is in KT(α).

Lemma 55. The D′ yielded by the sharp algorithm is the first component of ]g(D).

Proof. The lemma is trivial if g ∈ K1. Thus, we may assume g /∈ K1. We already showed
D′ ∈ KD(α) by constructing Labelα(D′). Take r ∈ K1 with k < r < g. It suffices to show
(K1 − {r} t {g}, ∅, d) /∈ KD(α).

In column 1 of Labelα(D), assume s1, . . . , sp are the numbers below row g and weakly
above row r. By how we picked m, we know s1, . . . , sp < g. We may run the labeling
algorithm on ((K1−{r})t{g}, ∅, d). It behaves the same as on D on cells prior to (1, r).
After filling all these cells before (1, r), we know s1, . . . , sp are still in the set S1. However,
there remains only p− 1 empty cells below row g. Thus, at least one number of s1, . . . , sp
will be placed weakly above row g. Since this number is less than g, the labeling algorithm
will terminate and produce no output. Thus, this diagram is not in KD(α).

Thus, we know the sharp algorithm outputs the first component of ]g(D), together
with its Kohnert Labeling. Now we can tell when ]g(D) is well-defined.

Lemma 56. Assume D = (K1, ∅, d) ∈ KD(α). Then ]g(D) is well-defined if and only if

|[g, n] ∩ supp(α)| > |(g, n] ∩K1|.

Proof. The forward direction is given by Lemma 52. The other direction follows from the
sharp algorithm.

Corollary 57. Take D ∈ KD(α). Assume ]g(D) = (D′, k). Assume (1, k) is filled by m
in Labelα(D). Then Labelα(D) and Labelα(D′) agree at the cell (c, r), if (c, r) satisfies one
of the following:

• c > 1;

• r < g and r 6= k;

• r > m.

Proof. By the behavior of the sharp algorithm, Labelα(D′) is obtained from Labelα(D) by
moving m from (1, k) to (1, g) and repeatedly swapping m with a number above it. The
number m will not go above row m, so only (1, k) and cells between row g and row m in
column 1 are affected.

6.2 Commutativity of ]g operators

Next, we observe that two ]g operators might “commute” under certain conditions. Con-
sider the following example:
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Example 58. Let α = (0, 0, 2, 1). Let D be the following element in KD(α). We first
apply ]3 and get (D1, 2). Then apply ]4 on D1 and get (Dfinal, 1).

D =

4
3
2 · ·
1 ·

]3−→
2

·
·

·

]4−→
1

·
·
·

= Dfinal

We can try to swap the order of these two operators. We first apply ]4 on D and get
(D2, 1). Then we apply ]3 on D2 and get (Dfinal, 2).

D =

4
3
2 · ·
1 ·

]4−→
1

·

· ·
]3−→
2

·
·
·

= Dfinal

Observe that changing the order of these two operators will not affect the final Kohnert
diagram.

This phenomenon is captured by the following two lemmas.

Lemma 59. Take D ∈ KD(α). Take g1, g2 ∈ [n] with g1 < g2. Assume ]g1(D) = (D1, k1)
and ]g2(D

1) = (Dfinal, k2). If k1 > k2, then the two operators “commute”. That is:

• ]g2(D) = (D2, k2) for some D2 ∈ KD(α), and

• ]g1(D2) = (Dfinal, k1).

Proof. Let C be the first column of Labelα(D). Define C1 and Cfinal similarly. In C, let
m1 (resp. m2) be the number at row k1 (resp. k2).

First, we claim m1 is below row g2 in C1. If not, then we may find a number u that
is weakly above row g2 in C but below row g2 in C1. By Corollary 57, the u is above
row g1 in C1, so u is higher than m2. By u > g2, we should pick u rather than m2 when
computing ]g2(D

1). Contradiction.
Now consider C1. By Corollary 57, m2 is still at row k2. All numbers between m2 and

row g2 will be less than g2. Thus, m1 < g2. Since C and C1 only differ between row g1
and row m1, all numbers between m2 and row g2 will be less than g2 in C. Thus, ]g2 will
also pick m2 when acting on D. ]g2(D) = (D2, k2). Column 1 of Labelα(D2) agrees with
C between row k1 and g1. Thus, ]g1 will pick m1 when acting on D2.

Lemma 60. Take D ∈ KD(α). Take g1, g2 ∈ [n] with g1 < g2. Assume ]g2(D) = (D2, k2)
and ]g1(D2) = (Dfinal, k1). If k1 > k2, then the two operators “commute”. That is:

• ]g1(D) = (D1, k1) for some D1 ∈ KD(α), and

• ]g2(D1) = (Dfinal, k2).
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Proof. Let C be the first column of Labelα(D). Define C2 and Cfinal similarly. In C, let
m1 (resp. m2) be the number at row k1 (resp. k2).

First, C and C2 agree between row k2 and row g2. Thus, ]g1 would also pick m1 when
acting on D, so ]g1(D) = (D1, g2).

Since ]g2 picks m2 when acting on D, all numbers between row k2 and row g2 in C
are less than g2. In particular, m1 < g2. We know column 1 of D1 is obtained from C by
changing cells between row k1 and row m1. Thus, in column 1 of D1, all numbers between
row k2 and row g2 are still less than g2. When acting on D1, ]g2 would still pick m2.

6.3 Introducing the [k operator

Next, we define the operator [k, which can be viewed as the (partial) inverse of ]g.

Definition 61. For each k ∈ [n], define [k : KD(α)→ KD(α)× [n]. Take D = (K1, ∅, d) ∈
KD(α). Find the smallest g ∈ K1 ∩ [k, n] such that D′ = ((K1 − {g}) t {k}, ∅, d) is still
in KD(α). If such g exists, then [k(D) := (D′, k). Otherwise, [k(D) is undefined.

Lemma 62. Take D ∈ KD(α).

• Take g ∈ [n]. If ]g(D) = (D′, k), then [k(D
′) = (D, g).

• Take k ∈ [n]. If [k(D) = (D′, g), then ]g(D
′) = (D, k).

In other words, [k and ]g are (partial) inverses of each other.

Proof. Assume D = (K1, ∅, d). Consider the first statement. If g ∈ K1, then k = g and
[k(D

′) = (D, g) trivially. Now assume g /∈ K1. Then ((K1 − {r}) t {g}, ∅, d) is not in
KD(α) for all r ∈ K1 with k < r < g. Thus, [k(D

′) = (D, g). The second statement can
be proved similarly.

We would like to determine when [k(D) is well-defined. This is answered by the
following lemma:

Lemma 63. Assume D = (K1, ∅, d) ∈ KD(α). Let K2 be the set of row indices for cells
in column 2 of D. Then [k(D) is well-defined if and only if k ∈ K1 or |K1 ∩ (k, n]| >
|K2 ∩ (k, n]|.

Proof. First, assume the condition fails. We show [k(D) is undefined. Assume by
contradiction that [k(D) = (D′, g). Define K ′1 and K ′2 similarly for D′. Then K ′1 =
(K1 − {g}) t {k} and K ′2 = K2. Thus,

|K ′1 ∩ (k, n]| < |K1 ∩ (k, n]| 6 |K2 ∩ (k, n]| = |K ′2 ∩ (k, n]|.

Then consider Labelα(D′). There are |K ′2∩(k, n]| distinct numbers above row k in column
2. They all must appear above row k in column 1, but there are not enough cells for
them. Contradiction.

Now assume the condition holds, we show [k(D) is well-defined. Clearly, we are done
if k ∈ K1. Now assume |K1 ∩ (k, n]| > |K2 ∩ (k, n]| and consider Labelα(D). By our
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assumption, we can find m above row k in column 1 such that there is no m above row k
in column 2. Pick the lowest such m and move it to (1, k). Then the resulting filling is in
KT(α):

1. Condition 1 of KT(α) is clear.

2. Since we moved a cell down, condition 2 is clear.

3. Condition 3 holds for m since there is no m above row k in column 2.

4. Only need to check there is no violations of condition 4 in column 1. Let i < j
be a violation. Then m must be i or j. If i = m, then m, j would have violated
condition 4 before the move. Now assume j = m. If i were above m in Labelα(D),
then i,m would have violated condition 4 before the move. On the other hand, if
i were below m in Labelα(D), then there is an i above row k in column 2, so i,m
cannot be a violation.

Thus, after moving one cell down to (1, k) in D, the resulting diagram is still a Kohnert
diagram, so [k(D) is well-defined.

Remark 64. In the previous proof of well-definedness, we choose the cell containing m
and move it down to row k. The resulting diagram is still in KD(α). Notice that this
might not be the lowest cell that can do this job. See the following example.

Example 65. Following Example 53. We would like to compute [1(D
′). In D′, there are

4 cells in column 1 above row 1 and there are 2 cells in column 2 above row 1. Thus, the
condition in Lemma 63. is satisfied. We want to check [1(D

′) is well-defined. The proof
of well-definedness gives m = 6. After moving the 6 to row 1, the resulting filling is in
KT(α), which implies the underlying diagram is in KD(α).

D′ =

7 ·
6
5 ·
4 ·
3 · ·
2 ·
1

, Labelα(D′) =

7

6
5
4 5

4
−→

7

5
4 5

4
6

However, moving the cell (1, 3) to (1, 1) in D′ will also make the resulting diagram in
KD(α).

Similar to ]g, the [k operator can commute under certain conditions:

Lemma 66. Take D ∈ KD(α). Take k1, k2 ∈ [n] with k1 > k2. Assume [k1(D) = (D1, g1)
and [k2(D

1) = (Dfinal, g2). If g1 < g2, then the two operators “commute”. That is:

• [k2(D) = (D2, g2) for some D2 ∈ KD(α), and

• [k1(D2) = (Dfinal, g1).

Proof. It follows directly from Lemma 60 and Lemma 62.
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6.4 Relations between ]g and [e

In this section, we investigate the relationship between the two operators introduced
above. We already know the effect of ]g can be reversed by the [e operator, and vice
versa. Next, we show that a sequence of ]g can also be reversed by a sequence of [e, and
vice versa.

Lemma 67. Let D0 = (K1, ∅, d) ∈ KD(α), and 1 < g1 < g2 < · · · < gm 6 n with
gi /∈ K1. For i = 1, 2, . . . ,m, compute ]gi(D

i−1) = (Di, ki). Assume D1, . . . , Dm are all
well-defined.

Find the permutation σ such that kσ(1) < · · · < kσ(m) and define Tm = Dm. For
i = m,m − 1, . . . , 1, compute [kσ(i)(T

i) = (T i−1, g′i). Then T 0 = D0 and {g1, . . . , gm} =
{g′1, . . . , g′m}.

Proof. We may represent D0, . . . , Dm using the following diagram:

D0 ]g1−→
k1

D1 ]g2−→
k2

D2 ]g3−→
k3

. . .
]gm−−→
km

Dm .

We put the operator above the arrow and put the second output under the arrow.
Suppose we find ki > ki+1. By Lemma 59, we can swap the order of ]gi and ]gi+1

, not
affecting the last diagram Dm. Thus, after sorting the output numbers into increasing
order, we have

D0
]gσ(1)−−−→
kσ(1)

D̃1
]gσ(2)−−−→
kσ(2)

D̃2
]gσ(3)−−−→
kσ(3)

. . .
]gσ(m)−−−→
kσ(m)

Dm ,

where D̃i are some diagrams in KD(α). Finally, we have

D0
[kσ(1)←−−−
gσ(1)

D̃1
[kσ(2)←−−−
gσ(2)

D̃2
[kσ(3)←−−−
gσ(3)

. . .
[kσ(m)←−−−
gσ(m)

Dm .

By Tm = Dm, we have D0 = T 0.

Example 68. Consider α = (0, 0, 2, 0, 3, 1, 2), g1 = 3, g2 = 5, g3 = 6 and D0 ∈ KD(α).
Starting with D0, we compute ]g1 , ]g2 and then ]g3 to obtain D3.

D0 =

7 ·
6 ·
5
4 · · ·
3
2 · ·
1 ·

]3−→
2

·
·

· · ·
·
·

·

]5−→
4

·
·

·
· ·

·
·

·

]6−→
1

·
· ·
·
· ·

·
·

= D3.

We obtain k1 = 2, k2 = 4 and k3 = 1, which are highlighted in the above figure. We can
pick the permutation σ with one-line notation 312 and obtain kσ(1) = 1, kσ(2) = 2 and
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kσ(3) = 4. Then we have gσ(1) = 6, gσ(2) = 3 and gσ(3) = 5, which yields the following
sequence of operation with the same D3 as the final output.

D0 =

7 ·
6 ·
5
4 · · ·
3
2 · ·
1 ·

]6−→
1

·
· ·

· · ·

· ·

]3−→
2

·
· ·

· · ·
·
·

]5−→
4

·
· ·
·
· ·

·
·

= D3.

Applying [4, [2 then [1 on D3, we will recover D0.

Lemma 69. Let D0 = (K1, ∅, d) ∈ KD(α), and n > e1 > e2 > · · · > em > 1, with
ei /∈ K1. For i = 1, 2, . . . ,m, compute [ei(D

i−1) = (Di, ki). Assume D1, . . . , Dm are all
well-defined.

Find the permutation σ such that kσ(1) > · · · > kσ(m). Now define Tm = Dm. For
i = m,m − 1, . . . , 1, compute ]kσ(i)(T

i) = (T i−1, e′i). Then T 0 = D0 and {e1, . . . , em} =
{e′1, . . . , e′m}.

Proof. The proof is the same as the previous proof, using Lemma 66 instead of
Lemma 59.

7 Recursive descriptions of the maps

We have described our maps Ψα and Φα via ]G(K) and [E(L) in Section 3. These descrip-
tions are simple to state but hard to work with. Now, we will describe the Ψα and Φα

recursively, involving definitions from Section 6 and Section 7. Using the new alternative
descriptions, we can establish Lemma 20, Lemma 23 and Theorem 3.

7.1 Recursive description of Ψα

Let G be an arbitrary diagram. First, we can recursively describe the operator ]G(·). If
D is empty, then ]G(D) is also empty if G = ∅, or undefined otherwise. If D is not empty,
write D as (K1, ∅, d). Let G>2 be the diagram {(c − 1, r) : (c, r) ∈ G, c > 2}. View
d as an element of KD(M(α,K1)) and find d′ = ]G>2

(d) recursively. Let G1 be the set
{r : (1, r) ∈ G} and assume G1 = {g1 < · · · < g|G1|}. Let D0 be the Kohnert diagram
(K1, ∅, d′). Then compute ]gi(D

i−1) = (Di, ki) for 1 6 i 6 |G1|. The final output is D|G1|.

Lemma 70. The description is equivalent to the description of ]G(K) in subsection 3.1.

Proof. Recall that ]G(K) iterates over cells of G from right to left. Within each column,
it goes from bottom to top. For a cell (c, r) ∈ G, it picks the highest cell weakly below
(c, r) such that once this cell is raised to (c, r), the diagram is still in KD(α). Then it
moves the chosen cell to (c, r).
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Let D = (K1, ∅, d) be the Kohnert diagram at the beginning of the iteration of (c, r) ∈
G. Assume c > 2. By the recursive description of KD(α), the following two statements
are equivalent:

• (c, r′) is a cell in D such that if we move it to (c, r), the diagram is still in KD(α).

• (c − 1, r′) is a cell in d such that if we move it to (c − 1, r), the diagram is still in
KD(M(α,K1)).

Thus, iterations of (c, r) ∈ G with c > 2 will behave the same as if ]G>2
acts on d ∈

KD(M(α,K1)). Then iterations of (1, g) ∈ G can be characterized by the ]g operator.

Now we can recursively describe the map Ψα. To make our description concise, we
extend ]g(·) to diagram pairs (K,G) such that (K, ∅) ∈ KD(α) and G has no cells in
column 1. The operator ]g(·) acts as if acting on (K, ∅).

Now take D = (K1, G1, d) ∈ KKD(α). If D is the empty pair, we have Ψα(D) = D.
Otherwise, let t = Ψγ(d), where γ = M(α,K1). Assume G1 = {g1 < · · · < g|G1|}. Let
D0 be the diagram pair (K1, ∅, t). Then compute ]gi(D

i−1) = (Di, ki) and write Di as

(Ki
1, ∅, t). Finally, Ψα(D) is (K

|G1|
1 , {k1, . . . , k|G1|}, t).

Example 71. Consider α = (0, 0, 2, 0, 3, 1, 2). Let D = (K,G) be the following element
in KKD(α).

D =

7 ·
6 X X
5 X ·
4 · · ·
3 X
2 · ·
1 ·

If we compute Ψα(D) using the description in subsection 3.1, we would go through the
following iterations.

K =

7 ·
6
5 ·
4 · · ·
3
2 · ·
1 ·

(2,6)−−→

·
·

· · ·

· ·
·

(1,3)−−→

·
·

· · ·
·
·

·

(1,5)−−→

·
·

·
· ·

·
·

·

(1,6)−−→

·
· ·
·
· ·

·
·

= L.
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Thus, we have

Ψα(D) = (L, (K tG)− L) =

7 ·
6 · ·
5 · X
4 X · ·
3 ·
2 X ·
1 X

Now we try our new recursive description. We may write D as (K1, G1, d), where K1 =
{1, 2, 4, 7}, G1 = {3, 5, 6} and d is illustrated below. Our new description would first view
d as an element of KKD(M(α,K1)) = KKD((0, 1, 0, 2, 0, 0, 1)) and send it to t:

d =

6 X
5 ·
4 · ·
3
2 ·
1

−→

·
X
· ·

·
= t.

It remains to perform ]3, ]5 and ]6.

D0 =

7 ·
6 ·
5
4 · · ·
3
2 · ·
1 ·

]3−→
2

·
·

· · ·
·
·

·

]5−→
4

·
·

·
· ·

·
·

·

]6−→
1

·
· ·
·
· ·

·
·

= D3.

Finally, the image is just ({3, 5, 6, 7}, {1, 2, 4}, t), which agrees with the computation
above.

It is clear that this recursive description agrees with the original description of Ψα.
To prove Lemma 20, we need to show t,D0, . . . , D|G1| exist and satisfy our assumptions.
Besides, we need to check the final output is a diagram pair in RSVT(α).

Proof of Lemma 20. Prove by induction on max(α). We may assume Ψγ is a well-defined

map from KKD(γ) to RSVT(γ), where γ = M(α,K1). Thus, we know t ∈ RSVT(γ).
Then clearly if we ignore ghost cells in D0, it is in KD(α). Moreover, D0 has no ghost

cells in column 1. Next, we need to show the diagram pairs Di are well-defined. By
Theorem 44, we know for each gi, |[gi, n] ∩ supp(α)| > |[gi, n] ∩K1|. Notice that the first
i− 1 iterations will not move any cells above row gi−1. Thus, [gi, n]∩K1 = [gi, n]∩Ki−1

1 .
By Lemma 56, Di exists.

Next, we need to check the image is in RSVT(α). In other words, we need to check
T = (K |G1|, {k1, . . . , k|G1|}, t) should satisfy all four conditions in Theorem 47. Let L′1 be
the set of row indices of Kohnert cells in column 1 of t.

the electronic journal of combinatorics 30(4) (2023), #P4.26 32



1. The first condition is immediate.

2. Since Kohnert cells of D|G1| = (K
|G1|
1 , ∅, t) is in KD(α), we have K

|G1|
1 6 supp(α).

3. For each ki, we show |(ki, n] ∩K |G1|
1 | > |(ki, n] ∩ L′1|. Since Kohnert cells of Di−1 =

(Ki−1
1 , ∅, t) is in KD(α), we know the Kohnert cells of t is in KD(M(α,Ki−1

1 ). Thus,

L′1 6 supp(M(α,Ki−1
1 ) ⊆ Ki−1

1 . We have

|(ki, n] ∩Ki−1
1 | > |(ki, n] ∩ L′1|.

Since Ki
1 is obtained from Ki−1

1 by replacing ki with a larger number, we have

|(ki, n]∩Ki
1| = |(ki, n]∩Ki−1

1 |+1 > |(ki, n]∩L′1|. To obtain K
|G1|
1 , we replace each of

ki+1, . . . , k|G1| in K
i
1 with a larger number. Therefore, |(ki, n]∩K |G1|

1 | > |(ki, n]∩L′1|.

4. Kohnert cells of t is in KD(M(α,K
|G1|
1 )) and t ∈ RSVT(M(α,K1)). By Lemma 49,

t ∈ RSVT(M(α,K
|G1|
1 )).

7.2 Recursive description of Φα

Let E be an arbitrary diagram. We can recursively describe the operator [E(·). If D is
empty, then [E(D) is also empty if E = ∅, or undefined otherwise. If D is not empty,
write D as (L1, ∅, t). Let E>2 be the diagram {(c − 1, r) : (c, r) ∈ E, c > 2}. Let E1

be the set {r : (1, r) ∈ E}. Assume E1 = {e1 > · · · > e|E1|}. Let D0 be the Kohnert
diagram (L1, ∅, t). Then compute [ei(D

i−1) = (Di, gi) for 1 6 i 6 |E1| and write Di

as (Li1, ∅, t). View t as an element of KD(M(α,L
|E1|
1 )) and find t′ = [E>2

(t) recursively.

Finally, [E(D) = (L
|E1|
1 , ∅, t′).

Lemma 72. The description is equivalent to the description of [E(L) in subsection 3.2.

Proof. Recall that [E(L) iterates over cells of E from left to right. Within each column,
it goes from top to bottom. For a cell (c, r) ∈ E, it picks the lowest cell weakly above
(c, r) such that once this cell is lowered to (c, r), the diagram is still in KD(α). Then it
moves the chosen cell to (c, r).

Let D = (L1, ∅, t) be the Kohnert diagram at the beginning of the iteration of (c, r) ∈
E. The iterations of (1, e) ∈ E can be characterized by the [e operator. Assume c > 2.
By the recursive description of KD(α), the following two statements are equivalent for
any r′ < r:

• (c, r′) is a cell in D such that if we move it to (c, r), the diagram is still in KD(α).

• (c − 1, r′) is a cell in t such that if we move it to (c − 1, r), the diagram is still in

KD(M(α,L
|E1|
1 )).

Thus, iterations of (c, r) ∈ E with c > 2 will behave the same as if [E>2
acts on t ∈

KD(M(α,L
|E1|
1 )).
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Now we can recursively describe the map Φα. To make our description concise, we
extend [e(·) to diagram pairs (K,G) such that (K, ∅) ∈ KD(α) and G has no cells in
column 1. The operator [e(·) acts as if acting on (K, ∅).

Now take D = (L1, E1, t) ∈ RSVT(α). If D is the empty diagram pair, we have
Φα(D) = D. Otherwise, assume E1 = {e1 > · · · > e|E1|}. Let D0 be the diagram
pair (L1, ∅, t). Then compute [ei(D

i−1) = (Di, gi) and write Di as (Li1, ∅, t). Notice that

t ∈ RSVT(M(α,L1)) and its Kohnert cells is in KD(M(α,L
|E1|
1 )). Thus, by Lemma 49,

we may view t as an element of RSVT(γ), where γ = M(α,L
|E1|
1 ). Let d = Φγ(t). Finally,

Φγ(T ) = (L
|E1|
1 , {g1, . . . , g|E1|}, d).

Example 73. Consider α = (0, 0, 2, 0, 3, 1, 2). Let D = (L,E) be the following element
in RSVT(α).

D =

7 ·
6 · ·
5 · X
4 X · ·
3 ·
2 X ·
1 X

If we want to compute Φα(D) using the description in subsection 3.2, we would go through
the following iterations.

L =

7 ·
6 · ·
5 ·
4 · ·
3 ·
2 ·
1

(1,4)−−→

·
· ·

· · ·
·
·

(1,2)−−→

·
· ·

· · ·

· ·

(1,1)−−→

·
·

· · ·

· ·
·

(2,5)−−→

·

·
· · ·

· ·
·

= K.

Thus, Φα(D) is:

(K, (L t E)−K) =

7 ·
6 X X
5 X ·
4 · · ·
3 X
2 · ·
1 ·

Now we try our new recursive description. We may write D as (L1, E1, t), where L1 =
{3, 5, 6, 7}, E1 = {1, 2, 4} and t is illustrated below. Our new description would first
perform [4, [2 and [1 on D0:
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D0 =

7 ·
6 · ·
5 · X
4 · ·
3 ·
2 ·
1

[4−→
5

·
· ·

X
· · ·
·
·

[2−→
3

·
· ·

X
· · ·

· ·

[1−→
6

·
·
X

· · ·

· ·
·

= D3.

Now, view t as an element of KKD(M(α,L3
1)) = KKD((0, 1, 0, 2, 0, 0, 1)) and send it to

d:

t =

6 ·
5 X
4 · ·
3
2 ·
1

−→

X
·
· ·

·

= d.

Finally, Φα(D) = ({1, 2, 4, 7}, {3, 5, 6}, d), which agrees with the computation above.

It is clear that this recursive description agrees with the original description of Φα.
To prove Lemma 23, we need to show d,D0, . . . , D|E1| exist and satisfy our assumptions.
Moreover, we need to check the final output is a diagram pair in KKD(α).

Proof of Lemma 23. Prove by induction on max(α). We may assume Φγ a well-defined
map from RSVT(γ) to KKD(γ) for any γ with max(γ) < max(α).

Clearly D0 is a diagram pair whose Kohnert cells form a diagram in KD(α) and has
no ghost cells in column 1. Next, we need to show Di is well-defined for an arbitrary
1 6 i 6 |E1|. Notice that the first i − 1 iterations will not move any cells weakly below
row ei−1. Let L′1 consists of row indices of Kohnert cells in column 1 of t. Thus,

|(ei−1, n] ∩ Li−11 | = |(ei−1, n] ∩ L1| > |(ei−1, n] ∩ L′1|,

where the inequality follows from Theorem 47. By Lemma 63, Di exists. Finally, by the

inductive hypothesis, d ∈ KKD(M(α,L
|E1|
1 )).

Next, we need to check the final image is in KKD(α). In other words, we need to check
that (L|E1|, {g1, . . . , g|E1|}, d) satisfies all four conditions in Theorem 44.

1. The first condition is immediate.

2. Since Kohnert cells of D|E1| = (L
|E1|
1 , ∅, t) is in KD(α), we have L

|E1|
1 6 supp(α).

3. For each gi, we show |[gi, n]∩ supp(α)| > |[gi, n]∩L|E1|
1 |. Since (L1, E1, t) ∈ RSVT(α),

we have L1 6 supp(α). Since Lj1 is obtained from Lj−11 by replacing gj with a smaller

number, L
|E1|
1 6 · · · 6 L0

1 6 supp(α). By Lemma 29,

|[gi, n] ∩ L|E1|
1 | 6 · · · 6 |[gi, n] ∩ L0

1| 6 |[gi, n] ∩ supp(α)|.

Notice that |[gi, n]∩Li1| = |[gi, n]∩Li−11 |−1. Thus, |[gi, n]∩L|E1|
1 | < |[gi, n]∩ supp(α)|.
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4. This is checked above.

7.3 Proof of Theorem 3

In this subsection, we prove Theorem 3.

Proof of Theorem 3. The maps clearly preserve wt(·) and ex(·). To show they are mutu-
ally inverses, we only need to check the following two statements.

1. Take D ∈ KKD(α). Let T = Ψα(D) ∈ RSVT(α). Then Φα(T ) = D.

2. Take T ∈ RSVT(α). Let D = Φα(D) ∈ KKD(α). Then Ψα(D) = T .

We only establish the first statement using Lemma 67. The second statement can be
proved similarly using Lemma 69 instead.

We prove by induction on max(α). When max(α) = 0, D = (∅, ∅) and our claim is
immediate.

Now assume max(α) > 0. Let D = (K1, G1, d). First, we compute Ψα(D) using our
recursive description. Let t = Ψγ(d) where γ = M(α,K1). Assume G1 = {g1 < g2 < · · · <
g|G1|}. Let D0 = (K1, ∅, t) and ]gi(D

i−1) = (Di, ki) = ((Ki
1, ∅, t), ki) for i = 1, . . . , |G1|.

Then we know D is sent to T = (K
|G1|
1 , E1, t}) ∈ RSVT(α), where E1 = {k1, . . . , k|G1|}.

Now we compute Φα(T ) using our recursive description. Now write E1 as {e1 >

· · · > e|G1|}. After applying [e1 , . . . , [e|G1|
on (K

|G1|
1 , ∅, t), by Lemma 67, the resulting

diagram pair is (K1, ∅, t) and G1 consists of the output numbers. Finally, by the inductive
hypothesis, Φγ(t) = d. Thus, Φα(T ) = (K1, G1, d) = D.

Now we have the desired weight-preserving bijection between KKD(α) and RSVT(α).
We can claim the Ross-Yong conjecture is correct.

Corollary 74. The Lascoux polynomial indexed by α, has a combinatorial formula with
KKD(α), i.e.,

L(β)
α =

∑
D∈KKD(α)

βex(D)xwt(D) .
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