TOP-DEGREE COMPONENTS OF GROTHENDIECK AND LASCOUX
POLYNOMIALS

JIANPING PAN AND TIANYI YU

ABSTRACT. The Castelnuovo-Mumford polynomial &, with w € S, is the highest homogeneous
component of the Grothendieck polynomial &,,. Pechenik, Speyer and Weigandt define a statistic
rajcode(:) on S, that gives the leading monomial of ®,. We introduce a statistic rajcode(-) on
any diagram D through a combinatorial construction “snow diagram” that augments and decorates
D. When D is the Rothe diagram of a permutation w, rajcode(D) agrees with the aforementioned
rajcode(w). When D is the key diagram of a weak composition «, rajcode(D) yields the leadlng
monomial of Ea, the hlghest homogeneous component of the Lascoux polynomlals £,. We use £4
to construct a basis of Vn7 the span of Q§ with w € S,,. Then we show V gives a natural algebraic
interpretation of a classical g-analogue of Bell numbers.

1. INTRODUCTION

Introduced by Lascoux and Schiitzenberger [LS82a], the Grothendieck polynomial &,, is a poly-
nomial representative of the K-class of structure sheaves of Schubert varieties of flag varieties.
It is the inhomogeneous analogue of the Schubert polynomial &,,: The lowest-degree component
of &, forms &,. Pechenik, Speyer and Weigandt [PSW21] introduce the Castelnuovo-Mumford
polynomial @wl, the top-degree component of &,,. They describe the leading monomial of QASw with
respect to the tail lexicographic order by defining a new statistic rajcode(-) on S,. We summarize
some of their results on @w

Theorem 1.1 ( [PSW21]). Let w,u be permutations in S,,.

(A) The polynomlal (’5 has leading monomlal prajcode(w)
(B) We have (’5w is a scalar multiple of ®u if and only if rajcode(w) = raJcode( ).

(C) If w is inverse fireworks (see §5), then z<°de(®) has coefficient 1 in ®,,. Moreover, there

exists exactly one u’ € S, that is inverse fireworks such that rajcode(u) = rajcode(u )

Dreyer, Mészaros and St. Dizier [DMS22] provide an alternative proof of (A) via the climbing
chain model for Grothendieck polynomials introduced by Lenart, Robinson, and Sottile [LRS06].
Hafner [Haf22] provides an alternative proof of (A) for vexillary permutations via bumpless
pipedreams.

Schubert polynomials are related to key polynomials x, which are indexed by weak compositions.
The key polynomials are the characters of Demazure modules [Dem74]. Both Schubert and key
polynomials can be defined recursively via the divided difference operators (see §2). In addition,
Schubert polynomials expand positively into key polynomials [RS95]. The key polynomials also
have inhomogeneous analogues called Lascoux polynomials £, [Las03]. Grothendieck polynomials
and Lascoux polynomials are related: An expansion of Grothendieck polynomials into Lascoux
polynomials was conjectured by Reiner and Yong [RY21] and proven by Shimozono and Yu [SY23].
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Due to the connection between &,, and Sa, one would expect the top Lascoux polynomial Ea, the
top-degree component of £, to parallel Q5 . We define a statistic ra Jcode( ) on weak compositions
and show in §4 that 2 enjoy properties analogous to the properties of Q5 listed in Theorem 1.1:

Theorem 1.2. Let o and v be two weak compositions.

(a) The polynonnal ¢, has leading monomlal grajcode(a)

(b) We have €, is a scalar multiple of 27 if and only if rajcode(a) = rajcode(7).

(¢c) We say « is snowy if its positive entries are distinct. If « is snowy, then grajcode(a)

has
coefficient 1 in £,. Moreover, there exists exactly one snowy weak composition +' such that
rajcode(~y) = rajcode(v’).

Our definition of rajcode(-) on weak compositions is diagrammatic. Given a diagram D, we
define a combinatorial construction called the snow diagram that augments and decorates D. Let
rajcode(D) be the weight of the snow diagram. Every weak composition « is naturally associated
with a diagram called the key diagram D(«) (see Subsection 2.2). Then we define rajcode(w) :=
rajcode(D(«)).

Snow diagrams unify the computation of leading monomials in QASw and fla. Each permutation
w is also associated with a diagram called the Rothe diagram RD(w). In §5, we show rajcode(w) =
rajcode(RD(w )) In other words, we give a diagrammatic way to compute rajcode(w).

Finally, let V = Q- span{@ cw e Sy} and V= Un>1 V In Propos1t10n 2.7, we show Visa

filtered algebra. Theorem 1./1\ can be used to construct a basis of Vn and V consisting of Qﬁw.
particular, the dimension of Y” is By, the n*" Bell number. In §6, we use Theorem 1.2 to Construct
another basis consisting of £,. This basis allows us to compute the Hilbert series of V, and V
involving a g-analogue of B,,.

The rest of the paper is organized as follows. In §2, we provide necessary background information
and notation. In §3, we construct a snow diagram from any diagram and define statistics rajcode(-)
and raj(-) on all diagrams. In §4, we prove Theorem 1.2. In §5, we show the statistics rajcode(-)
and raj(-) on a Rothe diagram are equivalent to that defined in [PSW21]. We also relate the snow
diagram to two classical constructions: Schensted insertion and the shadow diagram. In §6, we
derive the Hilbert series of 17” and V. In 87, we present several open problems and future directions.

2. BACKGROUND

2.1. Polynomials. We provide necessary | background for Grothendleck polynormals and Lascoux
polynomials. Then we introduce 05 and 2 which span the spaces V and V.

The Grothendieck polynomials &, € Zxo[z1,x2, ... ][] were recursively defined by Lascoux and
Schiitzenberger [L.S82a]. Let 0;(-) be the divided difference operators acting on the polynomial ring.

For each i, define 0;(f) := — % , where s; is the operator that swaps x; and x;1. Then for
Tj — Ti+1
w e Sy,
B e R if wis [n,n —1,...,1] in one-line notation,
Y (1 + Briy1)Bus,) if w(i) < w(z +1).

Let S; be the set of permutations of {1,2,...} such that only finitely many numbers are per-
muted. Take w € S; and assume w only permutes numbers in [n]. Let w’ € S,, be the restriction
of w to [n] and define &, as &,,. It is shown in [LS82a] that &,, is well-defined.

A weak composition is an infinite sequence of non-negative integers with finitely many positive
entries. Let C; be the set of weak compositions. For o € C'y, we use «; to denote its i entry, and
write a = (a1, 9, ..., q,) where «,, is the last positive entry. We use z¢ to denote the monomial
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{'ay? g and |of = D7, oy The Lascoux polynomials £, indexed by weak compositions, are

in Zso[z1,x2,...][8]. By [Las03], they are defined recursively

s if «v is weakly decreasing,
(L + Briz1)Lsa)  if a; < iy,

where m; is the operator ;(f) := 0;(zif).
We say a pair (i,7) is an inversion of w € S,, if i < j and w(i) > w(j). Let Inv(w) be the set of
all inversions in w and let inv(w) = |Inv(w)|. Then we may view &,, as a polynomial in 3, where

[8]&., := coefficient of 3% in &,

is a homogeneous polynomial in the z-variables with degree inv(w) + d in Zso[z1,22,...]. The
Schubert polynomial &, := [3°]®,. Similarly, viewing £, as a polynomial of 3, [8%]€, is a
homogeneous polynomial with degree |a|+d in Zsg[z1, x2,...]. The key polynomial ke := [B°]Lq.
The representation theoretic, geometric and combinatorial perspectives of Schubert polynomials
and key polynomials are well-studied [Dem74, LS88, BJS93].

Define V;, := Q-span{&,, : w € Sy} and V := Q-span{&,, : w € Sy} = [J,>; Vi. In fact,
V = Q[z1,x2,...]. By the increasing sequence V; Vo < --- < V| V has the structure of a filtered
algebra.

In this paper, we are in/‘gerested in the top-degree components of &,, and £,. For a polynomial
f e Q[zy1,z2,...][B], let f = [BY(f) where d is the largest such that [$](f) # 0. The Casteln-
wovo—Mumford polynomial of w € S, is defined as (’Aiw. The top Lascoux polynomial of o € C4 is
defined as Ea. In appendix §8, we list some GrothenAdieck polynomials and Lascoux polynomia/l\s.
Pechenik, Speyer and Weigandt [PSW21] first study &,,. To the best of the authors knowledge, £,
has not been studied previously.

Now consider the tail lexicographic order on monomials in the z-variables. We say a monomial x®
is larger than x7 if there exists k such that oy, > v;, and a; = y; for all j > k. The leading monomial
of f € Q[x1,xa,...] is the largest monomial in f. Among the four homogeneous polynomials above,
three of them have combinatorial rules for their leading terms:

(1) [BJS93] The leading monomial of &, with w € S,, is z™"<°%(®)  where

invcode(w); = [{j : (4,7) € Inv(w)}|.
(2) [LS89] The leading monomial of k4 is z%.
(3) [PSW21] The leading monomial of &,, is ") defined as follows.
Definition 2.1. [PSW21] Let LIS*(q) be the length of the longest increasing subsequence of w € S,

that starts with ¢. The rajcode(w) for w € S,, is a weak composition where rajcode(w), :=n+ 1 —
r — LISY(w(r)) for r € [n] and 0 if » > n. Then raj(w) := |rajcode(w)|.

Ezample 2.2. Consider w = 3721564 € S;. We have LIS*(2) = 3, so rajcode(w)s = 7+1—-3—3 = 2.
All together, we get rajcode(w) = (4,5,2,1,1,1) and raj(w) = 14.

We will define rajcode(-) on C' and show the leading monomial of £, is z"i<de(@) ip §4.
A connection between &,, and £, is established by Shimozono and Yu [SY23]. To describe this
connection, we need the following notion.

Definition 2.3. Let f, f1, f2,... be polynomials in Zsg[z1,22,...]. We say f expands positively
into {f1, fa,...} if there exist ¢y, ¢, -+ € Zzg such that f =Y, ¢;fi.

Now assume f, f1, fa,... are polynomials in Zxo|8][x1, x2,...]. We say f expands positively into
{f1, f2, ...} if there exist g1, g2, - € Zxo[B] such that f = >, gi f;.

Theorem 2.4 ([SY23]). For w e S, &, expands positively into {£, : a € Cy}.

This result implies QASw also expands positively into Ea by the following lemma whose proof is
sufficiently elementary.
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Lemma 2.5. Let f, f1, fg, .. in Zso[B][x1, @2, . .. . If f expands positively into {f1, f2, ...}, then
f expands positively into fl, f2, e

Corollary 2.6. For we S, By expands positively into {f}a cae Ol

Define V,, := Q-span{@w :w € Sy} and Vo= Q—span{(‘gw cwe Syt = Upsy V.. By work of
Lascoux, Schiitzenberger [LS82b] and Brion [Bri02], the product &,®, with u € S,, and v € S,
expands positively into &,, with w € S;,+,,. By Lemma 2.5, @U@U with v € S, and v € 5, expands
positively into (‘Aiw with w € S,,+n. Finally, we conclude the following.

Proposition 2.7. The space V is a filtered algebra with respect to the filtration ‘71 c 172 c...cV.

2.2. Diagrams. A diagram is a finite subset of Z-g x Z~g. We represent a diagram by putting
a cell at row r and column ¢ for each (r,c¢) in the diagram. The leftmost column (resp. topmost
row) is called column 1 (resp. row 1). The weight of a diagram D, denoted as wt(D), is a weak
composition whose i'" entry is the number of boxes in its row i. We recall two classical families of
diagrams.

Each weak composition « is associated with a diagram called the key diagram, denoted as D(«).
It is the unique left-justified diagram with weight . One important key diagram we will use later
is Stair, := D((n—1,n—2,--- ,1)).

(19 %2

Ezxample 2.8. The following are two examples of key diagrams. For clarity, we put an “/” on the
left of row ¢ and put a small dot in each cell.

1 11.71. ‘
DO,2,1)= 2|-|-]|, Stairy = 2
3 3

Each permutation w is associated with the Rothe diagram RD(w ) {(ryw(r”) : (r,r") € Inv(w)}.
Ezample 2.9. Let w = 41532 € S5. Then Inv(w) = {(1,2),(1,4),(1,5),(3,4),(3,5),(4,5)}. The

Rothe diagram is depicted as follows.

RD(w) =

UL W NN =

2.3. K-Kohnert diagrams. We recall a combinatorial formula for Lascoux polynomials. To sim-
plify our description, we introduce the following definition.

Definition 2.10. A labeled diagram is a diagram where each cell can be labeled by a symbol. The
underlying diagram of a labeled diagram is the diagram obtained by ignoring all labels. The weight
of a labeled diagram D, denoted as wt(D), is just the weight of its underlying diagram.

Then a ghost diagram is a labeled diagram where cells can be labeled by X. We call cells labeled
by X as “ghosts”. For a ghost diagram D, its ezcess, denoted as ex(D), is the number of ghosts in
D. Next, we define a move on ghost diagrams.

Definition 2.11 ([RY15]). A K-Kohnert move is defined on a ghost diagram D.
We pick a cell (r,c) and move it up, subject to the following requirements.

e The cell (r,c¢) must be the rightmost cell in row r.
e The cell (7, ¢) is not a ghost.
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e The cell (7, ¢) is moved to the lowest empty spot above it.

e The cell (r,¢) may jump over other cells but cannot jump over any ghosts.
After the move, we may or may not leave a ghost at (r,c¢). When we leave a ghost, we refer this
move as a ghost move.

For a weak composition «, a ghost diagram is called a K-Kohnert diagram of « if it can be
obtained from D(«) by K-Kohnert moves. Let KKD(«) be the set of all K-Kohnert diagrams of a.
As proved in [PY22], K-Kohnert diagrams give a formula for Lascoux polynomials. This rule was
first conjectured by Ross and Yong [RY15]. Notice that our convention is different from [PY22]:
row 1 is the top most row in this paper while it is the bottom most row in [PY22].

Theorem 2.12 ([PY22]). Let a be a weak composition. Then we have

£, = Z .ZUWt(D)BeX(D).
DeKKD(a)

Ezample 2.13. Let o = (0,2,1), then KK D(«) consists of the following:

1 1 W I 1] 1T
2..‘ 2. 2 2..‘ 2 [ .
s[-] 3 73D 3 N

] 1 ]
\2x x| 2|.]x
x| sl 7 3 o 3[X

By the rule above, we have

2 2 2 2
Lo = 2523 + T1T2T3 + x]T3 + 125 + TIT2

+ Blxyadas + v1xdes + 23vows + xivexs + xixd) + fPairirs.

3. SNOW DIAGRAMS

We associate each diagram with a labeled diagram called the snow diagram which allows us to
define two statistics on diagrams. For each diagram D, we describe the following algorithm that
outputs snow(D). Cells in snow(D) can be labeled by e or .

- Iterate through rows of D from bottom to top.
- In each row r of D, find the rightmost cell (r,¢) with no e in column c. If such an (r,c¢)
exists, label it by e and put a cell labeled by s in (r/,c¢) for 7’ € [r — 1] and (+’,¢) ¢ D.
We call cells labeled by e dark clouds and cells labeled by sk snowflakes.

Example 3.1. The following is a diagram together with its snow diagram.

1 : 1sk|sk] -
2 Ij 2 el [
= 3 :‘, snow(D) = 3 x| e
4 4 *
s[T] [T

The positions of dark clouds will be important, so we make the following definition.

D

Definition 3.2. The dark cloud diagram of a diagram D, dark(D), is the set of cells (7, ¢) that are
dark clouds in snow(D).
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FEzample 3.3. In Example 3.1, dark(D) = {(2,1),(3,3), (5,2)}.

A diagram is a non-attacking rook diagram if it has at most one cell in each row or column. Let
Rooky be the family of all non-attacking rook diagrams.

Remark 3.4. We make the following observations about dark(D).

e By construction, dark(D) € Rook..
e Take (r,c¢) € D. If there are no v > r with (1, ¢) € dark(D) and there are no ¢ > ¢ with
(r,c') € dark(D), then (r,c) € dark(D).

Finally, we associate two statistics to each diagram via its snow diagram.

Definition 3.5. Let D be a diagram. The rajcode of D, rajcode(D), is the weak composition
wt(snow(D)). Let raj(D) denote |rajcode(D)|, the total number of cells in snow(D).

Ezample 3.6. Continuing with Example 3.1, we have rajcode(D) = (3,3,2,1,2) and raj(D) = 11.

Remark 3.7. Recall that Pechenik, Speyer and Weigandt [PSW21] define the statistics rajcode(-)
and raj(-) on permutations using increasing subsequences. We show that our rajcode and raj on
Rothe diagrams agree with their definitions in Theorem 5.6. Therefore, our construction on Rothe
diagrams is a diagrammatic way to compute the leading monomial and degree of &,,. In addition,
we notice that positions of dark clouds in snow(RD(w)) are connected to the Schensted insertion
and Viennot’s geometric construction. These connections are explored in §5.

4. PROOF OF THEOREM 1.2

To prove Theorem 1.2, we study top Lascoux polynomials via snow diagrams of key diagrams.
With a slight abuse of notation, we define rajcode(a) := rajcode(D(«)), raj(c) := raj(D(«)) and
dark(a) = dark(D(«)) for a € Cy.. We start by introducing some definitions.

Definition 4.1. A weak composition « is called snowy if its positive entries are all distinct.
Our main goal in this section is to establish Theorem 1.2:

Theorem 1.2. Let o and v be two weak compositions.

(a) The polynomial €, has leading monomial graicode(@),

(b) We have £, is a scalar multiple of E,y if and only if rajcode(«) = rajcode(y).

(¢c) We say « is snowy if its positive entries are distinct. If « is snowy, then grajcode(@) hag
coefficient 1 in Ea. Moreover, there exists exactly one snowy weak composition 7’ such that
rajcode(vy) = rajcode(y’).

This task is broken into four major lemmas established in the following four subsections. In
Subsection 4.1, we use K-Kohnert diagrams to establish the first major lemmas:

Lemma 4.2. The polynomial £, has the term z2icode(e) graj(e)—la|

Lemma 4.2 proves €, has degree at least raj(«). To show €, indeed has degree raj(a), we need
the following equivalence relation on weak compositions.

Definition 4.3. Let o and v be two weak compositions. We say « is rajcode equivalent to v, denoted
as a ~ v, if rajcode(a) = rajcode(7y).
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Ezample 4.4. Let o = (2,0,4,3,1) and v = (3,1,4,3,1). Then we have:

-] ] 1 o [

2 2| % X |k
D(a)= 3 ‘ , snow(D(«)) = 3 o ,

4 4 °

5 51| e

1 . | . ‘ 1 . *

2 - 2 * |k
P~ 3[ [T []. snowD) = 3 .

4 4 °

) 5| e

Be aware that the cell (2,2) is not in snow(D(c)) or snow(D(7)). Observe that rajcode(a) =
(4,3,4,3,1) = rajcode(7y), so a ~ 7.

In Subsection 4.2, we study this equivalence relation. We show that snowy weak compositions
form a complete set of representatives:

Lemma 4.5. For each equivalence class of ~, there is a unique « such that « is snowy. Moreover,
if v ~ o and « is snowy, then 7, > «, for all . In other words, a snowy weak composition is the
unique entry-wise minimum in each equivalence class.

In Subsection 4.3, we focus on SAla for snowy « and give a recursive description of ﬁa, which leads
to the third major lemma.

Lemma 4.6. If « is snowy, then z"d(®) jg the leading monomial of f}a with coefficient 1.
Finally, we devote the Subsection 4.4 to proving the last major lemma:

Lemma 4.7. If o ~ ~, then Ea = c@v for some ¢ # 0.
Once we have these four major lemmas, we can easily check Theorem 1.2.

Proof. First, statement (c) follows from Lemma 4.5 and Lemma 4.6.

Given a weak composition a. Let  be the unique snowy weak composition such that a ~ .
Statement (a) follows from Lemma 4.6 and Lemma 4.7.

For statement (b), the backward direction is just Lemma 4.7. For the forward direction, if Lo
is a scalar multiple of )37, then they have the same leading monomial. By statement (a), we have
rajcode(«) = rajcode(y). O

4.1. Proof of Lemma 4.2. We show the monomial zricede(@) grai(@)—lel exists in £,. We give an
algorithm whose output is a K-Kohnert diagram for o, which has the same underlying diagram as
snow(D(«)). First, observe that snow(D(«)) contains no dark clouds if and only if @ contains only
zero entries. In this case, Ea = 1 and rajcode(a) only has zero entries. Our claim is immediate. In
the rest of this subsection, we assume « is a weak composition with at least one positive entry, and
thus snow(D(a)) has at least one dark cloud. To describe the algorithm, we introduce two useful
moves on ghost diagrams.
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Definition 4.8. Let D be a ghost diagram. Let (7, ¢) be a non-ghost cell in D and let (17, ¢) be the
highest empty space in column c. If ¥’ < r, let U P(m)(D) be the diagram we get after moving (r, c)

to (', ¢). Let UP(CjC) (D) be the diagram we get after moving (7, ¢) to (/,¢) and putting a ghost on
(r,c) and all empty spaces between (r,c) and (17, ¢). If ¥’ > r, define UP(ﬁC)(D) =UPq,(D)=D.

Remark 4.9. Assume UP,, ) or U P(C?f ¢) moves a cell to (7, ¢). Then this move can be achieved by
a sequence of K-Kohnert moves if both of the following conditions hold for each 7’ < j < r:

e If (j,c) ¢ D, then D has no cell to the right of column ¢ in row j.
e If (j,c) € D, then it is not a ghost cell.

Now we can describe the algorithm. Let D° = D(a). Recall by Remark 3.4, there is at most one
dark cloud in each column of snow(D(«)). We can label all the dark clouds as (r1,¢1), ..., (Tm, ¢m)
where ¢; < ¢g -+ < ¢, for some m > 1. We iterate i from 1 to m. At iteration i, compute

(1) D' = UP(S,’M oUPy, 41y 0 UPp, 0,1 (D).

Ezample 4.10. Consider a = (1,3,4,0,4,3), we compute its snow diagram and we have the dark
clouds at (2,1),(3,2),(6,3), (5,4). We compute D* according to the above algorithm.

1 [ sk |k 1] 11 |‘
21 e . -k 2 2
snow(D(a)) = 3 . . D= 3 ‘W 3 ||‘
4 % | % 4 4
5 ° 5 ‘ 5 ‘
6 . 6 6
1 1 1
2 2 2 .
— 3 X — > 3 X - 5 3 X X |=D*
(3,2) (6,3) (5,4)
4 4 X 4 X | X
5 5 5 X
6 6 X 6 X

We observe that in the previous example, D* has the same underlying diagram as snow(D(a)).
This is true in general.

Lemma 4.11. The labeled diagram D™ defined by (1) has the same underlying diagram as
snow(D(a)).

Proof. For a number ¢, we compare the column ¢ of snow(D(«)) and D™. If column ¢ of snow(D(«))
has no dark cloud, then it is the same as column ¢ of D(«). In this case, the algorithm will not
move any cells in column ¢. Thus, D™ and D(«) also agree in column c.

Now suppose snow(D(«)) has a dark cloud in column ¢, say at row r. In the underlying diagram
of snow(D(«)), column c¢ is obtained from column ¢ of D(«) by filling all empty spaces above row
r. On the other hand, consider what the algorithm does on column c. It first might move cells
above row 7 and then it fills all empty spaces weakly above row r. Thus, column ¢ in D™ is the
same as column ¢ of snow(D(«)) after ignoring the labels. O
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Next, we want to show D™ produced by the algorithm is in KKD(«). We just need to check each
UP; ;) and U P(f,"c) in each iteration is a sequence of K-Kohnert moves. To that end, we first make

the following observation about the diagram D?.

Lemma 4.12. Let ¢y = 0. In D?, if a cell is strictly to the right of column ¢;, then there is a
cell immediately on its left. In other words, the diagram D? is left-justified if we ignore the first ¢;
columns.

Proof. Prove by induction on i. The lemma holds for D, which is left-justified.

Assume D! is left-justified if we ignore the first ¢;_; columns, for some i > 1. Consider an

arbitrary cell (r,c) in D? with ¢ > ¢;. We show (r,c — 1) is in D’ by considering two possibilities.
- The cell (r,¢) is not in D'~!. Then during iteration i, a cell is moved to (r,c), which is
the highest blank in column ¢ of D*~!. By our inductive hypothesis and ¢ — 1 > ¢;_1, the
highest blank in column ¢ — 1 of D! is weakly lower than row r. Thus, (r,¢— 1) is in D"
- Otherwise, (r,c¢) is in D", By our inductive hypothesis, (r,c — 1) is in D=L If r # r;,
then we know that no cell from row r is moved during iteration i. Thus, (r,c — 1) is still
in D’. If » = r;, then there are no empty spaces above (r,c) in D'~!. By our inductive
hypothesis, there is no empty spaces above (r,c — 1), so (r,c — 1) is still in D*, O

The above lemma shows that the diagram D is left-justified if we ignore the first ¢; columns.
We will use this property to show that D™ is in KKD(«).

Proposition 4.13. The above algorithm can be achieved by K-Kohnert moves, so D™ € KKD(«).

Proof. We focus on one iteration of the algorithm, say iteration i. We check the operators in (1)
can be achieved by K-Kohnert moves. We ignore all cells to the left of the column ¢; in D*~!. By
the previous Lemma, this part of the diagram is left-justified. The highest empty spaces in columns
ci, -,y are going weakly up from left to right. Moreover, the condition in Remark 4.9 holds for
all (ri,¢i),---, (ri, ar,).

Now U P(n’a”) can be achieved by K-Kohnert moves. After that, the conditions in Remark 4.9
hold at each step for (r;, o, — 1), ..., (ri, ¢;). Following this logic, this iteration can be achieved by
K-Kohnert moves. 0

Using Theorem 2.12:

Lemma 4.2. The polynomial £, has the term gicode(®) graj(@)—la|

4.2. Proof of Lemma 4.5. First, notice that we can recover the underlying diagram of snow(D(«))
from dark(a).

Lemma 4.14. Let a be a weak composition. The underlying diagram of snow(D(«)) is:

(2) U @1x{eh) v {r) <[],

(r,c)edark(a)

Proof. First, we show that the elements of the set (2) are cells in snow(D(«)). Take (r,c) € dark(«).
We know (r,¢) € D(a). Since D(«) is left-justified, {r} x [¢] € D(«). Thus, these cells are in
snow(D(«)). By the construction of snow(D(«)), the cells in [r] x {c} are also in snow(D(«)).
Now suppose there is a cell (r, ¢) in snow(D(«)) that is not in the set (2). Then there is no ' > r
with (r/,c) € dark(D), which implies (r,¢) is not a snowflake in snow(D(«)). Thus, (r,c) € D(«).
Also, there is no ¢ > ¢ with (r,¢') € dark(D). By Remark 3.4, (r,¢) € dark(D). Thus, (r,¢) is in
the set (2), which is a contradiction. O

Furthermore, we can recover dark(«) from rajcode(a).

Lemma 4.15. Let o,y be weak compositions. If rajcode(a) = rajcode(ry), then dark(a) = dark(7).
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Proof. We prove the two diagrams dark(a) and dark(+) agree on each row r, by a reverse induction
on r. The base case is immediate. Suppose r is large enough such that a; = v; = 0 if ¢ > r. Then
dark(a) and dark(7) clearly agree on row r and underneath.
Next, we show that the value rajcode(«), and cells in dark(«) under row r determines whether
dark(a) has a cell on row r. Moreover, if such a cell exists, its column index is also determined.
Let 7 = 1. Define

B, := {c: There are no dark clouds under (7, c) in snow(D(«)}.

The complement of B, is B, := Z~o — B, = {c: (7', c) € dark(a) for some 1’ > r}. For c € B,,
(r,c) of snow(D(«)) is a snowflake or an unlabeled cell. If there is no dark cloud on row r of
snow(D(a)), rajcode(a), = |B,|. Otherwise, we assume the dark cloud is at (r,¢) for some c € B,.
Then row r of snow(D(c)) has cells on (r,¢) for ¢ € B, or ¢ < c. Suppose c is the i*" smallest
number in B,. We have rajcode(a), =i + | B|.

Consequently, rajcode(a), and dark(a) under row r uniquely determines row r of dark(a). If we
assume dark(a) and dark(7y) agree underneath row r as our inductive hypothesis, then they also
agree on row 7 since rajcode(«), = rajcode(y),. The induction is finished. O

Now we have two equivalent ways of describing rajcode equivalence.

Proposition 4.16. Let a and ~ be two weak compositions. The following are equivalent:
(1) a~~;
(2) dark(a) = dark(7).
(3) The underlying diagrams of snow(D(«)) and snow(D(7)) are the same;

Proof. By Lemma 4.15, (1) implies (2). By Lemma 4.14, (2) implies (3). Clearly, (3) implies
(1). O

Our next goal is to find representatives of rajcode equivalence classes. At the end of this subsec-
tion, we will see snowy weak compositions form a complete set of representatives. To understand
snowy weak compositions, we start with the following observation.

Remark 4.17. For a weak composition «, the following are equivalent:
e (v IS SNOWY.
e The rightmost cell in each row of D(«) are in different columns.
e The rightmost cell in each row of D(«) is a dark cloud in snow(D(«)).

One advantage of working with snowy weak compositions is that we can tell their rajcode(-) and

raj(-) easily:
Lemma 4.18. Let a be a snowy weak composition. Then the following statements hold.

(1) dark(a) = {(r, ) : cr > 0},

(2) rajcode(a), = ay + [{r’ > r: ar < al}|, and

(3) raj(a) = 3 (n + [{(r, ")z ap < @l < 7}]) = Ja] + [{(r7) - 7 < 1%, 0 < )]
Proof. (1) follows from Remark 4.17. (2) follows from (1) and Lemma 4.14, and (3) immediately
follows from (2). O

As a consequence, we have the following rule which tells us how rajcode(s;a) differs from
rajcode(a) when « is snowy.

Corollary 4.19. Let a be a snowy weak composition and consider ¢ with «; > ;1. Then
rajcode(s;a) = s;rajcode(a) + e;, where e; is the weak composition with 1 on its i'" entry and 0
elsewhere.

The second advantage of working with snowy weak compositions is that they are in bijection
with Rook .
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Lemma 4.20. The map dark(:) is a bijection from {« € Cy : « is snowy} to Rook,. Its inverse
dark™1(-) is given by dark }(R) = a where

o — 0 if row r of R is empty;
" e if(r,c)eR.

Proof. Follows from Remark 4.17. g

We are ready to show that they are representatives of all equivalence classes.

Lemma 4.5. For each equivalence class of ~, there is a unique « such that « is snowy. Moreover,
if ¥ ~ a and « is snowy, then 7, > a, for all r. In other words, a snowy weak composition is the
unique entry-wise minimum in each equivalence class.

Proof. Let v be an arbitrary weak composition. First, we construct a snowy « such that a ~ ~.
We know dark(y) € Rook;. We send it to a snowy « using the map in Lemma 4.20. Then
dark(a) = dark(y). By Proposition 4.16, a ~ 7.

Next, take a positive integer r. If o, = 0, then v, > «, trivially. Otherwise, we know (r, ;) €
dark(a) = dark(). Thus, v, = a.

Finally, we establish the uniqueness of this snowy «. Assume o' is a snowy weak composition
such that o/ ~ . Then o). > «, and «, > . for all r € Z~g, so a = /. O

A snowy weak composition has more snowflakes in its snow diagram than any others in its
equivalence class; hence the name. Say a ~ v and « is snowy while v is not. By Lemma 4.5,
la] < |7v|. On the other hand, the number of snowflakes in snow(D(«)) (resp. snow(D(7))) is
raj(a) — |a (resp. raj(y) — |v|). Since raj(a) = raj(y), snow(D(«)) has more snowflakes than
snow(D(7)).

4.3. Proof of Lemma 4.6. By Lemma 4.2, Ea has degree at least raj(a)). Next, we can show the
degree of £, equals to raj(a) when « is snowy.

Lemma 4.21. Let a be a snowy weak composition. The [S-degree of £, is raj(a) — |al, so the
degree of £, is raj(a).
Proof. We prove the result by induction on

la) == |{(4,7) | i < j and i < j}|.

For the base case, if £(a) = 0, then « is weakly decreasing. The polynomial £, is an monomial
with 8-degree 0. Correspondingly, raj(«) = |a/.

Now if /() > 0, we can find ¢ with o; < a;4+1. By Corollary 4.19, raj(s;a) = raj(a) — 1. Notice
that ¢(s;a) = £(a) — 1. By our inductive hypothesis, the S-degree of £, is raj(sia) — |a| =
raj(a) — 1 — |a|. By the recursive definition of Lascoux polynomials,

'Sa = 7"'i(fgsioz) + Bﬂ'i(xi+1£sia)-

The [-degree in £, is at most raj(a) — |@|. Lemma 4.2 implies the S-degree of £, is at least
raj(a) — |a, so the inductive step is finished. O

Combine with Lemma 4.18, we have:

Corollary 4.22. Let « be a snowy weak composition. The degree of £4 is |a| + [{(r,7') : r <
o, < g}l

Now we can describe £, for snowy «a recursively.
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Lemma 4.23. Let a be a snowy weak composition. Then

“ far=>2ay>--

~ i
Sa - 3 .
Ti(Ti1Ls0)  if 0 < g1,

Proof. When « is weakly decreasing, our rule is immediate. Now assume «o; < a;41 for some
i € Z~o. By Corollary 4.19, raj(s;a) = raj(a) — 1. We write £5,4 as g + Brai(e)—1-|af Ls,a for some
g € Z]z1,x2,- - ][] with B-degree less than raj(a) — 1 — |a|. Now we write £, as

Lo = Wi(fgsia) + /Bﬂi(xi—&-lﬂsia)
= mi(Lsia) + Bri(@ip19) + BT (241 L4.0)

When we extract the coefficient of ga(@~lel the left-hand side is Ea. On the right-hand side, the
first two terms are ignored and we get m;(x;+1Ls;0)- O

3)

Combining Lemma 4.2 and Lemma 4.21, we know grajcode(@) gphears in Ea when « is snowy. Next,

we show this monomial is the leading monomial of £,. We start with the following observation
about the operator f +— m;(z;41f).

Remark 4.24. Let v be a monomial. We may describe the leading monomial of 7;(z;+127) and its
coefficient as follows.

o If v, > 7,41, then x;2%7 is the leading monomial with coefficient 1.
o If v; = i1, then m;(z;1127) = 0.
o If v; < 741, then x;27 is the leading monomial with coefficient —1.

We can understand how the operator f +— m;(x;+1f) changes the leading monomial of polynomial
f satisfying certain conditions.

Lemma 4.25. Take f € Z[z1,x9,---] with f # 0. Assume z® is the leading monomial in f with
coefficient ¢ # 0. Pick an i € Z~( such that a; > «;41. Furthermore, assume for any monomial in
f, its power of x; is at most «;. Then z;z%? is the leading monomial in 7;(z;4+1f) with coefficient
c.

Proof. In this proof, we use “=" to denote the monomial order. Let I' be the set of weak composi-
tions v such that 27 appears in f. Let c, be the coefficient of 7 in f. We may write f = Z'yel" cyx’.
Then 7;(zi41f) = Z«,er cyTi(xi4127). By the remark above, x;2%* appears in com;(zi+12%) as the
leading monomial with coefficient ¢, = ¢. It is enough to show the following claim.
Claim: Take 7 € I' such that m;(zi4127) # 0 (i.e. v # 7ir1). Let 27 be the leading monomial in
mi(zia?). If 27 = 2%, then v = .
Proof: Assume o # 7. Let k be the largest index such that the power of z, differs in 27 and
;2% By ' > x;x%%, the power of xy in V' is greater than the power of xj in x;z%“. We must
have k < i + 1. Otherwise, 27 > %, which contradicts % being the leading monomial in f.

Now we know 7/, o and v all agree after the (i + 1) entry. Then ~/,, is at least the power of
Tiy1 in ;%% which is ;. On the other hand, by 7 < %, v;+1 < a;+1. Thus,
(4) Vit < Qi1 < @ < Vigq-
If 7 < 7it+1, Remark 4.24 implies 7/ ; = 7,41, which is impossible. Thus, we must have v; > ~;11.
By Remark 4.24 again, ’y{ 41 = 7i- By the assumptions in the statement of the lemma, v; < a;, so
Vigr = Vi = Q.

Next, 7/ is at least the power of z; in ;2% which is ;41 +1. Remark 4.24 implies v} = ;11 + 1.
Thus, vi41 = aiy1. By (4), vit1 = g1

Now we know k < i and 7; = o for j = i or i + 1. Thus, 7; = «; for all j > k, so 27 > 29,
which is a contradiction. O
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Now we can establish our third major lemma.
Lemma 4.6. If o is snowy, then z<d(®) js the leading monomial of f)a with coefficient 1.

Proof. We prove the result by induction on
la) = |{(4,7) | i <aj and i < j}|.

If £(a) = 0, then « is weakly decreasing, then £, = 2 = zd¢(®)  Our claim is immediate.

Now if (o) > 0, we can find r with «, < a;4+1. Pick the largest such r. For our inductive
hypothesis, assume z"c°de(s7) ig the leading monomial of Esra with coefficient 1.

By the maximality of r, aop1 = Qpri9 = apy3 = ---. Thus, in any K-Kohnert diagram of s,a,
there cannot be more than «,.y1 cells in row r. In other words, for any monomial of SAZSM, the power
of x, is at most a4 1. Lemma 4.25 implies that xppirraicode(sra) i the leading monomial of Ea with

coefficient 1. Finally, by Corollary 4.19, x,asrraicode(sra) — grajcode(a) U

4.4. Proof of Lemma 4.7. We first derive two consequences of a ~ . We start with the following
definition.

Definition 4.26. Let D be a diagram. Let D := U(m)eD[r] x {c}.

In plain words, D is the diagram obtained by filling the empty spaces above each cell of D. Then
D(«) is completely determined by dark(a):

Lemma 4.27. Let o be a weak composition. Then D(a) = ;. cpedark(a) 7] * [c]-

Proof. We show each side is a subset of the other. Take (r1,¢1) € D(«). By Remark 3.4, there is
(r2, c2) € dark(a) such that ro > r1 and ¢o = ¢;. Thus, [r1] x {c1} € [r2] % [e2]-

Take (r1,c1) € dark(a). Thus, for any ¢ € [¢1], (r1,¢) € D(a). Then [ri] x {¢} € D(a), so
[r1] % [c1] € D(a). O

We have the following consequence of o ~ 7.

Corollary 4.28. If a ~ 7, then D(a) = D(v).

Notice that the converse is not true. If @ = (1,2) and v = (0,2), then D(«) = [2] x [2] = D(y).
However, o and «y are not similar, since dark(a) = {(1,1),(2,2)} and dark(v) = {(2,2)}.

Another nice consequence of a ~ v one might expect is s,a ~ s,7. Unfortunately, this is not
always true. It is easy to check (0,1) ~ (1,1) but $1(0,1) = (1,0) and s1(1,1) = (1,1) are not
similar. However, it is true when « and r satisfy the following condition.

Lemma 4.29. Let o be a weak composition and r € Z-g. Assume there exists ¢ such that
(r,c) ¢ snow(D(«)) but (r + 1,¢) € snow(D(«)). Then
(i) Qpy1 > Q,
(ii) The diagram dark(s,«) is obtained from dark(«) by switching row r and row r + 1;
(iii) For any v with v ~ a, we must have v,41 > 7, and s,a ~ s,7.

Proof. Since (r,c) is not in snow(D(«)), we can deduce two facts:

(1) There are no dark clouds under row r in column ¢, and
(2) ap <ec.

By (1), the cell (r +1,¢) in snow(D(«)) is not a dark cloud or a snowflake. Thus, it is unlabeled
and (r +1,¢) € D(a). By Remark 3.4, there must be a ¢/ > ¢ such that (r + 1,¢) is a dark cloud in
snow(D(«)). This implies a,41 > ¢. By (2), we have ay41 > o, proving (i). Also by (2), the dark
cloud in row r of snow(D(«)), if exists, is in the first ¢ — 1 columns. Thus, dark(s,«) is obtained
from dark(a) by switching row r and row r + 1, proving (ii).
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Now consider any v ~ «. By Proposition 4.16, snow(D(v)) and snow(D(«)) have the same
underlying diagram. By (ii), dark(s,7) is obtained from dark(y) by switching row r and row r + 1.
Since dark(«) = dark(7y), we have dark(s,«) = dark(s,7), so s,a ~ s,7. O

These two consequences of a ~ v allow us to prove the last main Lemma.
Lemma 4.7. If o ~ 7, then Ea = cf‘w for some ¢ # 0.

Proof. By Lemma 4.5 it is enough to assume ~ is snowy, and we proceed by induction on raj(«).
The base case is raj(a) = 0, which implies « only has 0s. Our claim is immediate.
Now assume raj(a) > 0. Consider the diagram D(«). Clearly, the underlying diagram of any

K-Kohnert diagram of a will be a subset of D(«). In other words, any monomial in £, must divide

(D)

If the underlying diagram of snow(D(c)) is D(a), then z**P(@)) is the only monomial in £.. On
D())

the other hand, Corollary 4.28 gives D(«) = D(7). By the same argument, Wi is the only

monomial in ,’2\37. Our claim holds.

Otherwise, we can find (r,¢) € D(a) but not in snow(D(a)). Choose the (r,¢) with the largest
r. First, we know (r,¢) ¢ D(«), which implies (r 4+ 1,¢) € D(«). By the maximality of r, (r + 1, ¢)
is in snow(D(«)). We invoke Lemma 4.29 and conclude a;41 > oy, Y41 > 7 and s;a ~ s;7y. Since
v is snowy, by Corollary 4.19,Awe knovAv raj(s,y) = raj(y) — 1, which implies raj(s,«) = raj(a) — 1.

By our inductive hypothesis, £, o = c£s, for some ¢ # 0.
We may write £, as fAEr0)=llg, |+ g where g has S-degree less than raj(s,a) — |a|. Then

Ly = 7Ti(£5ra) + Bﬂi(xi-&-lgsra)
= Ti(Ls,a) + BTi(zis1g) + BTN (2111 84,0)

The first two terms on the right-hand side have [ degree less than raj(a) — |a|. Thus, the /-
degree in £, is at most raj(«) — |a|. By Lemma 4.2, the -degree in £, is raj(a) — |a|. Extract the
coefficient of gra(®=lel and get

~

Lo = Wi(xi-&-lgsra) = Cﬂi(fni-i-lfgsr'y) = C'gw

by Lemma 4.23. O

5. SNOW DIAGRAMS FOR ROTHE DIAGRAMS

Fix an n € Z~( throughout this section. We move on to study the snow diagrams of RD(w) for
w € Sy. In subsection 5.1, we recall a version of Schensted insertion on .S,,. In subection 5.2, we
show the positions of dark clouds in snow(RD(w)) is related to the Schested insertion. We then use
this connection to prove that rajcode(RD(w)) is consistent to the rajcode(w) defined in [PSW21].
In Section 5.3, we show the dark clouds in snow(RD(w)) corresponds to the turning points in
the shadow diagram for w. In Section 5.4, we study the snow diagrams for inverse fireworks
permutations.

5.1. The Schensted Insertion. If a diagram is top-justified and left-justified, we say it is a Young
diagram. A filling of a Young diagram with positive integers is called a tableau. A tableau is called
partial if it contains distinct numbers and each row (resp. column) is decreasing from left to right
(resp. top to bottom). Notice that usually in literature, columns and rows are increasing. We
reverse the convention to make our results easier to state.

The Schensted insertion [Sch61] is an algorithm defined on a partial tableau T' and a positive
number z that is not in 7. It finds the largest 2’ in the first row of T such that z > /.

e If such 2’ does not exist, it appends x at the end of row one and terminates.
e Otherwise, it replaces ' by z and insert 2’ to the next row in the same way.
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When the algorithm terminates, the resulting partial tableau is the output.
For w € S,,, we insert w(n),w(n —1),...,w(1) to the empty tableau via the Schensted insertion
and denote the result by P(w).

Ezxample 5.1. Take w € S7 with one-line notation 3721564. The Schensted insertion on w yields:

4] 6] [e]s] le][s]1] [6][5]2],
4 4 411

7]5)2] [7]5]3
6|1
4

One classical application of the Schensted insertion is to study increasing subsequences in a
permutation. Recall LIS*(q) is the length of the longest increasing subsequence of w € S,, that
starts with ¢. It is related to the Schensted insertion as follows.

Lemma 5.2. [Sag01, Lemma 3.3.3] Take w € S,, and perform the Schensted insertion on w. For
any 7 € [n], when w(r) is inserted, it goes to column LIS (w(r)) in row one.

Ezample 5.3. Consider the w € S7 in Example 5.1. Notice that LIS*(w(4)) = 3. When w(4) =1
is inserted to row one, it indeed goes to column 3.

5.2. Rajcode of Rothe diagrams. We show that rajcode(w) defined by Pechenik, Speyer and
Weigandt (see Definition 2.1) agrees with the rajcode(RD(w)) (see Definition 3.5). To do so, we
need a better understanding of snow(RD(w)). We start by describing how the positions of dark
clouds in snow(RD(w)) are related to the Schensted insertion described in Subsection 5.1.

Proposition 5.4. Take w € S,,. Consider the Schensted insertion on w. The dark cloud in row r
of snow(RD(w)) can be described based on the insertion of w(r).

(1) If w(r) is appended to the end of row one, then there is no dark cloud in the r*" row of
snow(RD(w));
(2) If w(r) bumps c in row one, then (r,c) is a dark cloud in snow(RD(w)).

Ezample 5.5. Let w € S; with one-line notation 3721564. Consider the corresponding Rothe
diagram RD(3721564) and its snow diagram:

1 1 ° ? *
2 L] 2 .
3 3| e *
4 4 |
5 5 ]
6 H 6 o |
7 7 o

The Schensted insertion of w is presented in Example 5.1. We check Proposition 5.4 in the table
below.

r | w(r) | insertion of w(r) in row one | position of e in row 7 of snow(RD(w))
7| 4 | appended at the end of row one row 7 has no e

6 6 bumps 4 in row one row 6 has e at (6,4)

5| 5 | appended at the end of row one row 5 has no dark cloud

4| 1 | appended at the end of row one row 4 has no dark cloud

30 2 bumps 1 in row one row 3 has e at (3,1)

2| 7 bumps 6 in row one row 2 has e at (2,6)

1| 3 bumps 2 in row one row 1 has e at (1,2)
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Proof. We prove the statement by induction on r starting from r = n. The number w(n) is inserted
into the empty tableau. In this case, it is appended to the end of the first row. It is also clear that
there can not be any dark cloud on row n of snow(RD(w)).

Now suppose the statement holds for r+ 1,7+ 2,...,n for some r < n—1. Let P be the tableau
right before the insertion of w(r). By the mductlve hypothesw for each r’ > r, w(r') appears in
row 1 of P if and only if there is no dark cloud in column w(r’) under row r of snow(RD( )). Now
consider the insertion of w(r).

(1) Case 1: w(r) is appended to the end of row 1.

Assume toward contradiction that (r,w(r’)) is a dark cloud of snow(RD(w)) for some
r’ > r. Then w(r) > w(r’). Moreover, there is no dark cloud in the column of w(r’) under
row r, so w(r’) is in row 1 of P. Thus, w(r) cannot be appended in row 1, a contradiction.

(2) Case 2: w(r) bumps w(r’) in row 1 for some r’ > 7.

Then w(r) > w(r’). The cell (r,w(r’)) is in RD(w). We need to show that it is a dark
cloud in snow(RD(w)). By Remark 3.4, we just need to make sure there is no dark cloud
under it or on its right.

Suppose that there is a dark cloud in column w(r’) under row r. By the inductive
hypothesis, w(r’) cannot appear in row 1 of P, which is a contradiction.

Finally, suppose there is a dark cloud on the right of (r,w(r")). We may write thm dark
cloud as (r,w(r")) with w(r”) > w(r’). Since it is a cell in RD(w), we also have r” > r and
w(r) > w(r"”). Since it is a dark cloud, there is no dark cloud under it. By the inductive
hypothesis, w(r”) is in row 1 of P. This is a contradiction: w(r) should bump w(r”) instead
of w(r’) since w(r) > w(r") > w(r'). O

Theorem 5.6. For w € S, rajcode(w) = rajcode(RD(w)).

Proof. Take r € [n]. Consider row r of snow(RD(w)). It contains invcode(w), cells that are not
snowflakes. Let d, be the number of dark clouds in snow(RD(w)) that are southeast of (r,w(r)).
Clearly, d, is also the number of snowflakes in row r of snow(RD(w)). We have rajcode(RD(w)), =
invcode(w), + d,.

Consider the Schensted insertion of w. Let P be the tableau right before the insertion of w(r).
Define A as the number of elements in P that are larger than w(r). We compute A in two ways.

e The tableau P consists of numbers w(r 4+ 1),...,w(n). There are invcode(w), of them less
than w(r), so A =n —r — invcode(w),.

e Assume when inserting w(r) to P, it goes to column ¢ of row 1. Thus, ¢ — 1 is the number
of entries in row 1 of P that are larger than w(r). By Proposition 5.4, d, is the number of
entries under row 1 of P that are larger than w(r). We have A = ¢—1+d,. By Lemma 5.2,
¢ = LIS*(w(r)), so A = LISY(w(r)) — 1 + d,.

Combining the two expressions of A yields

n — r — invcode(w), = LIS (w(r)) — 1 + d,, so

rajcode(RD(w)), = invcode(w), + d, = n —r + 1 — LISY(w(r)) = rajcode(w),.
U

5.3. Dark Clouds of the Rothe Diagram via Viennot’s geometric construction. In 1977,
Xavier Gérard Viennot gave a diagrammatic construction of the RSK correspondence in terms of
shadow lines ([Vie77]). It is also known as the matrix-ball construction. We will show that the dark
clouds in the snow diagram of a permutation can be obtained via Viennot’s geometric construction.
We denote Row; (P(w)) to be the first row of the tableau obtained by Schensted insertion on w.



TOP-DEGREE COMPONENTS OF GROTHENDIECK AND LASCOUX POLYNOMIALS 17

For two cells (4, j), (m,n) € NxN, (m,n) lies in the shadow of (¢, 7) if and only if m < iand n < j.
This can be visualized by imagining shedding light from the Southeast. 2 To obtain the shadow di-
agram of w € Sy, consider the points (1,w(1)),...,(n,w(n)). Let (igl), w(i&”)) ey <i2),w(i2))>
be the points that are not in the shadow of any other point for some ¢; > 1 and igl) > igl)
s> ig). Then the first shadow line Li(w) is the boundary of the combined shadows of the points
(igl),w(igl)» ey <i2),w(i2))>. The rest of the L;(w) can be constructed recursively. Supposed

Ly,...,Lj_1 have been constructed, remove all points in the set

>

{(i;p),w(z',?))) ;1<p<j—1,1<k<€p},

then L; is the boundary of the shadow of the remaining points of the points left, which we label as
(i) . (8w 6))

for some /; > 1 and igj ) > iéj S zg ). Once there is no point left, the shadow lines we obtained

form the shadow diagram for w.

Theorem 5.7 ([Vie77]). Given w € S,, and suppose L1, ..., Ls are the shadow lines obtained from
w until there is no point left. Then s equals the size of Row; (P(w)).

For each shadow line Lj, it also consists £; — 1 “turning points”, which are points (z,y) of L;
such that (z —1,y), (z,y — 1) ¢ L;, i.e.,

(., w@) (i, w6 .- (i w6 ) -

In total, there are n — |[Row;(P(w))| turning points for each w € S,. There is a classical result
connecting these turning points to the Schensted insertion.

Theorem 5.8 ([Vie77, Knu70]). Let a shadow line L; of a permutation w consists of points
(8, wG) o (i) w6

(g

(7) () > e > iz-)' Then during Schensted insertion on w, when we insert
J

for some ¢; > 1 and iy’ > iy

w(i,(ﬂl), it bumps w(z'(j)) from the first row.

Combining Proposition 5.4 and Theorem 5.8, we have the following.

Corollary 5.9. Each of the turning points in the shadow diagram of w contains a dark cloud in
snow(w). Any dark cloud in snow(w) is also a turning point in the shadow diagram of w.

Example 5.10. Consider w = 3721564 € S;. We present its Rothe diagram, its shadow diagram,
and the snow diagram of RD(w). From Example 5.1, the Schensted insertion on w yields a tableau
whose row 1 has three cells. Correspondingly, there are three shadow lines. The turning points of
the shadow lines are (3,1),(1,2),(6,4),(2,6), which are positions for dark clouds in snow(RD(w)).

Remark 5.11. A geometric interpretation for the rajcode is given in [PSW21, Section 4] in terms
of the “blob diagrams.” Specifically, the set of points in the same shadow line in the shadow line
diagram is labeled as By, Bj_1,... from southeast to northwest. With the labeling on the blob
diagrams, we can obtain the rajcode directly. That is, if (i, w(i)) € By, then rajcode(w); = k — i.

2The usual convention can be thought of shedding light from the Northwest, which corresponds to the usual
Schensted insertion. We reverse the direction to match our decreasing Schensted insertion convention.
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FIGURE 1. Left: RD(w); Middle: shadow diagram of w; Right: snow(RD(w))

5.4. Inverse fireworks permutations. Now we have seen that our snow diagrams are connected
to the work of Pechenik, Speyer and Weigandt [PSW21]. We recall another interesting notion in
their work.

Definition 5.12. [PSW21, Definition 3.5] A permutation w € S, is a fireworks permutation if its
initial element in each decreasing run is increasing. A permutation w € S, is an inverse fireworks
permutation if w™! is a fireworks permutation.

Inverse fireworks permutations are the representatives of equivalence classes, given by permu-
tations with the same rajcode [PSW21]. The snowy weak compositions play the same role in our
study of 2. We investigate the similarities between inverse fireworks permutations and snowy weak
compositions. For w inverse fireworks, RD(w) enjoy analogous properties as the D(«) of snowy a.
We start with the following observation about RD(w).

Lemma 5.13. Let w € S,, be an inverse fireworks permutation. Consider each r € [n] such that
row 7 of RD(w) is not empty. The rightmost cell in row r of RD(w) is (r,w(r) — 1).

Proof. Recall that (r,w(r’)) € RD(w) if and only if (r,7’) € Inv(w) if and only if (w(r’),w(r)) €
Inv(w™!). Let ¢ = w(r). Clearly, cells in row r of RD(w) are within the first ¢ — 1 columns. It
remains to check (r,c — 1) € RD(w), which is equivalent to (c — 1,¢) € Inv(w™1).

Since row r of RD(w) is nonempty, it must contain a cell (r,4) such that (i,¢) € Inv(w™1) for
some i € [c—1]. Since w™!(i) > w™!(c) and w™! is fireworks, w~'(c) can not be the initial element
in its decreasing run. Therefore w=!(c — 1) > w™!(c) and we have (¢ — 1,¢) € Inv(w™!). O

We can characterize the inverse fireworks permutations using Rothe diagrams or the snow dia-
gram of the permutation. This is similar to Remark 4.17, where we describe snowy weak composi-
tions using key diagrams and dark clouds.

Proposition 5.14. Take w € S,,. The following are equivalent:

(1) w is an inverse fireworks permutation.
(2) In RD(w), the rightmost cells in each row are in different columns.
(3) In snow(RD(w)), the rightmost cell in each row is a dark cloud.

Proof. The last two statements are clearly equivalent. Now we establish the equivalence of the first
two statements.
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Assume w is inverse fireworks. Take r,r’ € [n] with r # 1/ such that row r and row ' of RD(w)
are not empty. By Lemma 5.13, the rightmost cell in row r (resp. /) is at (r,w(r) — 1) (resp.
(r',w(r') = 1)). Clearly, w(r) — 1 # w(r’) — 1, so we have our second statement.

Now we assume w is not inverse fireworks. We can find a number r in w™! such that r is
the initial element in its decreasing run, but r is less than 7/, the initial element of the previous
decreasing run. Let ¢ = w(r’) and ¢ = w(r). Since (¢, ¢) € Inv(w™!), (r,¢) € RD(w). Thus, row
r of RD(w) is not empty. Let (r,7) be the rightmost cell in row r. In other words, i is the largest
such that (i,c) € Inv(w™!). We have ¢ < i < ¢ — 1. Consider the decreasing run before w=!(c):
wid)>w N d+1) > >wec—1). Wesee (i,i + 1) is also in Inv(w™!). In row w=!(i + 1),
the cell (w™!(i + 1),4) is the rightmost cell of its row. Thus, the second statement does not hold,
and the proof is finished. O

With the above proposition, we can compute rajcode(w) easily if w is inverse fireworks. The
following rule is similar to Lemma 4.18(2).

Proposition 5.15. Assume w € S, is inverse fireworks. For each r € [n],
rajcode(w), = [{r’ > r :(r,r’) € Inv(w) or

w(r’) > w(r) and (', r") € Inv(w) for some 7"}|.

Proof. First, we know rajcode(w), = rajcode(RD(w)), is the number of cells in the 7" row of
snow(RD(w)). The number of non-snowflake cells on this row is given by [{r" : (r,7’) € Inv(w)}|.
Now we count the number of snowflakes in row 7 of snow(RD(w)). It is the number of 7’ > r such
that row r of snow(RD(w)) has a dark cloud on the right of the column w(r). By Lemma 5.13,
row 7’ has a dark cloud at column w(r’) — 1 if RD(w) is nonempty in row /. Thus, the number
of snowflakes in row r of snow(RD(w)) is the number of 7/ > r such that w(r’) > w(r) and
(r',7") € Inv(w) for some r”. O

6. VECTOR SPACE SPANNED BY &,

We now study the vector spaces 17n = Q—span{@gw cw € Sy} and Vo= Q—span{@w cw e Sy}
By Theorem 1.1, they have bases

{By :w e S, is inverse fireworks} and {®, : w e S, is inverse fireworks}

respectively. By [Cla01], the number of inverse fireworks permutations in S, is B, the n'® Bell
number. Thus, YA/n has dimension B,,.

We introduce another basis of YA/n and V consisting of SAla, the top-degree components of Lascoux
polynomials. One application of the top Lascoux basis is to compute the Hilbert series of ‘A/n and
V. For a vector space V < Q[x1,x2, - |, the Hilbert series of V is

Hilb(V;q) := Z maq?,
d=0
where my is the number of polynomials with degree d in a homogeneous basis of V.
In Subsection 6.1, we recall the definition of B,, and its g-analogue B, (¢q). In Subsection 6.2,

we compute Hilb(V,,;q) using B,(q) and rook-theoretic results. In Subsection 6.3, we compute
Hilb(V; q).

6.1. Stirling numbers, Bell numbers and their ¢g-analogues. Let n, k be non-negative inte-
gers throughout this subsection. Let Sy, ;, be the Stirling number of the second kind, defined by the
recurrence relation

Sn+1,k = Sn,k—l + kSn,ka
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together with Spo = 1 and Spp, = 0if £ > 0. Let B, := Z?:o Sy,; be the Bell number which
satisfies the following recurrence relation

n
n
By = Z < .>Bj-
j=o N
Let Rook,, be the set of non-attacking rook diagrams contained in Stair,. It is an exercise to
show B, = |Rooky,|. In [BCHR10], Butler, Can, Haglund, and Remmel built an explicit bijection
between Rook,, and set partitions of [n] .

Now consider the polynomial ring Q[¢]. Define [n], := 1+ ¢+ --- + ¢"~!. Define a g-analogue
of Sy recursively by:

Snt16(0) = ¢" 7 Sn-1(q) + [KlgSnk(a),
with base cases Spi(q) = Sox. Similarly, define a g-analogue of B, by By,(q) := Z?:o Sn.j(q)-
The coefficients in By, (q) are given in OEIS A126347. By [Wag04], B, (q) satisfies the recurrence

relation
n
(n
Buii(q) = ), qj( .>Bj(Q)-
=0 M
Milne [Mil82] first gave a combinatorial model for S, ;(¢) using set partitions. We use the
combinatorial model developed by Garsia and Remmel [GR86]. They defined a statistic on Rook,,
called “inversion”. We rename it as GR,, to distinguish it from the inversion on permutations.

Definition 6.1 ([GR86]). Assume R € Rook,. For each (r,¢) € R, mark all cells (r/,¢) with v’ € [r]
in Stair,. Also, mark all cells (r,¢) with ¢ € [¢] in Stair,. The number GR,(R) counts cells in
Stair,, that are not marked.

Garsia and Remmel prove that

(5) Suile) = Y D),
DeRooky,
|D|=n—k

which implies

(6) Bu(q)= Y, ¢

DeRooky,
From this formula, By (¢) has degree (3) since GR, (&) = (5).

~

6.2. Computing Hilb(V,;; q). Define
Cp :={aeCy :supp(a) € [n—1],0; <nm —i for all i € [n — 1]}.
Then we can refine Theorem 2.4.
Corollary 6.2. For w € S, ,, expands positively into {£, : a € Cp}.

Proof. By Theorem 2.4, we can expand &,, into a sum of Lascoux polynomials. We just need to
make sure for each £, appearing in the expansion with a nonzero coefficient, we have o € C,,.

We know the monomial z® is the leading monomial of k., so % appears in £,. Since all
coefficients in the sum are positive, we know z®B"" appears in &,, for some m € Z>y. By the
monomial expansion of &,, given by Fomin and Kirillov [FK94], we have a € C,,. 0

By this corollary and Lemma 2.5, we have the following.
Corollary 6.3. For w € S, @w expands positively into {SAla s e Cpl.

Now we are ready to give another basis of XA/n:
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Proposition 6.4. The space V,, is also Q-span{£, : a € C},}. It has a basis {£,, : @ € C}, is snowy}.

Proof. By Corollary 6.3 , ‘A/n is a subspace of Q—span{ﬁa :a € Cp}. By Lemma 4.5, for any a € Cy,
we can find a snowy v € C, such that v ~ . Then by Theorem 1.2, Ea is a scalar multiple of
!Alw. Thus, @—span{ﬁa : a € Cp} is a subspace of Q—span{ﬁa : a € Cp is snowy}. Notice that
{Ea : « € C), is snowy} is linear independent since its polynomials have distinct leading terms by
Theorem 1.2. R

By [PSW21, Theorem 1.4] V,, has dimension B,,. It remains to check the number of snowy
weak compositions in C), is also B,,. In Lemma 4.20, we show dark(-) a bijection from snowy weak
compositions in C; to Rook,. Clearly it restricts to a bijection from C,, to Rook,, which has size
B,. O

~

We use the top Lascoux basis to derive Hilb(V},; q). Let us translate the statistic raj(-) on snowy
weak compositions to non-attacking rook diagrams.

Definition 6.5. Take R € Rook,.. Define the Northwest number of R, denoted as NW(R) := raj(«),
where « is any weak composition with dark(a) = R.

Equivalently, we may compute NW(R) as follows: For each (r,c) € R, we mark all cells weakly
above it and to its left. By Lemma 4.14, these marked cells agree with the underlying diagram
of snow(D(«)) for any a with dark(a) = R. Then NW(R) is just the number of marked cells.
Comparing this statistic with GR,,(-) defined in Subsection 6.1, we have the following connection.

Remark 6.6. Take R € Rook,. Then GR,(R) = |Stair,| — NW(R) = (3) — NW(R).

Finally, we can derive an expression for the degree generating function of XA/n

Proposition 6.7. We have

Hilb(V:9) = ¢(3) Bu(q™) = rev(Bu(0)),
where rev(-) is the operator that reverse the coefficients of a polynomial. In other words, it sends
a polynomial f(q) of degree d to ¢%f(¢™!).

~

Proof. By Prop 6.4, Hilb(V,;9) = >3, ¢"3(®) where the sum is over snowy a € Cp,. Apply the
bijection dark(-) to « in the summation, we have

Hilb(‘/}n;q)z Z qNW(R): Z q(g)_GR"(R)

ReRook, ReRook,
=) Y R = BB, (),
ReRooky,

where the second equality is by Remark 6.6 and the last equality is by (6). Since By, (¢q) has degree
(3), we have Hilb(V,; q) = rev(By(q)). O
6.3. Computing Hilb(f/; q). First, we show the top Lascoux polynomials also span the space V.
Proposition 6.8. We have Q—span{fla |laeCy} = V.

Proof. By Corollary 2.6, V is in the Q-span of {!Ala : € C4}. Now consider a € C. There exists
n large enough such that a € C,,. Then £,€V,, c V. ]

Corollary 6.9. The space V has a basis {f}a : € Cy is snowy}.
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With the top Lascoux basis, we have

Hilb(Vig) = >, ¢ = 3 W0,

aeCy, ReRook 4
« is snowy

where the second equahty is obtalned by applying dark(-) on « in the second expression. On the
other hand, since V = Uns1Va
Hllb(V q) is the limit of H1lb(f/ q) as n goes to infinity. According to OEIS, coefficients in

By (q) are in A126347 and the coefficients of Hilb(V; ¢) are in A126348. A formula for Hilb(V; ¢) in
OEIS is given by Jovovic: [, (1 + 1_q). For completeness, we check this rule using our formula

of Hilb(‘A/; q) involving snowy weak compositions.

Proposition 6.10. We have

Hilb(Vig) = > ¢™@ =] (1 + 1q_q>

« is snowy m>0
Proof. Let snowy(M) be the set of all snowy weak compositions with the largest entry being at
most M. It suffices to show

m

M
S eI (1),

aesnowy (M) m>0

We prove it by induction on M. The claim is immediate when M = 0 as both sides are 1.

Now assume the claim above holds for some M > 0. Let snowy(M); be the set of all snowy weak
compositions « such that its largest entry is a; = M. With this notation, we can express snowy (M)
recursively:

snowy (M) = snowy(M — 1) |_| (|_| snowy(M)i> .
i1
Next, we define a map
¢ : snowy(M — 1) — snowy(M);
(051,042,...) — (M,Oq,ag,...)
It is straightforward to see that ¢ is a bijection. Furthermore, we have raj(¢(«)) = raj(a) + M. To
get snowy(M); for i > 1, notice that the operator s; on the set of weak compositions is a bijection

between snowy(M); and snowy(M); 1. For a € snowy(M);, we have raj(s;(a)) = raj(a) + 1 by
Corollary 4.19. Inductively, we have

Z qraj(a) _ qM+i—1 Z qraj(a)‘

aesnowy(M); aesnowy (M —1)
Finally,
Z qraj (o) _ Z raJ (Z qMJrz 1) Z qraj(a)
a€esnowy (M) aesnowy (M —1) =1 aesnowy (M —1)

= (14> M D = <1+qM> Aﬁl <1+qm>.
) 1—gq 1—gq

i=1 aesnowy (M —1


https://oeis.org/A126347
https://oeis.org/A126348
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7. OPEN PROBLEMS AND FUTURE DIRECTIONS

We conclude with several open problems for future study. In Section 5.3, we present the connec-
tions between the following three constructions:
- Positions of dark clouds in snow(RD(w));
- First step of Viennot’s geometric construction;
- Bumps in the first row during Schensted insertion.

Problem 7.1. Find further connections between Viennot’s geometric construction of Schensted in-
sertion and snow(RD(w)).

Problem 7.2. Find further connections between Schensted insertion and snow(RD(w)).

The Grothendieck to Lascoux expansion, proven in [SY23], involves finding certain tableaux and
computing their right keys.

Problem 7.3. Find a combinatorial formula for the expansion of Castelnuovo-Mumford polynomials
into top Lascoux polynomials indexed by snowy weak compositions.

Finding a combinatorial formula for the siructure constants ¢/, for Grothendieck polynomials,
defined as

6,6, = Z 6371,(’510 s

has been a long-standing open problem. These coefficients have a geometric interpretation: They
are the intersection numbers for the Schubert classes in the connective K-theory. If we consider
only the top-degree terms on both sides, we get the structure constants for Castelnuovo-Mumford

polynomials, which we denote as c/i,, which are still non-negative integers.

Problem 7.4. Find a combinatorial formula for ¢ .

The Grothendieck polynomials &,,(x) are a specialization of the double Grothendieck polyno-
mials &, (x,y) by setting y; = yo = -+ = 0. In [KMO1], Knutson and Miller introduced pipe
dream rules for both &,,(x) and &, (x,y). For Castelnuovo-Mumford polynomials Q/i;(cc), we can
think they correspond to a subset of pipe dreams for &, (x). In [PSW21], the authors proved a
factorization of Q/ﬁ;(m, y) into a x-polynomial and a y-polynomial, and they showed the the leading
term is in fact,

xrajcode(w)yrajcode(wfl)

)

with coefficient 1 by constructing a pipe dream associated with it iteratively.

Problem 7.5. Use the snow diagrams to give an explicit construction of pipe dreams for the leading
term in B, (x,y).

In general, one can define a K-Kohnert polynomial for any diagram D:
o)=Y, g,
D'eKKD(D)
Problem 7.6. Find characterizations of diagram D such that the leading monomial of Kp is given
by rajcode(D).
8. APPENDIX
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Permutation w

&y (B in bold blue)

el 1

21341 = 5 x

13247 = s (x1 + x2) + fxra2

2314 = 5189 r1T2

31247 = 5951 x?

32147 = 51595 m%:cz

1243" = 53 (1 4 22 + 23) + B(w120 + 2173 + T273) + BPTi1T2T3

21437 = 5155 (w179 + 2173 + 23) + B(w12223 + 2312 + ¥373) + BPrITaT3
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3142 = 598153
41237 = s35951
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2431 = 51538983
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3412 = 59515389
41321 = 83898183
42137 = s3595159

L1L2T3
(aclx% + x%xg) + Bm%w%

2 2 2
(x7x2 + 2723) + friT2T3
3
Ty
(23m2 + 2123 + 2iws + T122w3 + 2323) + B(rird + 22twenws + 221 23w3) + fPadw

(22293 + m17323) + Br3x3T3

a:%acgazg
2,..2
L1

(2332 + 2323) + BriToms
3

3421 = 5951538953 w%w%mg
4231 = 5359515953 cci’aaa:g

3.2

4312T = 5352515352 Ty

3.2

43217 = 535251535253 | TTXT5T3

2
23
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Weak compositions « | £, (£, in bold blue)

(0,0,0)f 1

(1,0,0)1 x1

(0,1,0)1 (z1 4 x2) + B 12

(1,1,0) T1xo

(2,0,0)f x?

(2,1,0)f x2xo

(0,0, 1)f (1 4 22 + 23) + B(z120 + 2173 + T273) + BPTiT2T3

(0,1,1) (r129 + 123 + X273) + f2T1T2T3

(0,2,0)f (22 + 120 + 23) + B (2322 + T173)

(1,0,1) (129 + T123) + fT1T2T3

(3,0,0)1 x$

(2,0, 1)f (2229 + 2323) + BxiT2T3

(L 2a O)T (l‘ll’% + "E%:L'Q) + Bw%:c%

(0,2, 1)f (z3m2 + 2323 + 1123 + T122W3 + 2323) + B(2ird + 22twens + 221 2313) + BPrixdas
(lel) L1L2L3

(3,1,0)1 T3zo

(3a 0’ 1)T ($§$2 + x:fx?)) + ﬁm%m2m3

(2,2,0) z3z3

(2,1,1) z3z3

(1,2,1) (232923 + T17323) + Brizias

(3,2,0)1 x3x3

(3,1,1) x3xoxs

(2,2,1) x2x2z;

(3,2, 1)f x3x3r3

TABLE 2. Lascoux polynomials in Cjy. T refers to snowy weak compositions.
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