
A row analogue of Hecke column insertion

Daoji Huang, Mark Shimozono, and Tianyi Yu

July 2022

Abstract

We introduce a new row insertion algorithm on decreasing tableaux
and increasing tableaux, generalizing Edelman-Greene (EG) row inser-
tion. Our row insertion algorithm is a nontrivial variation of Hecke col-
umn insertion which generalizes EG column insertion. Similar to Hecke
column insertion, our row insertion is bijective and respects Hecke equiv-
alence, and therefore recovers the expansions of Grothendieck symmetric
functions into Grassmannian Grothendieck functions. In future work, we
will use this row insertion to establish an expansion of products between
Lascoux polynomials and certain Grothendieck polynomials, which cannot
be done by Hecke column insertion.

1 Introduction

The EG insertion was introduced to give combinatorial expansions of Stanley
symmetric functions into Schur functions [EG]. EG insertion comes in four
flavors depending on the use of increasing versus decreasing tableaux and row
versus column insertion.

The Hecke column insertion was introduced to give combinatorial expan-
sions of Grothendieck symmetric functions into Grassmannian Grothendieck
functions[BKSTY]. It can generalize the two flavors of column EG insertions.
Even though it has a row version, it does not satisfy a suitable Pieri property
that guarantees the recording tableaux to be set-valued tableaux. This property
is required for the insertion algorithm to realize a combinatorial expansion of
Grothendieck symmetric functions into Grassmannian Grothendieck symmetric
functions. Our new insertion generalizes the row EG insertion and satisfies the
desired Pieri property. Further applications of our algorithm to the nonsym-
metric case of Grothendieck-to-Lascoux expansions, as well as the expansion of
certain products of Grothendieck and Lascoux polynomials to Lascoux polyno-
mials, are explored in [OY].

This novel insertion has the very unusual property that some values may be
moved which are not part of the bumping path. It was originally inspired by, and
can be computed by, certain row moves on marked bumpless pipedreams, which,
like compatible pairs, are combinatorial objects whose generating function is a
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Grothendieck polynomial. This connection will be developed in future work
[HSY].

1.1 Stanley and Grothendieck symmetric functions

The main application of these various insertion algorithms, is to the expansions
of Stanley (resp. Grothendieck) symmetric functions into Schur (resp. Grass-
mannian Grothendieck) functions.

A pair of words (a1 · · · an, i1 · · · in) is called compatible1 if ij ≥ ij+1 and
ij = ij+1 implies aj < aj+1 for all 1 ≤ j < n. Each word a has an associated
permutation [a]H (see §2.2). We say a is a Hecke word for w if [a]H = w. Let
CPw be the set of compatible pairs (a, i) such that a is a Hecke word for w. Let
CPRed

w consists of (a, i) ∈ CPw such that a is reduced (i.e. len(a) = ℓ(w) where
ℓ(w) is the Coxeter length.

Then the Stanley symmetric function Fw and the Grothendieck symmetric
function Gw can be defined as [BJS] [FK]

Fw =
∑

(a,i)∈CPRed
w

xwt(i)

Gw =
∑

(a,i)∈CPw

(−1)|wt(i)|−len(w)xwt(i) .

Let Y be the set of partitions. For λ = (λ1 ≥ λ2 ≥ · · · ) ∈ Y let D(λ) =
{(i, j) ∈ Z2

>0 | 1 ≤ j ≤ λi} be its diagram, with matrix-style indexing. A set-
valued tableau T of shape λ ∈ Y is a function which assigns to each s ∈ D(λ) a
nonempty subset of positive integers, such that if s′ is immediately to the right
(resp. below) s in the same row (resp. column) then max(T (s)) ≤ min(T (s′))
(resp. max(T (s)) < min(T (s′))). We denote by SVT (resp. RSVT) the set of
set-valued tableaux (resp. reverse set-valued tableaux, meaning all inequalities
are reversed). Let SSYT (resp. RSSYT) denote the set of semistandard (resp.
reverse semistandard) Young tableaux, meaning set-valued (resp. reverse set-
valued) tableaux in which each set is a singleton. The following is a reverse-set-
valued tableau of shape (3, 2).

5 5, 4 3, 2, 1

3, 2 2

The Schur function sλ and the Grassmannian Grothendieck symmetric func-

1These compatible sequences are the reverse words of those defined in [BJS].
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tion Gλ each have two equivalent formulas ([Bu] for Gλ):

sλ =
∑

Q∈SSYT
shape(Q)=λ

xwt(Q) =
∑

Q∈RSSYT
shape(Q)=λ

xwt(Q)

Gλ =
∑

Q∈SVT
shape(Q)=λ

(−1)|wt(Q)|−|λ|xwt(Q) =
∑

Q∈RSVT
shape(Q)=λ

(−1)|wt(Q)|−|λ|xwt(Q) .

1.2 Expansions

The Fw (resp. Gw) can be expanded into sλ (resp. Gλ). The expansion co-
efficients have geometric meaning; they contain all cohomological (resp. K-
theoretic) equioriented type A quiver constants as special cases [BKSTY].

There are two ways to write down either of the two expansions, using either
increasing tableaux or decreasing tableaux. For a permutation w, let Incw (resp.
Decw) be the set of increasing (resp. decreasing) tableaux P whose row word
row(P ) (resp. reverse row word rev(row(P )); see §2.2) is a Hecke word for w.
Let IncRed

w (resp. DecRed
w ) consists of tableaux in Incw (resp. Decw) whose row

word is reduced. Then we have ([EG] for Fw and [BKSTY] for Gw)

Fw =
∑

P∈IncRed
w

sshape(P ) (1)

=
∑

P∈DecRed
w

sshape(P ), (2)

Gw =
∑

P∈Incw

(−1)ℓ(w)−|shape(P )|Gshape(P ) (3)

=
∑

P∈Decw

(−1)ℓ(w)−|shape(P )|Gshape(P ). (4)

1.3 Insertion algorithms: General requirements

Let A and B be sets of tableaux of partition shape. We use the notation

A×Y B = {(P,Q) ∈ A×B | shape(P ) = shape(Q)} (5)

for the fiber product over the maps A → Y and B → Y given by taking the
shape of a tableau.

To give a combinatorial proof of (3) it suffices to produce a bijection ΦIS :
CPw → Incw×Y SVT or ΦIR : CPw → Incw×YRSVT which is weight-preserving:

(a, i) 7→ (P,Q) (6)

wt(i) = wt(Q). (7)

Similarly to prove (4) it suffices to supply a weight-preserving bijection ΦDS :
CPw → Decw ×Y SVT or ΦDR : CPw → Decw ×Y RSVT.
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DecRedw ×Y RSSYT DecRedw ×Y SSYT

CPRed
w

IncRedw ×Y RSSYT IncRedw ×Y SSYT

1× ev

ev × 1 ev × 1

ΦRed
DR ΦRed

DS

ΦRed
IR ΦRed

IS

1× ev

Figure 1: The four reduced bijections

1.4 Edelman-Greene insertion: solution for reduced case

Historically first to be discovered were “reduced” restrictions of the above bi-
jections. The expansions (1) and (2) are obtained via four weight-preserving
bijections. These bijections are given by four variations of the Edelman-Greene
insertion (EG insertion) [EG]:

• ΦRed
IS : CPRed

w → IncRed
w ×Y SSYT: EG column insertion into increasing

tableaux, starting from the right end of the compatible pairs.

• ΦRed
IR : CPRed

w → IncRed
w ×Y RSSYT: EG row insertion into increasing

tableaux, starting from the left end of the compatible pairs.

• ΦRed
DS : CPRed

w → DecRed
w ×Y SSYT: EG row insertion into decreasing

tableaux, starting from the right end of the compatible pairs.

• ΦRed
DR : CPRed

w → DecRed
w ×Y RSSYT: EG column insertion into decreasing

tableaux, starting from the left end of the compatible pairs.

The four “reduced” bijections are essentially equivalent: EG row insertion and
EG column insertion are merely transposes of each other. The relationships are
summarized in the commutative diagram in Figure 1. There are two different
analogues of Schützenberger’s evacuation involution being used here. The first
is a weight-preserving bijection SSYT

ev←→ RSSYT. It may be defined by jeu-
de-taquin which repeatedly slide initial horizontal strips to the outside without
relabeling values. The second is a map Decw

ev←→ Incw that appears in [SY]. For
the restriction DecRed

w → IncRed
w it is the same as Thomas and Yong’s evacuation

map based on their jeu-de-taquin for increasing tableaux, which they call Kevac
[TY, §4].
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Example 1.1. Consider the following element (a, i) ∈ CPRed.

i 3 3 3 2 2 2 1 1
a 1 2 4 1 3 5 2 4

We have

ΦIS(a, i) =

 1 2 3 4
2 3 5
4

,
1 1 2 3
2 2 3
3


ΦIR(a, i) =

 1 2 3 4
2 3 5
4

,
3 3 3 2
2 2 1
1


ΦDS(a, i) =

 5 4 2 1
4 3 1
2

,
1 1 2 3
2 2 3
3



The map ev : SSYT → RSSYT is defined as follows. For a T ∈ SSYT,
there is a unique T ′ ∈ RSSYT such that row(T ) and rev(row(T ′)) are Knuth
equivalent, where rev(·) is the operator that reverse a word. Then ev(T ) := T ′.
The computation ev : SSYT→ RSSYT can be done by jeu-de-taquin as follows.
Sliding out the 1’s using the usual jeu-de-taquin we obtain

1 1 2 3
2 2 3
3

→ 2 2 2 3
1 1 3
3

→ 2 2 2 3
3 3 1
1

Then the 2’s are slid out but not past the 1s.

2 2 2 3
3 3 1
1

→ 3 3 3 2
2 2 1
1

The 3’s need no moving. The result is

3 3 3 2
2 2 1
1

The following Proposition asserts that the lower triangle in Figure 1 com-
mutes.

Proposition 1.2. [EG, Cor. 7.22] Let (a, i) ∈ CPRed
w and ΦRed

IS (a, i) = (P,Q)
and ΦRed

IR (a, i) = (P ′, Q′). Then P = P ′ and Q′ = ev(Q) where ev : SSYT →
RSSYT is Schützenberger’s evacuation involution (usual evacuation but without
relabeling).
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The upper triangle also commutes: it is the same statement but with the
total order on values reversed.

The map ev : IncRed
w → DecRed

w can be defined similarly. For a T ∈ IncRed
w ,

there is a unique T ′ ∈ DecRed
w such that row(T ) and rev(row(T ′)) are Coxeter-

Knuth equivalent. Then ev(T ) := T ′. Its computation is more involved.2

There is also a beautiful connection between the insertions into increasing
versus decreasing tableaux. The following result says that the triangle on the
right of Figure 1 is commutative.

Proposition 1.3. Let (a, i) ∈ CPRed
w , ΦRed

IS (a, i) = (P,Q) and ΦRed
DS (a, i) =

(P ′, Q′). Then Q = Q′ and P ′ = ev(P ) where ev : IncRed
w → DecRed

w is the map
P 7→ P ♭.

Proof. The statement for Q tableaux is proved in [EG, Cor. 7.21]. By [EG,
Thm. 6.24], row(P ) and a are Coxeter-Knuth equivalent. On the other hand,
row(P ′) and rev(a) are Coxeter-Knuth equivalent. Thus, rev(row(P ′)) and
row(P ) are Coxeter-Knuth equivalent, so P ′ = ev(P ).

An analogous relationship exists between ΦDS and ΦIR.

Remark 1.4. In particular, for any fixed (a, i) ∈ CPRed
w , upon applying any of

the four EG bijections, the tableau pair has the same shape.

1.5 Solutions for general case

Hecke column insertion [BKSTY] defines a bijection ΦIS : CPw → Incw×YSVTw

whose restriction to CPRed
w is EG column insertion. By merely reversing the total

order on entries in tableaux, the resulting variant of Hecke column insertion gives
a bijection ΦDR : CPw → Decw ×Y RSVTw.

However, there are no known easy variations of the Hecke insertion which
achieve the bijections ΦIR or ΦDS . Hecke row insertion is the variant of Hecke
column insertion in which the roles of rows and columns are exchanged. Unfor-
tunately, it cannot achieve this goal since it does not satisfy the relevant Pieri
property.

This paper introduces a new insertion algorithm Φ which gives an explicit
weight-preserving bijection ΦDS : CPw → Decw ×Y SVTw. Our algorithm is a
row insertion which, like Hecke insertion, respects the Hecke equivalence relation
≡H . Our insertion possesses a different Pieri property than the one satisfied by
Hecke row insertion; this is necessary to achieve set-valued recording tableaux.
Moreover, when restricted to CPRed

w , our algorithm recovers EG row insertion.
A simple variation of our algorithm (reversing the total order on entries) gives
a bijection ΦIR : CPw → Incw ×Y RSVTw. Together with the variants of Hecke
insertion, our insertion completes the picture in §1.3: we have produced the
generalization of the four diagonal maps in Figure 1. Now the picture looks like
Figure 2.

2We believe the shape-preserving map P 7→ P ♭ of [SY, Def. 2.9] agrees with ev(·) on
IncRed

w . To prove this, one just needs to check that performing K-jeu-de-taquin on one box
will preserve the Coxeter-Knuth class.
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Decw ×Y RSVT Decw ×Y SVT

CPw

Incw ×Y RSVT Incw ×Y SVT

?

? ?

ΦDR ΦDS(new)

ΦIR(new) ΦIS

?

Figure 2: The four bijections

Remark 1.5. None of the coherence properties of Propositions 1.2 or 1.3 gen-
eralize to any of the bijections in the nonreduced setting. In general the four
bijections produce 4 different groupings of compatible pairs for the various ex-
pansions of Gw. In addition we are not aware of any well-behaved map that can
play the role of ev : SVT→ RSVT.

2 New reverse row insertion

2.1 Ejectable values in decreasing tableaux

To define the new reverse insertion algorithm on decreasing tableaux, we re-
quire the notion of an ejectable value in a decreasing tableau. This is defined
recursively.

In this article English notation is used for partitions and tableaux. A tableau
is decreasing if its entries strictly decrease from left to right along each row and
strictly decrease from top to bottom in each column. For a decreasing tableau
P let P>r denote the decreasing tableau obtained by removing the first r rows
of P . Let P≥r = P>(r−1).

Definition 2.1. Let P be a decreasing tableau. A value x is P -ejectable if x
occurs in the first row of P and either x− 1 is not in the first row of P , or x− 1
is in the first row of P and x− 1 is P>1-ejectable.

Example 2.2. The value 3 is P -ejectable for the tableau P depicted below.

P =
7 6 3 2
5 2 1
3 1
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Since 3 and 2 both occur in the first row, 3 is P -ejectable if and only if 2 is
P>1-ejectable.

P>1 =
5 2 1
3 1

Since 2 and 1 occur in the first row of P>1, 2 is P>1-ejectable if and only if 1 is
P>2-ejectable.

P>2 = 3 1

Since the first row of P>2 has a 1 but no 0, 1 is P>2-ejectable. Hence 3 is
P -ejectable.

The value 7 is not P -ejectable because there is a 6 in the first row but not
in the second.

2.2 Ejectable values and Hecke equivalence

The 0-Hecke monoid is the quotient of the free monoid of words on the al-
phabet Z>0 by the relations

ii ≡H i

i(i+ 1)i ≡H (i+ 1)i(i+ 1)

ij ≡H ji for |i− j| ≥ 2.

The minimum-length elements of each ≡H class are the reduced words of some
permutation w, giving a canonical bijection between the ≡H classes and per-
mutations of Z>0 moving finitely many elements. We denote by [a]H the per-
mutation associated with the ≡H class of the word a.

The row-reading word row(P ) of a tableau P is the word · · ·u(2)u(1) where
u(i) is the word given by reading the i-th row of P from left to right.

Lemma 2.3. Let P be a decreasing tableau. If x is an ejectable entry of P then
row(P ) ≡H row(P )x.

Proof. This is proved by induction on the number of rows in P . Let w be the
decreasing word given by the first row of P and let R be the set of letters in w.
By definition row(P ) = row(P>1)w. It suffices to show that

row(P>1)w ≡H row(P>1)wx. (8)

If x ∈ R and x − 1 /∈ R then w ≡H wx and hence (8) holds. Otherwise
x, x − 1 ∈ R and the x − 1 is ejectable in P>1. By the inductive hypothesis,
row(P>1) ≡H row(P>1)(x− 1). In this case (x− 1)w ≡H wx and

row(P>1)wx ≡H row(P>1)(x− 1)w ≡H row(P>1)w

and again (8) holds as required.
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2.3 Bumping paths

Let D(λ) = {(i, j) ∈ Z2
>0 | i ≥ 1, j ≤ λi} be the diagram of the partition λ. The

elements of D(λ) are called the cells of λ and have a matrix-style indexing: the
cell (i, j) is depicted as a box in the i-th row and j-th column. For a partition λ,
a λ-removable cell is one that is at the end of its row and bottom of its column.
For a tableau P , a P -removable cell is a λ-removable cell where λ is the shape
of P .

Definition 2.4. Let (r, c) be a removable cell for the decreasing tableau P .
The (reverse) bumping path of (r, c) in P is the following sequence of numbers
mr < mr−1 < · · · < m1 together with their positions in P . Let mr be the value
of P in (r, c). With the entry mi+1 in row i+ 1 defined, let mi be the smallest
number in row i such that mi+1 < mi.

Example 2.5. A decreasing tableau and the bumping path for its removable
cell (3, 2) are pictured below.

8 7 6
5 4 2
3 2
1

In the example above, notice that the column index is weakly increasing, as
you go up in bumping path. This is true in general.

Lemma 2.6. Let mr < mr−1 < · · · < m1 be a bumping path in P . For
r ≥ j > i ≥ 1, the mi in row i of P is weakly right of the mj in row j of P .

Proof. Only need to prove this claim for j = i + 1. Let y be the number
immediately above the mi+1 in row i + 1 of P , We have y > mi+1. Thus,
y ≥ mi, The mi in row i is weakly right of the y in this row, which implies our
claim.

The element in the first row of any bumping path is ejectable.

Lemma 2.7. Let mr < · · · < m1 be the bumping path of a removable cell of P .
Then m1 is ejectable in P .

Proof. The proof proceeds by induction on the number of rows in P . Let R be
first row of P . Ifm1−1 /∈ R thenm1 is ejectable in P . Otherwisem1,m1−1 ∈ R.
Since m1 is the smallest in R such that m1 > m2, it follows that m2 = m1 − 1.
It suffices to show that m1 − 1 = m2 is ejectable in P>1. This follows from the
inductive hypothesis since mr < · · · < m2 is the bumping path of a removable
cell in P>1.

2.4 New reverse insertion

The reverse insertion algorithm is a map Ψ

(P, s, α) 7→ (P ′,m)
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where the input triple consists of a decreasing tableau P , a P -removable cell
s = (r, c), and α ∈ {0, 1}. The output pair consists of a decreasing tableau P ′

and m ∈ Z>0 such that

shape(P ′) =

{
shape(P ) if α = 0

shape(P )− {s} if α = 1.
(9)

For conceptual clarity we precompute the bumping path in P starting at
(r, c). For 1 ≤ i ≤ r let mi denote the entry in the i-th row of the bumping
path. The output value m is by definition the value m1 in the first row of the
bumping path.

The output tableau P ′ will only differ from P along the bumping path. It is
only necessary to specify whether each mi on the bumping path gets replaced,
and if so, by what value.3 This decision is determined iteratively by decreasing
i based on the values mi and mi+1, the i-th row of P , the subtableau P ′

>i, and
a status indicator αi+1 ∈ {0, 1}. The i-th iteration updates the i-th row of P
(which becomes the i-th row of P ′) and produces αi ∈ {0, 1}.

Let P ′ be a working tableau which is initialized to P . In the initialization
step, if α = 1, remove from P ′ the removable cell in row r and its contents mr

and set αr = 1 and i = r − 1. If α = 0 set mr+1 = 0, αr+1 = 0 and i = r.
The algorithm enters a loop. If i = 0 the algorithm terminates and the

current tableau P ′ is the output tableau. Now assume i ≥ 1. Let R be the set
consisting of numbers in row i of the current tableau P ′ (or equivalently P , since
P and P ′ differ only in rows of index greater than i). By definition mi ∈ R.

There are several cases. We give each a nickname and mnemonic.

• Dummy (D): If mi−1 ∈ R (which implies mi+1 = mi−1) do not change
the i-th row and set αi = αi+1.

• Direct Replacement (DR): Otherwise if αi+1 = 1 and mi+1 /∈ R,
replace mi by mi+1 in row i of P ′ and set αi = 1.

Suppose neither of the two above cases hold. Find the smallest ejectable
entry x in P ′

>i such that mi > x > mi+1.

• Indirect Replacement (IR): Suppose x exists. Replace mi by x in row
i of P ′ and set αi = 1.

• No Replacement (NR): Suppose x does not exist. Do not change the
i-th row and set αi = 0.

Now decrement i and go to the top of the loop.

Example 2.8. In the following example, the input parameters are s = (5, 1)
and α = 0. To initialize, set (m6,m5,m4,m3,m2,m1) = (0, 1, 2, 5, 6, 8), i = 5,

3If replacement occurs the replacement value comes from the row below. However, unlike
most insertion algorithms, the replacement value need not come from the bumping path.
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and α6 = 0. The shaded box in the i-th row indicates the value mi. The label
on the arrow leaving this tableau is the mnemonic for the case of Ψ.

10 9 8
8 6 3
7 5 2
4 2 1
1

10 9 8
8 6 3
7 5 2
4 2 1
1

10 9 8
8 6 3
7 5 2
4 2 1
1

10 9 8
8 6 3
7 4 2
4 2 1
1

10 9 8
8 5 3
7 4 2
4 2 1
1

10 9 6
8 5 3
7 4 2
4 2 1
1

α6=0

NR

α5=0

D

α4=0

IR

α3=1

DR

α2=1

DR

α1=1

3 Properties of the reverse insertion

In this section the reverse insertion map Ψ is shown to be well-defined and some
of its properties are established.

Lemma 3.1. For r ≥ i ≥ 1, αi = 0 if and only if mi is ejectable in P ′
≥i.

Proof. Note that after the i-th row is processed, the subtableau P ′
≥i remains

the same thereafter: only bumping path entries in rows above may be changed.
The proof proceeds by descending induction on i. For the initial step, if

α = 1, the algorithm sets αr = 1 and mr gets removed and is therefore absent
from the r-th row of P ′. Thus, mr is not ejectable in P≥r. If α = 0, during the
first iteration, mr is replaced in the r-th row of P ′ if and only if αr = 1. Hence
our claim holds for i = r.

Now suppose the claim holds for row i + 1. In the Dummy case, mi+1 =
mi − 1 and mi is not replaced. Thus mi is ejectable in P ′

≥i if and only if the
entry mi − 1 = mi+1 is ejectable in P ′

>i (by definition of ejectable) if and only
if αi+1 = 0 (by induction) if and only if αi = 0 (since in the Dummy case
αi = αi+1). Otherwise suppose the Dummy case does not hold. Then mi and
mi − 1 cannot both live in row i of P ′. Thus mi is ejectable in P ′

≥i if and only
if it is not removed from row i. This happens only in the No Replacement case
and αi = 0 only in that case. Thus our claim holds for row i as required.

Theorem 3.2. The reverse insertion is a well-defined map.

Proof. It must be shown that the output tableau P ′ is a decreasing tableau. We
show P ′ is a decreasing tableau after each iteration of the algorithm.

During initialization, if α = 0, the iteration for i = r either leaves P ′ un-
changed or replaces mr in the removable cell (r, c) by a smaller number. If
α = 1, after the initialization step P ′ is a decreasing tableau, since it is ob-
tained from a decreasing tableau by removing a corner entry. In either case P ′

is a decreasing tableau before the i = r − 1 iteration.
Suppose P ′ is a decreasing tableau after the iteration for row i + 1. It is

enough to check that P ′ is still a decreasing tableau after the iteration for row
i. In the Dummy or No Replacement cases there is nothing to check. In the two
remaining cases, the number mi is replaced by a smaller number. We need to
make sure this smaller number is larger than all numbers on its right and under
it.
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Consider P ′ before this iteration. By the definition of a bumping path,
numbers on the right of the mi in row i are at most mi+1. By Lemma 2.6,
numbers below this mi are also at most mi+1. Next, we consider the two cases.

• Direct Replacement: mi is replaced by mi+1. We need to make sure mi+1

is not on the right or under this mi in P ′ before this iteration. First, mi+1

cannot be in row i by the condition of this case. Now assume toward
contradiction that mi+1 is immediately below mi. This part of P ′ looks
like

mi a

mi+1 b

Since αi+1 = 1, mi+1 is not ejectable in P ′
≥i+1. Thus, b = mi+1−1. Then

a > mi+1 − 1 and mi+1 ≥ a, so a = mi+1. Since mi+1 is not in row i a
contradiction is reached. Thus, after replacing the mi by mi+1, P

′ is still
a decreasing tableau.

• Indirect Replacement: mi is replaced by x. We know x > mi+1. After
replacing mi by x, P ′ is still a decreasing tableau, since numbers on its
right and under it are at most mi+1.

The reverse insertion respects Hecke equivalence.

Lemma 3.3. Let Ψ(P, (r, c), α) = (P ′,m). Then row(P ) ≡H row(P ′)m.

Proof. Let w be the decreasing word given by the first row of P and let R
be the set of letters in w. Define R′ and w′ similarly for P ′. Notice that
row(P ) = row(P>1)w and row(P ′) = row(P ′

>1)w
′. It suffices to show that

row(P>1)w ≡H row(P ′
>1)w

′m. (10)

The proof proceeds by induction on r, the row index of the entry in the
input of Ψ. The base case is r = 1. In this case row(P>1) = row(P ′

>1). If α = 1,
then w = w′m. Otherwise, in the first iteration, the algorithm searches for the
smallest ejectable x < m in P>1. If x does not exist then w ≡H wm = w′m.
Otherwise w′ is obtained by changing m in w into x. We see that (10) holds:

row(P>1)w ≡H row(P>1)xw ≡H row(P>1)w
′m.

For the inductive step let r > 1. Before the last iteration the algorithm
behaves as if doing Ψ on (P>1, (r − 1, c), α). By the definition of Ψ the result
is (P ′

>1,m2). By the inductive hypothesis, row(P>1) ≡H row(P ′
>1)m2. It is

enough to check
row(P ′

>1)m2w ≡H row(P ′
>1)w

′m.

Consider the first two cases of the last iteration.

12



• Dummy: In this case, m,m− 1 ∈ R and m2 = m− 1. We have m2w ≡H

wm = w′m.

• Direct Replacement: In this case, m− 1,m2 /∈ R. We know w is obtained
from w by changing m into m2. We have m2w ≡H w′m.

We may assume the above two cases do not hold. Then either m2 ∈ R or α2 = 0
(m2 is ejectable in P ′

>1). In either case we claim row(P ′
>1)m2w ≡H row(P ′

>1)w:
If m2 ∈ R, then m2w ≡H w since m2 + 1 is not in w and m2 is in w. If the m2

is ejectable in P ′
>1 then row(P ′

>1)m2 ≡H row(P ′
>1) by Lemma 2.3.

With this claim, it must be shown that

row(P ′
>1)w ≡H row(P ′

>1)w
′m.

It must be verified that this holds in the remaining two cases:

• Indirect Replacement: Since x is ejectable in P ′
>1, row(P

′
>1) ≡H row(P ′

>1)x.
w′ is obtained by changing m to x in w. Thus xw ≡H w′m.

• No Replacement: We have w ≡H wm = w′m.

Our reverse row insertion satisfies the following Pieri condition, which is not
satisfied by Hecke reverse row insertion.

Lemma 3.4. Let α, α′ ∈ {0, 1}, P a decreasing tableau with removable cor-
ner (r1, c1), Ψ(P, (r1, c1), α) = (P ′,m), and Ψ(P ′, (r2, c2), α

′) = (P ′′,m′) with
(r2, c2) a removable corner of P ′ with c2 < c1. Then m′ > m.

Proof. Let mr1 < · · · < m1 be the bumping path for Ψ on (P, (r1, c1), α) and
nr2 < · · · < n1 the bumping path for Ψ on (P ′, (r2, c2), α

′). By definition
m1 = m and n1 = m′ so it is enough to show that n1 > m1.

Whenmi is ejected from P ′
≥i, ni is a number in the top row of P ′

≥i. Moreover,
since ni is the last number in a bumping path in P ′

≥i, ni is ejectable in P ′
≥i. We

check ni > mi for all 1 ≤ i ≤ r1 by descending induction on i; in the case α = 0
the initial index is i = r1 + 1.

For the base case consider the value of α. If α = 1, mr1 is removed from row
r1 and ejected. Clearly nr1 > mr1 . If α = 0, mr1+1 = 0 < nr1+1.

By induction we assume that mi+1 < ni+1. We consider the cases of the
two reverse insertions when they process row i.

• (Dummy case): In this case, mi = mi+1 + 1. We have ni > ni+1 ≥ mi.

• (Direct Replacement case): In this case, we replace mi by mi+1 in row i.
Then ni is a number in row i of P ′, and since ni > ni+1 > mi+1 it must
be to the left of mi+1. Thus ni is to the left of mi in row i of P . We
conclude that ni > mi.

13



• (Indirect Replacement case): In this case, we replace mi by x on row i.
Since ni+1 > mi+1 and ni+1 is ejectable in P ′

>i, ni+1 ≥ x by the choice of
x. Thus ni is a number in row i of P ′, and since ni > ni+1 ≥ x, it must
be to the left of x. Similar to the previous case, ni > mi.

• (No Replacement case): In this case, there is no x that is ejectable in
P ′
≥i+1 and mi+1 < x < mi. Since ni+1 is ejectable in P ′

≥i+1, ni+1 ≥ mi.
Thus ni > mi.

The reverse insertion algorithm is a generalization of EG reverse insertion.

Lemma 3.5. Let P be a decreasing tableau such that row(P ) is reduced. Let
Ψ(P, (r, c), 1) = (P ′,m). Then we also get (P ′,m) if we apply EG reverse row
insertion at (r, c) in P .

Proof. Since the Dummy and Direct Replacement cases agree with EG reverse
insertion, it is enough to show that during each iteration, one of these cases
must apply.

For α = 1 the initial step agrees with reverse EG insertion. By induction we
assume αi+1 = 1. We will assume the iteration for row i is not in the Dummy
nor the Direct Replacement cases and reach a contradiction. Let R be the i-
th row of P . We assume mi − 1 ̸∈ R and mi+1 ∈ R. By the minimality of
mi, mi+1 + 1 ̸∈ R. Let w be the row word of the first i rows of P . We have
mi+1w ≡H w. Then notice that

row(P ) = row(P>i)w ≡H row(P ′
>i)mi+1w ≡H row(P ′

>i)w.

Then row(P ) is not reduced and we obtain the required contradiction.

4 The insertion

This section gives a direct description of the inverse of Ψ, an insertion algorithm
Φ which “inserts m into P”:

(P,m) 7→ (P ′, s, α)

where the input pair consists of a decreasing tableau P and m ∈ Z>0, and the
output triple consists of a decreasing tableau P ′, a removable cell s = (r, c) of
P ′, and α ∈ {0, 1} such that the following holds:

shape(P ′) =

{
shape(P ) if α = 0

shape(P ) ∪ {s} if α = 1.
(11)

The working tableau P ′ has initial value P . The i-th iteration consists of
an insertion of a number N ∈ Z>0 into P ′

≥i. At this point P ′
≥i = P≥i; only

values in rows before the i-th have been changed. Let R be the set consisting
of numbers in row i of P . Find the largest n1 ∈ R such that n1 ≤ N .

14



• Terminating case 1 (T1): If n1 does not exist, put N at the end of
row i in P ′ and terminate the algorithm. The output P ′ is the current
tableau. The output (r, c) is the coordinate of this newly added N . Set
α = 1.

Otherwise n1 exists. Change the n1 in row i of P ′ into N .

• Dummy case (D): If n1 = N and N − 1 ∈ R: insert N − 1 into P ′
>i.

• Direct Replacement case (DR): If n1 < N and n1 is not ejectable in
P>i: insert n1 into P ′

>i.

Otherwise assume none of the above cases hold. Let n2 be the number to
the right of n1 in row i of P , or n2 = 0 if n1 is the rightmost number in this
row. Find the largest ejectable y in P>i such that n1 > y > n2.

• Indirect Replacement case 1 (IR1): If y exists: insert y into P ′
>i.

• Indirect Replacement case 2 (IR2): If y does not exist and n2 > 0:
insert n2 into P ′

>i.

• Terminating case 2 (T2): If y does not exist and n2 = 0: terminate
the algorithm. The output P ′ is the current tableau. The output (r, c) is
the coordinate of this N in row i of P ′.

Set α = 0.

Example 4.1. In the following example, we let P be the leftmost tableau and
insert m = 8 into P . The output is the rightmost tableau P ′, s = (5, 1), and
α = 0. The unshaded part of each tableau is the part being considered by the
insertion in each step.

10 9 6
8 5 3
7 4 2
4 2 1
1

10 9 8
8 5 3
7 4 2
4 2 1
1

10 9 8
8 6 3
7 4 2
4 2 1
1

10 9 8
8 6 3
7 5 2
4 2 1
1

10 9 8
8 6 3
7 5 2
4 2 1
1

10 9 8
8 6 3
7 5 2
4 2 1
1

N=8

DR

N=6

DR

N=5

IR2

N=2

D

N=1

T2

Example 4.2. In the following example, we insert m = 5 into the leftmost
tableau P . The output is the rightmost tableau P ′, s = (3, 2), and α = 1.

7 4 2
4 3 1
3

7 5 2
4 3 1
3

7 5 2
4 3 1
3

7 5 2
4 3 1
3 1

N=5

IR1

N=3

IR2

N=1

T1
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5 Properties of the insertion

In this section the well-definedness of the insertion algorithm Φ is established
and some of its properties are studied.

Lemma 5.1. Consider an iteration of Φ in which N is being inserted into P ′
≥i

in Indirect Replacement case 2. Consider the value n1 in row i of P . If there
is a number below this n1, it must be at most n2.

Proof. Let t1 be the number below this n1. This part of P looks like

n1 n2

t1 t2

Now assume toward contradiction that t1 > n2. The number t2 either does
not exist or we have t2 < n2 ≤ t1 − 1. In either case, t1 is ejectable in P ′

>i. By
n1 > t1 > n2, we should go to Indirect Replacement case 1. Contradiction.

Lemma 5.2. The insertion algorithm is well-defined.

Proof. The algorithm initializes the working tableau to equal P which is de-
creasing. To show the output tableau is decreasing it suffices to assume that
before any particular iteration the working tableau is decreasing and show that
after that iteration, the resulting tableau is decreasing.

Let P ′ be the working tableau at the beginning of the current iteration, in
which N is being inserted into P ′

≥i. Let P ′′ be the working tableau after this
iteration. During the iteration, in row i the number n1 is replaced by N or N
is appended at the end; let (i, j′) be the position of this N . After this iteration,
the row will clearly be strictly decreasing. We may assume i > 1 and must show
that there is a number M in position (i− 1, j′) of P ′′ and it satisfies M > N .

If n1 = N , then we are done since this iteration does not change the working
tableau at all. We assume n1 < N , so the previous iteration is not in the Indirect
Replacement case 1. Consequently, N is in row i− 1 of P , say at (i− 1, j). We
have j′ ≤ j by the choice of n1. In particular there is a number M in position
(i− 1, j′) of P ′′. It remains to show that M > N .

If j′ < j then we obtain the required inequality M > N since the (i− 1)-th
row was strictly decreasing before the previous iteration. So we may assume
j′ = j.

We consider the cases of the previous iteration:

• Dummy case. N + 1 and N are in row i − 1 of P . Below this N + 1, we
have a number at most N , so j′ ≤ j − 1, contradiction.

• Direct Replacement case. During the previous iteration, the N in cell
(i − 1, j) is replaced by a larger number. Thus, there is an M > N at
(i− 1, j) of P ′′.

• Indirect Replacement case 2. By the lemma above, the n1 is in the first
j − 1 columns, a contradiction.
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Since the row i − 1 iteration was not terminal and we ruled out Indirect Re-
placement case 1, all cases are covered.

Theorem 5.3. Φ and Ψ are mutually inverse functions.

This theorem is implied by the following two lemmata.

Lemma 5.4. Let Ψ(P, (r, c), α) = (P ′,m). Then Φ(P ′,m) = (P, (r, c), α).

Proof. Let R (resp. R′) consist of the numbers in row 1 of P (resp. P ′). The
proof proceeds by induction on r.

For the base case, assume r = 1. If α = 1, m = min(R) and R′ = R− {m}.
When we insert m into P ′, the first iteration is in Terminating case 1. We will
just append m at the end of row 1 and terminate at this cell. If α = 0, we study
the cases of the only iteration in the reverse insertion:

• Indirect Replacement case: In this case, R′ = R−{m}⊔{x} where x < m
and x is the smallest number in row 2 of P . When we insert m into P ′,
it sets n1 = x. Since n1 is ejectable in P ′

>1, it does not go to the first
3 cases. Then we have n2 = 0. There are no ejectable numbers in P ′

>1

between n2 and n1. Thus, it goes to the Terminating case 2. It replaces
x by m and ends at this cell with α = 0.

• No Replacement case: In this case, R = R′ and there are no ejectable
numbers in P ′

>1 that are less than m. When we insert m into P ′, it sets
n1 = m and n2 = 0. Thus, it goes to Terminating case 2. It replaces m
by m and ends at this cell with α = 0.

Now assume r > 1. Consider the reverse insertion. Before the last iteration,
a number m2 > 0 is ejected from P ′

>1. During the last iteration, it changes at
most one number in R and get R′. Then it ejects m. By induction it suffices to
show that when m is inserted into P ′, the first iteration of insertion changes R′

back to R and inserts m2 into P ′
>1. Let us do a case study on the last iteration

of the reverse insertion.

• Dummy case: m2 = m − 1 and m2,m ∈ R. The algorithm fixes row 1 of
P so R = R′. The first iteration of insertion goes to the Dummy case. It
fixes row 1 and inserts m− 1 = m2 into P ′

>1.

• Direct Replacement case: m2 was ejected with α2 = 1. Thus m2 is not
ejectable in P ′

>1. The algorithm replaces m by m2. The first iteration of
insertion sets n1 = m2. It goes to the Direct Replacement case: m2 is
replaced by m and m2 is inserted.

• Indirect Replacement case: m is replaced by x which is ejectable in P ′
>1.

By the choice of x there are no ejectable numbers in P ′
>1 between m2 and

x. The first iteration of insertion sets n1 = x and replaces it by m. It will
not go to the first 3 cases. Since m is the smallest number in R that is
larger than m2, m2 ≥ n2. If m2 > n2 then α2 = 0. Thus m2 is ejectable
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in P ′
>1. During the subsequent insertion, the algorithm sets y = m2 and

inserts m2. Now assume m2 = n2. Then the first iteration of the insertion
cannot find such a y. It inserts n2 = m2.

• No Replacement case: R = R′. There are no ejectable numbers in P ′
>1

between m2 and m. During the insertion, the algorithm sets n1 = m and
will not go to the first three cases. The proof proceeds as in the Indirect
Replacement case.

Lemma 5.5. Let Φ(P,m) = (P ′, (r, c), α). Then Ψ(P ′, (r, c), α) = (P,m).

Proof. Let R (resp. R′) consist of the numbers in row 1 of P (resp. P ′). The
proof proceeds by induction on r.

In the base case r = 1, the insertion has only one iteration. If α = 1, this
iteration is in Terminating case 1. It appends m at the end of row 1. During the
subsequent reverse insertion, m will be removed from row 1 and ejected. Now
assume α = 0. If n1 = m, then the insertion leaves row 1 unchanged. There are
no ejectable numbers in P>1 that are less than m. During the reverse insertion,
the sole iteration goes to the No Replacement case: row 1 is unchanged and m
is ejected. If n1 < m, then the insertion replaces n1 by m. Since it is in the
Terminating case 2, n1 is smallest ejectable number in P>1. During the reverse
insertion, the only iteration goes to the Indirect Replacement case: the m is
changed to n1 and m is ejected.

Now assume r > 1. Consider the insertion. During the first iteration, it
changes n1 into m in row 1. Then it inserts a number into P ′

>1. Let z be
that number. Now consider the reverse insertion. By our inductive hypothesis,
before the last iteration, z is ejected under row 1 of the tableau. Moreover,
currently the tableau below row 1 is identical to P>1. We need to make sure
the last iteration changes R′ back to R and ejects m. Let us do a case study on
the first iteration of the insertion.

• Dummy case: m,m − 1 ∈ R, R = R′, and z = m − 1. The last iteration
of the reverse insertion goes to the Dummy case: it fixes the first row and
ejects m.

• Direct replacement case: n1 is changed to m and z = n1 < m. Moreover
z is not ejectable in P>1. When z is ejected from P>1, α2 = 1. The last
iteration of the reverse insertion goes to the Direct Replacement case: It
changes m into n1 and ejects m.

• Indirect Replacement case 1: n1 is changed tom and z = y. y is the largest
ejectable number in P>1 less than n1. Moreover y > n2. Consider the last
iteration of the reverse insertion. Before this iteration, by induction and
Lemma 3.1 y is ejected from P>1 with α2 = 0. Then it sets m1 = m. It
looks for x, which is the smallest ejectable number in P>1 between y and
m. If n1 = m, then it goes to the No Replacement case: Row 1 is fixed
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and m is ejected. If n1 < m then n1 must be ejectable in P>1 and x = n1.
It goes to the Indirect Replacement case: m is replaced by n1 and m is
ejected.

• Indirect Replacement case 2: n1 is replaced by m and z = n2 > 0. There
are no ejectable numbers between n2 and n1 in P>1. Consider the last
iteration of the reverse insertion. It sets m1 = m. Since n2 is already in
row 1, it must go to the last two cases. If n1 = m, then it goes to the No
Replacement case: The first row is fixed and m is ejected. If n1 < m, then
n1 must be ejectable in P>1. It goes to the Indirect Replacement case: m
is replaced by n1 and m is ejected.

Our insertion satisfies a Pieri property.

Lemma 5.6. Let Φ(P,m) = (P ′, (r1, c1), α) and Φ(P ′,m′) = (P ′′, (r2, c2), α
′).

If m′ < m, then c1 < c2.

Proof. Let mr1 < · · · < m1 be the bumping path of (r1, c1) in P ′. By the
definition of Ψ on (P ′, (r1, c1), α), the output value is m1. Since Ψ is inverse to
Φ, Ψ(P ′, (r1, c1), α) = (P,m). Thus m1 = m > m′. If Φ on (P ′,m′) ends in
the first iteration, we are done. Otherwise, after this iteration, another number
is inserted into P ′

>1. It is enough to ensure that this number is smaller than
m2. During this iteration, Φ finds a number n1 in row 1 of P ′. We have
n1 ≤ m′ < m1. Since mr1 < · · · < m1 is a bumping path, m2 ≥ n1. Now
consider the case of the first iteration.

• Dummy case: The number m′ − 1 is inserted into P ′
>1. We have m2 ≥

n1 = m′ > m′ − 1.

• Direct Replacement case: The number n1 is inserted into P ′
>1. Notice

that m2 is ejectable in P ′
>1 since it is the end of a bumping path in P ′

>1.
However, n1 is not ejectable in P ′

>1 by the condition of this case. Thus
m2 ̸= n1. Since m2 ≥ n1 we deduce that m2 > n1.

• Indirect Replacement case 1: The number y is inserted into P ′
>1. We have

m2 ≥ n1 > y.

• Indirect Replacement case 2: The number n2 is inserted into P ′
>1. We

have m2 ≥ n1 > n2.

To summarize, our new reverse insertion satisfies the following Pieri property.

Theorem 5.7. Let P be a decreasing tableau. Apply successive reverse inser-
tions

Ψ(P, (r1, c1), α) = (P ′,m)

Ψ(P ′, (r2, c2), α
′) = (P ′′,m′)

Then c2 < c1 if and only if m′ > m.
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Proof. Follows from Lemma 3.4, Lemma 5.6, and Theorem 5.3.

The following is an equivalent restatement for insertion.

Corollary 5.8. Let P be a decreasing tableau and m,m′ ∈ Z>0. Applying suc-
cessive insertions Φ(P,m) = (P ′, (r1, c1), α) and Φ(P ′,m′) = (P ′′, (r2, c2), α

′),
we have m > m′ if and only if c1 < c2.

Given a compatible pair (a, i) and starting with the empty tableau pair,
use Φ to insert a1, then a2, and so on, recording the insertion of ak by ik,
producing a tableau pair (P,Q) where P is decreasing. Denote this map by
ΦRSK(a, i) = (P,Q).

Corollary 5.9. ΦRSK is a weight-preserving bijection CPw → Decw ×Y SVT.

Proof. Corollary 5.8 implies that Q is set-valued. Moreover it also implies that
the process can be inverted: if (P,Q) ∈ Decw ×Y SVT, then using Ψ at the
sequence of removable boxes given by the entries of Q, one recovers (a, i) ∈
CPw.

Example 5.10. Consider the following element (a, i) ∈ CP25143.

i 5 5 5 4 3 2 2 1
a 1 3 4 4 3 1 4 2

We have

ΦRSK(a, i) =


4 3 1

3 1

2 ,

1 2 5

2 3, 5

4, 5


Remark 5.11. Reversing comparison of values, one obtains a weight-preserving
bijection ΦInc

RSK : CPw
∼= Incw ×Y RSVT.

Finally and crucially, we have the following property.

Theorem 5.12. [OY] Let (a, i) ∈ CPw and ΦInc
RSK(a, i) = (P,Q) ∈ Incw ×Y

RSVT. Then (a, i) is bounded (that is ik ≤ ak for all k) if and only if K−(P ) ≥
K−(Q) where K− is the left key and the comparison is entry-wise.

In [SY] Hecke column insertion was used to prove a bijection of bounded
compatible pairs with pairs (P,Q) with P decreasing and Q reverse set-valued
of the same shape, such thatK+(P ) ≥ K−(Q), leading to a bijective proof of the
expansion of a Grothendieck polynomial into Lascoux polynomials. Theorem
5.12 leads to a new bijective proof [OY] of the expansion of a Grothendieck
polynomial into Lascoux polynomials.
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6 Comparison with Hecke row insertion

In this section, we compare our new insertion Φ with Hecke row insertion.
Hecke row insertion is a map ΦHecke (P,m) 7→ (P ′, s, α), where the inputs

and outputs have the same types as our insertion algorithm. It is merely the
transpose of the Hecke column insertion of [BKSTY], in which the roles of rows
and columns have been exchanged. The inverse of ΦHecke is called Hecke reverse
row insertion and denoted ΨHecke.

Let P be a decreasing tableau. Apply ΨHecke sending (P, s, α) 7→ (P ′,m).
Let mr < · · · < m1 be the bumping path of s in P . Then m1 = m.

Remark 6.1. On any input (P, s, α), ΨHecke and Ψ yield the same output
number.

Besides yielding the same output number, Ψ and ΨHecke share many prop-
erties: ΨHecke also satisfies Equation (9), Lemma 3.3, and Lemma 3.5. However
ΨHecke does not satisfy Theorem 5.7. Consider the following counterexample:

Example 6.2. The green cell indicates the starting position of the reverse
insertion.

ΨHecke

 3 2

1
, α = 0

 =

 3 2

1
, 2


ΨHecke

 3 2

1
, α = 0

 =

 3 1

1
, 2


Remark 6.3. ΨHecke satisfies a variation of Theorem 5.7:

Theorem 6.4. Let P be a decreasing tableau. Applying successive reverse
Hecke row insertions ΨHecke(r1, c1), α) = (P ′,m) and ΨHecke(P ′, (r2, c2), α

′) =
(P ′′,m′), we have r1 > r2 if and only if m′ < m.

This is not satisfied by Ψ, as shown in the following example.

Example 6.5. We have

Ψ

 3 2

1
, α = 0

 =

 3 1

1
, 2


Ψ

 3 1

1
, α = 1

 =

 3

1
, 1


So r2 = r1 and m′ < m.
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Remark 6.6. We have introduced two types of Pieri rules for reverse insertions
on decreasing tableaux: the rule in Theorem 5.7 for Ψ and the rule in Theorem
6.4 for ΨHecke. The reverse EG insertion satisfies both versions of Pieri rules.
In other words, our insertion and Hecke row insertion are two different gener-
alizations of EG insertion, aiming for different Pieri rules and yielding different
bijections.
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