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CONNECTION BETWEEN SCHUBERT POLYNOMIALS AND TOP LASCOUX

POLYNOMIALS

TIANYI YU

Abstract. Schubert polynomials form a basis of the polynomial Qrx1, x2, ¨ ¨ ¨ s. This basis and
its structure constants have received extensive study. Recently, Pan and Yu initiated the study of

top Lascoux polynomials. These polynomials form a basis of the vector space pV , a subalgebra of
Qrx1, x2, ¨ ¨ ¨ s where each graded piece has finite dimension. This paper connects Schubert polyno-
mials and top Lascoux polynomials via a simple operator. We use this connection to show these two
bases share the same structure constants. We also translate several results on Schubert polynomials
to top Lascoux polynomials, including combinatorial formulas for their monomial expansions and
supports.

1. Introduction

For a permutation w, Lascoux and Schützenberger [LS82a] recursively define the Schubert poly-
nomial Sw using divided difference operators. These polynomials represent Schubert cycles in flag
varieties and have been extensively investigated from various perspectives. We summarize some
significant results on Schubert polynomials relevant to this paper.

(1) The set of all Schubert polynomials forms a basis of the polynomial ring Qrx1, x2, ¨ ¨ ¨ s.
Products of Schubert polynomials can be expanded positively into Schubert polynomials
(i.e. the expansion only involves positive integer coefficients):

SuSv “
ÿ

w

cwu,vSw,

The coefficient cwu,v is known as the Schubert structure constant . A major open problem
in algebraic combinatorics is to compute cwu,v combinatorially.

(2) Lam, Lee and Shimozono [LLS21] introduced the (reduced) bumpless pipedreams (BPD) to
compute the monomial expansion of Schubert polynomials.

(3) Adve, Robichaux, and Yong [ARY21] introduced perfect tableaux to compute the support
of Schubert polynomials.

(4) The Schubert polynomials have the saturated Newton polytope (SNP) property [FMSD18].
(5) The Schubert polynomial can be expanded positively into key polynomials [RS95].

The key polynomials mentioned above are denoted as κα, where α is a weak composition. They
are the characters of Demazure modules [Dem74]. Lascoux [Las03] introduced an inhomogeneous
analogue of κα known as the Lascoux polynomial Lα. The lowest-degree terms of Lα form κα.

Recently, Pan and Yu [PY23] introduced the top Lascoux polynomial pLα which consists of the

highest-degree terms of Lα. Let pV be the Q-span of all top Lascoux polynomials. Unlike the
Schubert polynomials, the set of all top Lascoux polynomials is not linearly independent. To
resolve this, Pan and Yu called a weak composition snowy if its positive entries are distinct. Then

tpLα : α is snowyu forms a basis of pV . By [PY23, Theorem 1.2], every top Lascoux polynomial is a
scalar multiple of a top Lascoux indexed by snowy weak composition. In the rest of this paper, we

only focus on pLα when α is snowy.
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2 T. YU

Pan and Yu showed that pV is closed under multiplication. Then pV can be viewed as a graded
algebra where the grading is given by degrees of polynomials. Pan and Yu computed the Hilbert

series of pV . Intuitively, pV is much smaller than the polynomial ring Qrx1, x2, ¨ ¨ ¨ s which has no
Hilbert series.

Just like the Schubert polynomials, pLα can be defined recursively using divided difference oper-
ators (see (1)). This resemblance leads to a strong connection between Schubert polynomials and
top Lascoux polynomials, which is the main focus of this paper.

Definition 1.1. Define the following involution on polynomials in Qrx1, ¨ ¨ ¨ , xns where each variable
has degree at most m:

rm,npfq :“ px1 ¨ ¨ ¨ xnqmfpx´1
n , ¨ ¨ ¨ , x´1

1 q.

In §3, we show that each top Lascoux polynomial can be realized as rm,npSwq for some m,n,w

and vice versa. Following this connection, we translate the results on Sw summarized above to pLα.

(1) Products of top Lascoux polynomials can be expanded positively into top Lascoux polyno-
mials:

pLα
pLγ “

ÿ

σ

dσα,γ
pLσ.

We call the coefficient top Lascoux structure constants. Every dσα,γ is cwu,v for some permu-
tations u, v, w and vice versa (see §4).

(2) We give a monomial expansion of top Lascoux polynomials using (modified) bumpless-
pipedreams (see §5).

(3) The support of top Lascoux polynomials can be computed using perfect tableaux (see §6).
(4) The top Lascoux polynomials have the SNP property (See §6).
(5) The top Lascoux polynomials can be expanded positively into key polynomials (see §7).

Besides helping us understand pLα, our results may also shed light on the study of Schubert
polynomials. By (1), computing the Schubert structure constants is the same as computing the

top Lascoux structure constants, which happens in the algebra pV . In other words, we move this
problem into an algebra where each graded piece has finite dimension.

We conclude our introduction with one potential application of our results on pLα. Schubert
polynomials have an inhomogeneous analogue known as the Grothendieck polynomials Gw [LS82b].
Their lowest-degree terms of Gw form the Schubert polynomial Sw. Recently, their top-degree

components pGw, which we call top Grothendieck polynomials, have attracted increasing attention:

‚ The difference of degrees between pGw and Sw yields the Castelnuovo-Mumford regularity
of matrix Schubert varieties [KM01][RRR`21]. Pechenik, Speyer and Weigandt gave a

combinatorial formula to compute the degree of pG [PSW21].
‚ Mészáros, Setiabrata, and St Dizier conjectured that the support of Grothendieck polyno-
mials can be characterized using the support of top Grothendieck polynomials [MSSD22].

Reiner and Yong conjectured a positive formula for the expansion of Gw into the Lα [RY21]. This

conjecture was proved by Shimozono and Yu [SY21]. Thus, pGw expands positively into the pLα.

Our combinatorial formulas of the monomial expansion and support of pLα might lead to formulas

for pG.
The rest of the paper is structured as follows. In Section §2, we provide an overview of the

necessary background information. In §3, we use rm,n to relate the Schubert polynomials and top
Lascoux polynomials. The subsequent sections explore various applications of this relationship. In
Section §4, we examine the connection between the structure coefficients of top Lascoux polynomials
and Schubert polynomials. In §5, we derive a combinatorial formula for top Lascoux polynomials
from the BPD formula of Schubert polynomials. In §6, we analyze the support of top Lascoux
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polynomials by utilizing the support of Schubert polynomials. Finally, in §7, we translate the key
expansion of Schubert polynomials to obtain a key expansion of top Lascoux polynomials.

2. Background

2.1. Schubert polynomials. Let S` be the group of permutations of t1, 2, ¨ ¨ ¨ u where only finitely
many elements are permuted. The simple transpositions s1, s2, . . . where si “ pi, i ` 1q generate
S`. For any positive number n, Sn is a subgroup of S` consisting of w that only permutes
rns “ t1, 2, ¨ ¨ ¨ , nu. We represent w P S` by its one-line notation rwp1q, . . . , wpnqs for some n large
enough such that w P Sn.

A weak composition α “ pα1, α2, . . . , q is an infinite sequence of non-negative numbers with
finitely many positive entries. The support of α is the set supppαq :“ ti : αi ą 0u. We represent α
as pα1, α2, . . . , αnq where supppαq Ď rns. Let xα :“ xα1

1 xα2

2 ¨ ¨ ¨ and |α| :“
ř

iě1 αi.
We say pi, jq is an inversion of w P S` if i ă j and wpiq ą wpjq. The inversion code of w, denoted

as invcodepwq is a weak composition defined as

invcodepwqi :“ |tj : pi, jq is an inversion of wu|.

The Schubert polynomials Sw are indexed by permutations from S`. When a weak composition
is weakly decreasing, we say it is a partition. When invcodepwq is a partition, we say w is a dominant
permutation. Define the Newton divided difference operator :

Bipfq :“
f ´ sif

xi ´ xi`1

,

where sif is the operator that swaps xi and xi`1. Now we can define the Schubert polynomial of
w P S` recursively [LS82a].

Sw “

#
xinvcodepwq if w is dominant

BipSwsiq if wpiq ă wpi ` 1q.

The set of Schubert polynomials form a Q-basis of the polynomial ring Qrx1, x2, ¨ ¨ ¨ s. For u, v P
S`, the product SuSv can be expanded into Schubert polynomials. Let cwu,v be the coefficient of
Sw in this expansion. By geometric results, cwu,v is a non-negative integer known as the Schubert
structure constants.

2.2. Key polynomials and top Lascoux polynomials. The key polynomials κα are indexed
by weak compositions. Lascoux and Schützenberger [LS82b] define the key polynomials recursively.
using the operator πipfq :“ Bipxifq:

κα :“

#
xα if α is a partition,

πipκsiαq if αi ă αi`1,

where si swaps the i
th

and pi ` 1q
th

entries of α.

The top Lascoux polynomial pLα are homogeneous polynomials indexed by snowy weak compo-
sitions: weak compositions whose positive entries are distinct. Following [PY23, Lemma 4.23], we
may define these polynomials recursively. Define the operator pπi as

pπipfq :“ πipxi`1fq “ xixi`1Bipfq.

Then define

(1) pLα :“

#
xα if α is a partition,

pπippLsiαq if αi ă αi`1.



4 T. YU

By the study of Pan and Yu, the vector space

(2) pV :“ Q-spantpLα : α is a snowy weak compositionu

is an sub-algebra of Qrx1, x2, . . . s. Its basis is given by the spanning set in (2). and its Hilbert

series is
ś

mą0

´
1 ` qm

1´q

¯
. In particular, each graded piece of pV has finite dimension.

For weak compositions α, γ, and δ, let dδα,γ be the coefficient of pLδ in the expansion of pLα ˆ pLγ .

We call them the top Lascoux structure constants. Later in §4, we show each dδα,γ is the Schubert
structure constant cwu,v for some permutations u, v, w and vice versa.

2.3. Bumpless pipedreams. The (reduced) bumpless pipedreams (BPD), introduced by Lam, Lee
and Shimozono[LLS21], are combinatorial objects that give a monomial expansion of a Schubert
polynomial. For permutation w P Sn, a BPD is an n ˆ n grid built by the following six tiles:

, , , , , .

We adopt the convention that row 1 is the topmost row and column 1 is the left most column. For
each i P rns, we require a pipe to enter from the bottom of column i and end at the rightmost edge
of row wpiq. Moreover, two pipes cannot cross more than once.

Example 2.1. There are three BPDs for the permutation in S4 with one-line notation r2, 1, 4, 3s.

We let BPDpwq be the set of BPDs of a permutation w. We call a blank . The blank-weight of

a BPD D is a weak composition where the i
th

entry counts the number of in row i. We denote it
as wtlpDq to emphasize that the weight comes from the blanks. Then BPD gives a combinatorial
formula for Schubert polynomials.

Theorem 2.2 ([LLS21]). For a permutation w P Sn,

Sw “
ÿ

DPBPDpwq

xwt˝pDq.

For instance, by Example 2.1, when w has one-line notation r2, 1, 4, 3s, Sw “ x1x3 ` x1x2 ` x21.

2.4. Diagrams. A diagram is a finite subset of N ˆ N. We may represent a diagram by putting
a cell at row r and column c for each pr, cq in the diagram. The weight of a diagram D, denoted
as wtpDq, is a weak composition whose ith entry is the number of boxes in its ith row. Each weak
composition α is associated with a diagram Dpαq, the unique left-justified diagram with weight α.
Each permutation w P Sn or S` is associated with a diagram called the Rothe diagram

RDpwq :“ tpr, cq : wprq ą c, wpiq ‰ c for any i P rrsu.

Example 2.3. We provide examples of two diagrams. For clarity, we put an “i” on the left of the
ith row and put a small dot in each cell.

Dpp0, 2, 4, 0, 1qq “

1

2 ¨ ¨

3 ¨ ¨ ¨ ¨

4

3 ¨

, RDpr4, 1, 5, 3, 2sq “

1 ¨ ¨ ¨

2

3 ¨ ¨

4 ¨

5

.
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The Rothe diagram can characterize one special term in a Schubert polynomial. We consider
the tail-lexicographical order on weak compositions: For two weak compositions α, γ, we say α is
larger than γ if there exists i such that αj “ γj for all j ą i and αi ą γi. For a polynomial f ,
the support of f , denoted as supppfq, is the set of weak composition α such that xα has non-zero
coefficient in f . The leading monomial of f is xα such that α is the largest in supppαq. By Lascoux

and Schützenberger [LS82a], the leading monomial of Sw is xwtpRDpwqq with coefficient 1.
To describe the leading monomial of a top Lascoux polynomial, Pan and Yu [PY23] introduce

the snow diagram. For each diagram D, its snow diagram snowpDq is a diagram together with some
labels in its cells. Each cell can be unlabeled, or labeled by ‚ or ˚. We only consider the snow
diagram of Dpαq where α is a snowy weak composition. In this case, snowpDpαqq can be defined
as follows. In Dpαq, label the rightmost cell on each row with ‚. Then put a cell labeled by ˚ in
empty spaces above each ‚.

Example 2.4. Let α “ p2, 0, 4, 0, 1q. Then Dpαq and snowpDpαqq are depicted as follows.

Dpαq “

1 ¨ ¨

2

3 ¨ ¨ ¨ ¨

4

5 ¨

, snowpDpαqq “

1 ¨ ‚ ˚

2 ˚ ˚

3 ¨ ¨ ¨ ‚

4 ˚

5 ‚

.

For a snowy α, define

rajcodepαq :“ wtpsnowpDpαqqq. Equivalently, rajcodepαqi :“ αi ` tj ą i : αj ą αiu.

By [PY23], xrajcodepαq is the leading monomial of pLα. Moreover, two distinct snowy weak composi-
tions have different rajcode. We end this subsection with a simple property of rajcode that will be
useful in §4.

Lemma 2.5. Let α, γ be two snowy weak compositions. If α is larger than γ in tail-lexicographical
order, then rajcodepαq is also larger than rajcodepγq.

Proof. Find i such that αj “ γj for all j ą i and αi ą γi. Clearly, rajcodepαqj “ rajcodepγqj for all
j ą i and rajcodepαqi ą rajcodepγqi. �

3. Relations between top Lascoux polynomials and Schubert polynomials

This section describes the relationship between top Lascoux and Schubert polynomials.

3.1. The reverse complement involution on polynomials. In this subsection, we describe a
linear operator on polynomials. In the next subsection, we use this operator to transform a top
Lascoux polynomial into a Schubert polynomial. We begin with an involution on certain weak
compositions.

Definition 3.1. Let m,n be positive integers. Define the reverse complement operator rm,n on the
set of weak compositions α such that supppαq Ď rns and αi ď m for all i. We define

rm,npαq :“ pm ´ αn, . . . ,m ´ α1q.

Next, we analogously define rm,n on certain polynomials.

Definition 3.2. Let m,n be positive integers. We extend rm,n to the set of polynomials in x1, . . . , xn
where the power of any xi is at most m. We define it as the linear operator such that rm,npxαq :“

xrm,npαq. Equivalently, we can define rm,n as

rm,npfq :“ xm1 ¨ ¨ ¨ xmn fpx´1
n , ¨ ¨ ¨ , x´1

1 q.
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Remark 3.3. The operator rm,n on polynomials is similar to the operator

f ÞÑ xn1 ¨ ¨ ¨ xnnfpx´1
1 , ¨ ¨ ¨ , x´1

n q

considered by Huh, Matherne, Mészáros and St. Dizier [HMMSD22]. In [HMMSD22, Theorem 6],
the authors apply this operator on a Schubert polynomial Sw with w P Sn and show the resulting
polynomial is Lorentzian after normalization. Our rm,n is also similar to the operator

f ÞÑ fpx´1
1 , ¨ ¨ ¨ , x´1

n q

which sends the character of a GLn module to the character of its dual. A more generalized
operator f ÞÑ xαfpx´1

1 , ¨ ¨ ¨ , x´1
n q and its action on Schubert polynomials are studied by Fan, Guo

and Liu [FGL20].

Next, we investigate how to swap rm,n with the operators: Bi, πi, and pπi.
Lemma 3.4. Suppose rm,n is defined on a polynomial f . Take i P rn ´ 1s. Clearly, rm,n is also
defined on Bipfq, πipfq, and pπipfq. Then we have

rm,npBipfqq “ pπn´iprm,npfqq,

rm,npπipfqq “ πn´iprm,npfqq,

rm,nppπipfqq “ Bn´iprm,npfqq.

Proof. It is enough to assume f “ xα, which is a routine check. �

3.2. Relating Schubert polynomials to top Lascoux polynomials. In this subsection, we
establish that each Schubert polynomial is the reverse complement of a top Lascoux polynomial
and vice versa. We start by describing a variation of the map introduced by Fulton [Ful92, (3.4)].

Definition 3.5. Let α be a snowy weak composition. Take any m,n such that supppαq Ď rns and
m ě maxpαq. The pm,nq-standardization of α, denoted as stdm,npαq is the unique permutation w

satisfying wpn ` 1q ă wpn ` 2q ă ¨ ¨ ¨ and

wpiq :“

#
rm`1,npαqi if rm`1,npαqi ď m

m ` |tj P ris : rm`1,npαqj “ m ` 1u| if rm`1,npαqi “ m ` 1,

for any i P rns.

For instance, if α “ p2, 4, 0, 6, 0, 0, 1q, then std6,7pαq has one-line notation r6, 7, 8, 1, 9, 3, 5, 2, 4s.
Then we can describe the relation between top Lascoux polynomials and Schubert polynomials.

Theorem 3.6. Let α be a snowy weak composition. Take any m,n such that supppαq Ď rns and
m ě maxpαq. Let w be the permutation stdm,npαq. Then

rm,nppLαq “ Sw.

For instance, let α “ p2, 4, 0, 6, 0, 0, 1q, m “ 6 and n “ 7. Then r6,7ppLαq “ Sr6,7,8,1,9,3,5,2,4s.

Proof. Prove by induction on α. For the base case, assume α is a partition with supppαq “ rks.
Then rm`1,npαq “ pm ` 1, ¨ ¨ ¨ ,m ` 1,m ` 1 ´ αk, ¨ ¨ ¨ ,m ` 1 ´ α1q. The first n numbers in the
one-line notation of w are

m ` 1,m ` 2, ¨ ¨ ¨ ,m ` n ´ k,m ` 1 ´ αk, ¨ ¨ ¨ ,m ` 1 ´ α1.

Thus, we have invcodepwq “ pm, ¨ ¨ ¨ ,m,m ´ αk, ¨ ¨ ¨ ,m ´ α1q “ rm,npαq, so w is a dominant
permutation. By the definition of Schubert polynomials,

Sw “ xrm,npαq “ rm,npxαq “ pLα.
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Now suppose αi ă αi`1. It is routine to check wpn ´ iq ă wpn ´ i` 1q and stdm,npsiαq “ wsn´i.
Then the proof is finished by Lemma 3.4:

Sw “ Bn´ipSwsn´i
q “ Bn´ipSstdm,npsiαqq “ Bn´iprm,nppLsiαqq “ rm,nppπippLsiαqq “ rm,nppLαq.

�

Example 3.7. We can understand Theorem 3.6 via a commutative diagram. For instance, the

equation r4,5ppLp2,0,4,0,1q “ pLr4,5,1,6,3,2s is implied by the following commutative diagram.

Sr5,6,4,3,1,2s Sr5,4,6,3,1,2s Sr4,5,6,3,1,2s Sr4,5,6,1,3,2s Sr4,5,1,6,3,2s

pLp4,2,1,0,0q
pLp4,2,0,1,0q

pLp4,2,0,0,1q
pLp2,4,0,0,1q

pLp2,0,4,0,1q

B2

r4,5

B1

r4,5

B4

r4,5

B3

r4,5 r4,5

pπ3 pπ4 pπ1 pπ2

Consequently, every Schubert polynomial is the reverse complement of a top Lascoux polynomial.

Corollary 3.8. Consider w P Sn. Let α “ pn ` 1 ´ wpnq, ¨ ¨ ¨ , n ` 1 ´ wp2q, n ` 1 ´ wp1qq. Then

Sw “ rn,nppLαq.

Proof. Notice that stdn,npαq “ w. Then the proof is finished by Theorem 3.6. �

3.3. A diagrammatic perspective of standardization. In this subsection, we interpret the
standardization map stdm,n in terms of diagrams. Recall that each snowy weak composition α is
associated with a labeled diagram snowpDpαqq. Each permutation w is associated with the Rothe
diagram RDpwq. We describe the relationship between snowpDpαqq and RDpstdm,npαqq.

Example 3.9. Consider the snowy weak composition α “ p0, 4, 2q. Let m “ 4 and n “ 3. Let
w “ stdm,npαq “ r3, 1, 5, 2, 4s. We depict snowpDpαqq and RDpwq as follows:

snowpDpαqq “

1 ˚ ˚

2 ¨ ¨ ¨ ‚

3 ¨ ‚

RDpwq “

1 ¨ ¨

2

3 ¨ ¨

We observe that both diagrams live in the first n rows and m columns. Imagine that we put
RDpwq in an n ˆ m box and rotate it by 180˝. Then take its complement within the n ˆ m box.
What we get is exactly snowpDpαqq without labels.

rotate
ÝÝÝÑ

complement
ÝÝÝÝÝÝÝÑ

This observation holds in general.

Lemma 3.10. Let α be a snowy weak composition. Take n with supppαq Ď rns and m with
maxpαq ď m. Let w “ stdm,npαq. Then both snowpDpαqq and RDpwq live in the first n rows and
m columns. If we embed RDpwq in an n ˆ m box, rotate it by 180˝ and complement it from the
n ˆ m box, what we get is snowpDpαqq without labels.

Proof. If we ignore the labels, snowpDpαqq consists of cells pr, cq such that αr ě c or αi “ c for some
i ą r. Clearly, snowpDpαqq lies in the first n rows and m columns. If we complement snowpDpαqq
from the nˆm box, the resulting diagram consists of pr, cq P rms ˆ rns such that αr ă c and αi ‰ c

for any i ą r. Now we put this diagram in the n ˆ m box and rotate it by 180˝. Let D1 be the
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resulting diagram. We check D1 and RDpwq agree row by row. They clearly agree under row n.
Consider r P rns. If αn`1´r “ 0, then D1 has no cells in row r. Also, wprq ě m ` 1. By the
definition of standardization map, there are no inversions of w of the form pr, r1q. Thus, RDpwq
also has no cells in row r. If αn`1´r ą 0, D1 has cells in column c for c such that c ă m`1´αn`1´r

and c ‰ m ` 1 ´ αn`1´i for all i P rrs. In other words, that is all c such that c ă wprq and c is not
in wp1q, ¨ ¨ ¨ , wprq. Clearly, D1 and RDpwq agree on row r.

�

4. Relations between top Lascoux structure constants and the Schubert

structure constants

Recall that tpLα : α is snowy.u form a basis of the algebra pV . The top Lascoux structure constant

dδα,γ is the coefficient of pLδ in the expansion of pLα
pLγ . At this point, we do not have any reason

to believe that they are positive integers. Surprisingly, the connection between top Lascoux poly-
nomials and Schubert polynomials establishes a bridge between dδα,γ and the Schubert structure

constants cwu,v. First, we describe a necessary condition for dδα,γ to be non-zero.

Lemma 4.1. Let α, γ and δ be snowy weak compositions. Find m1,m2 and n such that m1 ě
maxpαq, m2 ě maxpγq, supppαq Ď rns and supppγq Ď rns. If dδα,γ ‰ 0, we must have supppδq Ď rns
and maxpδq ď m1 ` m2.

The proof relies heavily on the statistic rajcode.

Proof. First, expand

(3) pLα ˆ pLγ “
ÿ

σ

dσα,γ
pLσ.

We know the left hand side uses only variables x1, . . . , xn. Moreover, in any monomial on the left
hand side, each variable has power at most m1 ` m2. Let S be the set of all σ with dσα,γ ‰ 0.
Among S, find the largest σ in tail-lexicographical order. By Lemma 2.5, rajcodepσq is also larger

than rajcodepσ1q for any σ1 P S. Thus, xrajcodepσq has non-zero coefficient on the right hand side of
(3), so supppσq Ď rns. It follows that supppσ1q Ď rns for any σ1 P S.

Now find σ P S with the largest maxpσq, break ties by picking the largest in tail-lexicographical

order. Say maxpσq “ m. In rajcodepαq, one entry is m. We can see rajcodepαq cannot appear in pLσ1

for any other σ1 P S: If so, then σ1 has an entry at least m and rajcodepσ1q is larger than rajcodepσq,
contradicting to the maximality of σ. Thus, xrajcodepσq has non-zero coefficient on the right hand
side of (3), so m ď m1 ` m2. It follows that maxpσ1q ď m1 ` m2 for any σ1 P S. �

Now we describe the main theorem of this section.

Theorem 4.2. Let α, γ be snowy weak compositions. Find m1,m2 and n such that m1 ě maxpαq,
m2 ě maxpγq, supppαq Ď rns and supppγq Ď rns. Let u “ stdm1,npαq and v “ stdm2,npγq. For any
snowy weak composition δ with supppδq Ď rns and maxpδq ď m1 ` m2, we let w “ stdm1`m2,npδq.
Then dδα,γ “ cwu,v.

Proof. First, we have pLαˆpLγ “
ř

σ d
σ
α,γ

pLσ. By Lemma 4.1, the sum is over all σ with supppσq Ď rns
and maxpσq ď m1 ` m2. Apply rm1`m2,n on both sides. Using Theorem 3.6, the left hand side
becomes

rm1`m2,nppLα ˆ pLγq “ rm1,nppLαqrm2,nppLγq “ SuSv.

The right hand becomes

rm1`m2,np
ÿ

σ

dσα,γ
pLσq “

ÿ

σ

dσα,γrm1`m2,nppLσq “
ÿ

σ

dσα,γSstdm1`m2,n
pσq.

�
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Example 4.3. Let α “ p2, 3, 1, 4q and γ “ p2, 1, 4, 3q. We can let m1 “ m2 “ n “ 4. Then
u “ std4,4pαq “ r1, 4, 2, 3s and v “ std4,4pγq “ r2, 1, 4, 3s. We compute

pLα ˚ pLγ “ pLp8,6,5,7q ` pLp6,8,4,7q ` pLp7,8,5,6q ` pLp7,6,8,5q ` pLp6,7,8,4q

Su ˚ Sv “ Sr2,4,3,1s ` Sr2,5,1,3,4s ` Sr3,4,1,2s ` Sr4,1,3,2s ` Sr5,1,2,3,4s.

We check Theorem 4.2 when δ “ p8, 6, 5, 7q. We have dδα,γ “ 1. Now we compute w “
std4`4,4pδq “ r2, 4, 3, 1s. Indeed, cwu,v “ 1.

Theorem 4.2 can express each Schubert structure constant as a top Lascoux structure constant.

Corollary 4.4. Take u, v P Sn and w P S2n. Assume wpn ` 1q ă ¨ ¨ ¨ ă wp2nq. Let α “ pn ` 1 ´
upnq, ¨ ¨ ¨ , n`1´up1qq, γ “ pn`1´vpnq, ¨ ¨ ¨ , n`1´vp1qq and δ “ pn`1´wpnq, ¨ ¨ ¨ , n`1´wp1qq
Then cwu,v “ dδα,γ .

5. Bumpless pipedream formula

In this section, we discuss another application of the relationship between top Lascoux poly-
nomials and Schubert polynomials. Bumpless pipedreams (BPD) give a formula to compute the
monomial expansion of Schubert polynomials. After “reversing the BPDs”, we get a formula for
top Lascoux polynomials.

Definition 5.1. Let α be an snowy weak composition. Find smallest n such that supppαq Ď rns
and let m “ maxpαq. A left-to-top BPD of α is a grid with n rows and m columns built by tiles

, , , , and . For each i P rns with αi ą 0, there is a pipe entering from the left in
row i and goes to the top of column αi. Moreover, no two pipes can cross more than once. Let
LTBPDpαq be the set of all left-to-top BPDs of α.

Example 5.2. Consider α “ p0, 3, 0, 2q. Then n “ 4 and m “ 3. The set LTBPDpαq has five
elements:

Remark 5.3. Readers might notice that left-to-top BPDs look like the top left part of a BPD after
rotation. Keep α, m and n from Example 5.2. Consider the classical BPDs of the permutation
stdm,npαq “ r2, 4, 1, 5, 3s. There are five of them:

The top-to-left BPDs in Example 5.2 are obtained by rotating the red part of these BPDs.

This pattern holds in general.

Proposition 5.4. Let α be a snowy weak composition. Find smallest n such that supppαq P rns
and let m “ maxpαq. Let w “ stdm,npαq. Then LTBPDpαq is formed by rotating the first n rows,
m columns of BPDs in BPDpwq.
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Proof. Immediate from Lemma 3.10. �

Now we are ready to introduce a combinatorial formula for the top Lascoux polynomials. We
just need to specify the “weight” of a left-to-top BPD.

Definition 5.5. Let D be a left-to-top BPD for some snowy weak composition. The non-blank

weight of D, denoted as wtdpDq, is a weak composition where the i
th

entry counts the number of
non-blank tiles in row i of D.

Theorem 5.6. Let α be a snowy weak composition. Then

pLα “
ÿ

DPLTBPDpαq

wtdpDq.

For instance, Example 5.2 yields

pLp0,3,0,2q “ x21x
3
2x3x

2
4 ` x21x

3
2x

2
3x4 ` x31x

3
2x3x4 ` x31x

2
2x3x

2
4 ` x31x

2
2x

2
3x4.

Proof. Follows from Theorem 3.6 and Proposition 5.4. �

Remark 5.7. One can also prove Theorem 5.6 by an induction on α. The key step is to show

pπi

¨
˝ ÿ

DPLTBPDpsiαq

wtdpDq

˛
‚“

ÿ

DPLTBPDpαq

wtdpDq

for α with αi ă αi`1. This argument can be formed by slightly modifying the proof of [Hua21,
Proposition 2.1].

6. Support of top Lascoux polynomials

In this section, we study the support of top Lascoux polynomials. Our main tool is an elegant
description of the support of Schubert polynomials given by Adve, Robichaux, and Yong [ARY21].

Definition 6.1. [ARY21] Let D be a diagram and α be a weak composition. Then PerfectTabÓpD,αq
is the set of fillings of D satisfying all of the following:

‚ For each k, the number of cells in D filled by k is αk.
‚ In each column, numbers are increasing from top to bottom.
‚ Any entry in row i is at most i.

Example 6.2. [ARY21, Example 1.4] Consider D “ RDpp3, 1, 5, 2, 4qq. We enumerate the six ele-
ments in

Ť
α PerfectTabÓpD,αq:

1 1 1

2

3 2 1

1 1 1

2

3 2 2

1 1 1

2

3 2 3

1 1 1

2

3 3 1

1 1 1

2

3 3 2

1 1 1

2

3 3 3

Theorem 6.3. [ARY21, Theorem 1.3] For a permutation w, the support of Sw is the set of α such
that PerfectTabÓpRDpwq, αq ‰ H.
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For instance, Example 6.2 says that supppSp3,1,5,2,4qq consists of p3, 1q, p2, 2q, p2, 1, 1q, p3, 0, 1q and
p2, 0, 2q.

The support of a top Lascoux polynomial can be characterized in the same manner.

Proposition 6.4. For a snowy weak composition α, let D be the diagram snowpDpαqq with labels

erased. The support of pLα is the set of γ such that PerfectTabÓpD, γq ‰ H.

Example 6.5. Consider the snowy weak composition p0, 4, 2q. Ignore all labels in snowpDpαqq and
obtain the diagram D. We enumerate the six elements in

Ť
α PerfectTabÓpD,αq:

1 1 1

2 1 2 1 2

3 2 3

1 1 1

2 1 2 1 2

3 3 3

1 1 1

2 2 2 1 2

3 3 3

1 1 1

2 1 2 2 2

3 2 3

1 1 1

2 1 2 2 2

3 3 3

1 1 1

2 2 2 2 2

3 3 3

By Proposition 6.4, the support of pLp0,4,2q consists of p4, 3, 1q, p4, 2, 2q, p3, 3, 2q, p3, 4, 1q and p2, 4, 2q.

Proof. Find m,n such that m ě maxpαq and supppαq Ď rns. Let w “ stdm,npαq. By Theo-

rem 3.6, we have suppppLαq “ trm,npγq : γ P supppSwqu. It remains to build a bijection from
PerfectTabÓpRDpwq, γq to PerfectTabÓpsnowpDpαqq, rm,npγqq.

We take T from PerfectTabÓpRDpwq, γq. By Lemma 3.10, we may embed T in an n by m box.
We rotate it by 180˝ and replace each number i in T by n ` 1 ´ i. Now we have a filling of some
diagram where each column is increasing from top to bottom and any entry in row i is at least i. By
Lemma 3.10, for each c in rms, if column c of the current T has cells in row r1, . . . , rk, then column
c of snowpDpαqq has cells in row rns ´ tr1, . . . , rku. We fill column c of snowpDpαqq with numbers
in rns that are not in column c of T . It is routine to check this is a well-defined bijection. �

Example 6.6. We apply the bijection to one element shown in Example 6.2:

1 1 1

2

3 2 3

rotate
ÝÝÝÑ

1 3 2

2

3 1 1

replace i by 4´i
ÝÝÝÝÝÝÝÝÝÝÑ

1 1 2

2

3 3 3

Then we fill column 1 of snowpDpαqq with r3s ´ t1u “ t2, 3u, fill column 2 with r3s ´ H “ r3s, fill
column 3 with r3s ´ t2, 3u “ t1u and fill column 4 with r3s ´ t3u “ t1, 2u. We get the third element
in Example 6.5.

The support of a Schubert polynomial has one nice property.

Definition 6.7. [MTY19] Consider f P Qrx1, ¨ ¨ ¨ s with supppfq Ď rns. We may view supppfq as a
subset of Rn and consider its convex hull. If any lattice point in the convex hull is also in supppfq,
we say f has saturated Newton polytope (SNP).

Fink, Mészáros, and St. Dizier show that Schubert polynomials has SNP [FMSD18, Corollary
8]. We move this property to top Lascoux polynomials.

Proposition 6.8. For any snowy α, pLα has SNP.

Proof. By Theorem 3.6, pLα “ rm,npSwq for some m,n,w. The SNP property is clearly preserved
by rm,np¨q. �
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7. Key expansion of top Lascoux polynomials

In this section, we expand top Lascoux polynomials positively into key polynomials. Our main
tool is the Schubert-to-key expansion:

Theorem 7.1 ([RS95]). For w P Sn, the Schubert polynomial Sw can be expanded as
ř

α c
w
ακα,

where the coefficients cwα are non-negative integers counting certain tableaux.

We will translate this expansion to top Lascoux polynomials. The first step is to understand
how the rm,n operator affects a key polynomial.

Proposition 7.2. Let α be any weak composition. Let m,n be positive integers. Then rm,n is
defined on α if and only if rm,n is defined on κα. If this is the case, rm,npκαq “ κrm,npαq.

The proof is essentially the same as the proof of Theorem 3.6.

Proof. The first claim is immediate. We prove the equation by induction on α. For the base case,
assume α is a partition. So is rm,npαq. We have rm,npκαq “ rm,npxαq “ xrm,npαq “ κrm,npαq.

Now assume αi ă αi`1 for some i. For our inductive hypothesis, assume κsiα “ rm,npκrm,npsiαqq.
By Lemma 3.4,

κα “ πipκsiαq “ πiprm,npκrm,npsiαqqq “ rm,npπn´ipκsn´iprm,npαqqqq “ rm,npκrm,npαqq.

�

Corollary 7.3. Let α be a snowy weak composition. Find m,n such that α Ď rns and maxpαq ď

m. Let w be the permutation stdm,npαq. The top Lascoux polynomial pLα can be expanded asř
γ c

w
γ κrm,npγq where the coefficient cwγ is the coefficient of κγ in the expansion of Sw.

Proof. By Theorem 3.6, we know pLα “ rm,npSwq. By the Schubert-to-key expansion and Proposi-
tion 7.2,

pLα “ rm,np
ÿ

γ

cwγ κγq “
ÿ

γ

cwγ rm,npκγq “
ÿ

γ

cwγ κrm,npγq.

�
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[HMMSD22] June Huh, Jacob Matherne, Karola Mészáros, and Avery St Dizier. Logarithmic concavity of schur and

related polynomials. Transactions of the American Mathematical Society, 375(06):4411–4427, 2022.
[Hua21] Daoji Huang. Schubert products for permutations with separated descents. arXiv preprint

arXiv:2105.01591, 2021.
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