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CONSTRUCTING MAXIMAL PIPEDREAMS OF DOUBLE

GROTHENDIECK POLYNOMIALS

CHEN-AN CHOU AND TIANYI YU

Abstract. Pechenik, Speyer and Weigandt defined a statistic rajcodep¨q on permutations
which characterizes the leading monomial in top degree components of double Grothendieck
polynomials. Their proof is combinatorial: They showed there exists a unique pipedream
of a permutation w with row weight rajcodepwq and column weight rajcodepw´1q. They
proposed the problem of finding a “direct recipe” for this pipedream. We solve this problem
by providing an algorithm that constructs this pipedream via ladder moves.

1. Introduction

The matrix Schubert variety Xw is a determinantal variety that has been studied exten-
sively (see for instance [FUL92, KM05, KMY09, WY18]). Castelnuovo–Mumford regularity
measures the algebraic complexity of varieties. Since matrix Schubert varieties are Co-
hen–Macaulay [FUL92, KM05, Ram85], the Castelnuovo–Mumford regularity of Xw is the
difference between the top and bottom degree of its K-polynomial. By the work of Knut-
son and Miller [KM05], the K-polynomial of Xw is the Grothendieck polynomial Gwpxq.
This family of polynomials, introduced by Lascoux and Schützenberger [LS82], represents
K-classes of structure sheaves of Schubert varieties in flag varieties. Their lowest degree
components are the Schubert polynomials whose degrees are known.

Consequently, determining the Castelnuovo–Mumford regularity ofXw reduces to comput-
ing the degree of Gwpxq. With this motivation, there has been a recent surge in the study
of top degree components of Gwpxq [DMSD22, Haf22, PSW21, PY23, RRR`21, RRW23].
Pechenik, Speyer, and Weigandt [PSW21] defined a statistic rajcodep¨q on Sn using increasing
subsequences of permutations. They showed xrajcodepwq is the leading monomial in the top
degree components of Gwpxq with respect to the lexicographical order where xn ą ¨ ¨ ¨ ą x1.
Pan and Yu [PY23] found a diagrammatic formula to compute rajcodepwq (see Definition 2.7).

For w P Xn, the double Grothendieck polynomial Gwpx,yq involves two sets of variables:
x1, ¨ ¨ ¨ , xn and y1, ¨ ¨ ¨ , yn. It represents Schubert classes in the torus-equivariant K-theory
of flag varieties. After setting y1 “ y2 “ ¨ ¨ ¨ “ 0, the double Grothendieck polynomial
Gwpx,yq specializes to the usual Grothendieck polynomial Gwpxq. The rajcodep¨q statistic
also captures the leading monomial in top degree components of Gwpx,yq.

Theorem 1.1 ([PSW21, Theorem 1.4]). The leading monomial of top degree components of

Gwpx, yq is xrajcodepwqyrajcodepw´1q with coefficient 1 for any term order with xn ą ¨ ¨ ¨ ą x1 and
yn ą ¨ ¨ ¨ ą y1.

A combinatorial formula of Gwpx,yq is given by pipedreams [BB93, BJS93, FK94, KM05]:

certain tilings of a staircase grid using , and (see Definition 2.1). The row (resp.

column) weight of a pipedream is a weak composition where the i
th

entry is the number of
in row (resp. column) i of the pipedream. Let PDpwq be the set of pipedreams associated with
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the permutation w. Pechenik, Speyer, and Weigandt established Theorem 1.1 by showing
there exists a unique pipedream in PDpwq with row weight rajcodepwq and column weight
rajcodepw´1q, which they call the maximal pipedream of w. In Remark 7.2, they said:

“We find it frustrating that we do not have a direct recipe for the maximal
pipe dream in terms of w.”

The main goal of this paper is to relieve their frustration: We give an explicit algorithm to

construct the maximal pipedream pP pwq P PDpwq.

Theorem 1.2. For w P Sn, the pipedream pP pwq we construct has row weight rajcodepwq and
column weight rajcodepw´1q.

Our algorithm involves a local move known as the ladder move [BB93]. When row r

column c of a pipedream P is , we write pr, cq P P . We may apply a ladder move on a
in row r column c of a pipedream P if all the following are satisfied:

‚ pr, c ` 1q R P .
‚ There exists r1 ă r such that pr1, cq R P and pr1, c`1q R P . In addition, pi, cq, pi, c`1q P
P for any r1 ă i ă r.

Now we perform the ladder move at the in row r column c of P . First turn the at

row r1 column c ` 1 into a . Then we may or may not turn the at row r column c into

. If we do that, the move is called a regular ladder move. Otherwise, the move is called a
K-ladder move. Locally, the moves look like the following:

regular ladder move
ÝÝÝÝÝÝÝÝÝÝÝÑ

K-ladder move
ÝÝÝÝÝÝÝÝÑ

For w P Sn, the statistic invcodepwq is a sequence of n numbers where the ith number
is the number of j ą i such that wpjq ă wpiq. It is well-known that PDpwq contains the

pipedream with row weight invcodepwq and all are left-justified. All other pipedreams
in PDpwq can be obtained by performing ladder moves from this one. We start from this
pipedream and perform an iterative algorithm. Each iteration places a bar right above row
i for i “ n ´ 2, n ´ 3, ¨ ¨ ¨ , 1. During each iteration, we only look under the bar and imagine
row i is the topmost row. Scan through the columns from right to left. Within each column,

scan through the from top to bottom. Whenever we see a at which we can perform a
ladder move, we perform a regular ladder move. After going through a column, if we have
performed ladder moves on this column, we turn the last ladder move into a K-ladder move.

We denote the final pipedream by pP pwq.

Example 1.3. Take w P S5 with one-line notation 14523. We start from the following
pipedream:
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When i “ 3 and 2, we do not make any moves. When i “ 1, we perform:

ÝÝÑ ÝÝÑ ÝÝÑ

Dreyer, Mészáros, and St. Dizier [DMSD22] found the leading monomial in each homoge-
neous component ofGw. Let regpwq be the difference between the sum of entries in rajcodepwq
and the sum of entries in invcodepwq. Define the map IRp¨q that sends w to a sequence of
monomials m0, m1, ¨ ¨ ¨ , mregpwq. First, m0 :“ xinvcodepwq. For i ą 0, mi :“ mi´1xp where p

is the largest such that mi´1xp divides xrajcodepwq. For each mi, Dreyer, Mészáros, and St.
Dizier [DMSD22] explicitly constructed a climbing chain, another combinatorial model of
Gw introduced in [LRS06], showing mi is the leading monomial in its degree of Gw. In our
algorithm, we start from a pipedream with row weight invcodepwq. During the algorithm,
we obtain the pipedreams corresponding to m1, ¨ ¨ ¨ , mregpwq.

Theorem 1.4. Let w P Sn. Perform our algorithm to compute pP pwq. The algorithm makes

regpwq K-ladder moves. Right after the i
th

K-ladder move, we record the row weight of the
pipedream as aipwq. Then xaipwq “ mi where IRpwq “ pm0, m1, ¨ ¨ ¨ , mregpwqq.

The rest of the paper is structured as follows. In §2, we cover necessary background
regarding pipedreams and rajcodepwq. In §3, we introduce recursive formulas to compute
rajcodepwq, rajcodepw´1q and IRpwq. In §4, we prove our main results using Proposition 4.4
and Corollary 4.6, whose proofs are in §5.

2. Background

2.1. Pipedreams and Grothendieck polynomials.

Definition 2.1. Pipedreams of size n are tilings with n` 1´ i left justified tiles in row i. The

rightmost tile in each row is and all other tiles can be or . For a pipedream of size
n, it is associated with a permutation w P Sn. We label the pipes 1, 2, ¨ ¨ ¨ , n along the top
edge and follow the pipes. Whenever two pipes cross more than once, we treat all but the

first crossing as . Let PDpwq be the set of the pipedreams associated with w P Sn.

Example 2.2. Pipedreams in Example 1.3 are all in PDpwq where w has one-line notation
14523.

Let P be a pipedream. We write pi, jq P P if row i column j of P is . Following [KM05]
and [FK94], double Grothendieck polynomial Gwpx,yq and Grothendieck polynomial Gwpxq
can be defined as

Gwpx,yq :“
ÿ

PPPDpwq

ź

pi,jqPP

pxi ` yj ´ xiyjq, Gwpxq :“
ÿ

PPPDpwq

ź

pi,jqPP

xi.

In the rest of the paper, we identify a pipedream with a diagram, which is a finite subset
of Zą0 ˆ Zą0. We represent a diagram D by drawing a cell in row i column j for each
pi, jq P D. We use the matrix coordinates: Row 1 is the topmost row and column 1 is
the leftmost column. A weak composition is an infinite sequence of Zě0 with finitely many
positive entries. If α is a weak composition, we use αi to denote its ith entry. We write α as
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pα1, ¨ ¨ ¨ , αnq where αn is the last positive entry in α. The row weight (resp. column weight)
of a diagram D is a weak composition where the ith entry is the number of cells in row i

(resp. column i) of D. We denote the row weight of a diagram D by wtpDq.
Pipedreams of size n are in bijection with diagrams contained in tpi, jq : 1 ď i ď n´1, 1 ď

j ď n´ iu. Under this identification, PDpwq is a set of diagrams. The ladder move is a move
on diagrams and our algorithm is applying ladder moves to diagrams.

Example 2.3. We repeat Example 1.3 under our new convention:

ÝÝÝÑ ÝÝÝÑ ÝÝÝÑ

The last diagram is pP pwq when w has one-line notation 14523. Its row weight and column
weight are both p2, 2, 2q.

2.2. Snow diagrams and rajcode. For any diagrams D, Pan and Yu defined darkpDq Ď D

which can be computed as follows: Scan through D from bottom to top. For each row r, if
there exists pr, cq P D such that currently there is no cells in column c of darkpDq, we find
the largest such c and put pr, cq in darkpDq. Cells in darkpDq of D are called dark clouds of
D.

Example 2.4. The following is a diagram D and darkpDq

There is an alternative characterization of darkpDq.

Proposition 2.5. The diagram darkpDq is the unique subset of D such that

‚ There is at most one cell in each row or column of D.
‚ For any pi, jq P D, there is pi1, jq P darkpDq with i1 ą i or there is pi, j1q P darkpDq
with j1 ą j.

Proof. By Remark 3.4 of [PY23], darkpDq satisfies the two conditions. The uniqueness is
trivial. �

The Rothe diagram of w, denoted as Rothepwq, is the following diagram:

tpi, wpjqq : i ă j, wpiq ą wpjqu.

For w P Sn, the first n numbers in wtpRothepwqq form invcodepwq. Let
ÐÝÝÝÝÝÝ
Rothepwq be the

diagram obtained by left-justifying all cells in Rothepwq. This is the diagram in PDpwq that
our algorithm starts with.

Example 2.6. Take w P S7 with one-line notation 4617352. The following are Rothepwq and
ÐÝÝÝÝÝÝ
Rothepwq.
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For each w P Sn, Pechenik, Speyer and Weigandt defined the weak composition rajcodepwq
using increasing subsequences of w. In this paper, we use a diagrammatic definition of Pan
and Yu [PY23]

Definition 2.7 ([PY23]). Take w P Sn and find darkpRothepwqq. For each cell in darkpRothepwqq,
we fill all the empty cells above it in Rothepwq. The resulting diagram is the snow diagram
of w. Define rajcodepwq as the row weight of the snow diagram of w.

Example 2.8. Take w P S7 with one-line notation 4617352. The following is its snow diagram.
For clarity, we represent dark clouds by a black circle and use ˚ to denote the added cells.

˚ ˚

˚

Thus, rajcodepwq “ p4, 4, 2, 3, 1, 1q.

It is well-known that Rothepwq and Rothepw´1q are conjugations of each other. By Propo-
sition 2.5, darkpRothepwqq and darkpRothepw´1qq are conjugations of each other. Thus, we
define the left snow diagram of w as the diagram where we fill empty spots on the left of
each dark cloud in Rothepwq. Its column weight will be the same as the row weight of the
snow diagram of w´1, which is rajcodepw´1q.

Example 2.9. Keep the same w as in Example 2.8. Its left snow diagram is

˚

˚

˚

Thus, rajcodepw´1q “ p4, 5, 3, 1, 2q.

3. Various recursions

We describe a recursive way to construct Rothepwq and darkpRothepwqq. Then we obtain
recursive formulas for rajcodepwq and rajcodepw´1q. Notice that invcodep¨q is a bijection from
Sn to weak compositions pα1, α2, ¨ ¨ ¨ q where αi ď n´i for i P rn´1s and αn “ αn`1 “ ¨ ¨ ¨ “ 0.
We identify w P Sn with pa, uq P t0, 1, ¨ ¨ ¨ , n´ 1u ˆSn´1 where a “ invcodepwq1 and u is the
unique permutation in Sn´1 with invcodepuq “ pinvcodepwq2, invcodepwq3, ¨ ¨ ¨ q. We simply
write w “ pa, uq. Then we may recursively construct Rothepwq as follows. Start from
Rothepuq. Shift all cells downward by 1. Then shift all cells in columns a ` 1, a ` 2, ¨ ¨ ¨ to
the right by 1. Finally, put cells at p1, 1q, ¨ ¨ ¨ , p1, aq. The resulting diagram is Rothepwq.

Similarly, to construct darkpRothepwqq, we can start from darkpRothepuqq. Shift all cells
downward by 1. Then shift all cells in columns a ` 1, a ` 2, ¨ ¨ ¨ to the right by 1. Finally,
find the largest c P ras such that darkpRothepuqq has no cells in column c. Put p1, cq into
darkpRothepuqq.
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Example 3.1. Keep w P S7 with one-line notation 4617352. We have w “ pa, uq where a “ 3
and u P S6 has one-line notation 516342. We depict how Rothepuq and Rothepwq as follows.
The dark cells form darkpRothepuqq and darkpRothepwqq respectively.

ÝÝÑ

Consequently, we may compute rajcodepwq and rajcodepw´1q recursively. Let dcpuq be the
number of cells in darkpRothepuqq that are strictly to the right of column c.

Proposition 3.2. Take w “ pa, uq P Sn.

‚ We can get rajcodepwq by prepending a ` dapuq to rajcodepuq.
‚ To obtain rajcodepw´1q, we just insert dapuq between the ath and pa ` 1qth entries of
rajcodepu´1q. Then increase the first a entries by 1.

Consequently, regpwq ´ regpuq “ dapuq.

Proof. Follows directly from the recursive constructions of Rothepwq and darkpRothepwqq. �

Example 3.3. Keep w “ pa, uq in Example 3.1. We show how the snow diagram and left
snow diagram of w differ from those of u:

˚ ˚
ÝÝÑ

˚ ˚

˚

˚

˚

ÝÝÑ

˚

˚

˚

We have dapuq “ 1. We obtain rajcodepwq “ p4, 4, 2, 3, 1, 1q by prepending a ` dapuq “ 4
to rajcodepuq “ p4, 2, 3, 1, 1q. We obtain rajcodepw´1q “ p4, 5, 3, 1, 2q by inserting dapuq after
the ath entry of rajcodepu´1q “ p3, 4, 2, 2q and then increase the first a entries by 1.

Notice that when w “ pa, uq, invcodepwq can be obtained by prepending the number a to
invcodepuq. Thus, we also have a recursive formula for IRpwq. For a monomial m, let ÝÑm be
the monomial obtained by turning each xi in m into xi`1.

Proposition 3.4. Take w “ pa, uq P Sn. Let

pM0, ¨ ¨ ¨ ,Mregpwqq “ IRpwq, pm0, ¨ ¨ ¨ , mregpuqq “ IRpuq.
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Then regpwq “ regpuq ` dapuq and

Mj “

#
xa
1
ÝÑmj if j “ 0, 1, ¨ ¨ ¨ , regpuq,

x
a`j´regpuq
1 ˆ ÝÝÝÝÑmregpuq if j “ regpuq ` 1, ¨ ¨ ¨ , regpwq.

Proof. Follows directly from the recursive formula of rajcodepwq and the definition of IRp¨q.
�

Example 3.5. Keep w “ pa, uq in Example 3.1. We have regpuq “ 2 and regpwq “ regpuq `
dapuq “ 3. Since

IRpuq “ pxp4,0,3,1,1q, xp4,1,3,1,1q, xp4,2,3,1,1qq,

we have

IRpwq “ pxp3,4,0,3,1,1q, xp3,4,1,3,1,1q, xp3,4,2,3,1,1q, xp4,4,2,3,1,1qq

4. Proof of main theorems

To prove our main theorems, we need to introduce a new permutation statistic.

Definition 4.1. For w P Sn, its movecode, denoted as movecodepwq, is a weak composition
where movecodepwqi is the number of cells in column i of Rothepwq with no dark clouds
strictly to its right.

Example 4.2. Take w P S7 with one-line notation 4617352. The following is Rothepwq, where
the black cells are dark clouds and blue cells are non-dark cloud cells without dark clouds
to their right.

Then movecodepwq is the number of black and blue cells in each column, which is p1, 3, 2, 0, 2q.

We have the following observation regarding this permutation statistic.

Proposition 4.3. Take w P Sn and c P rns. Then

rajcodepw´1qc`1 ´ maxpmovecodepwqc`1 ´ 1, 0q “ dcpuq “ rajcodepw´1qc ´ movecodepwqc.

Proof. We refer to cells in darkpRothepwqq as dark clouds. Consider the left snow diagram of
w. In the diagram, there are four types of cells.

‚ Type 1: Dark clouds
‚ Type 2: Cells that do not belong to Rothepwq.
‚ Type 3: Cells in Rothepwq with a dark cloud in its row on its right.
‚ Type 4: Cells in Rothepwq that is not a dark cloud and has no dark cloud in its row
on its right.

The number of type 1, 2 and 4 cells in column c ` 1 is dcpwq. The number of all
cells in column c ` 1 is rajcodepw´1qc`1. The number of type 3 cells in column c ` 1 is
maxpmovecodepwqc ´ 1, 0q, so we have the first equation.
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The number of type 2 and 3 cells in column c is dcpwq. The number of all cells in column
c is rajcodepw´1qc. The number of type 1 and 4 cells in column c is movecodepwqc, so we
have the second equation. �

The main application of movecodepwq is to characterize the number of cells moved when
our algorithm processes each column.

Proposition 4.4. Take v “ pa, wq P Sn. During the last iteration of the algorithm that

computes pP pvq, the number of cells moved in column c is movecodepwqc if c ą a and 0
otherwise.

Example 4.5. Keep v P S7 with one-line notation 4617352. We have v “ pa, wq where a “ 3
and w P S6 has one-line notation 516342. We have movecodepwq “ p0, 2, 1, 2q. During the
last iteration of the algorithm, the bar is right above row 1. The algorithm moves 0 cells in
column c ą 4, since movecodepwqc “ 0. The algorithm moves 2 cells in column 4 since 4 ą a

and movecodepwq4 “ 2. It moves 0 cells in column 3, 2, and 1 since 1, 2, 3 ď a.

ÝÝÝÑ

We prove this proposition in §5. Our proof requires a few technical lemmas which also
lead to the following result:

Corollary 4.6. Consider the iteration when the bar is right above row i in our algorithm.
Let D1 (resp. D2) be the diagram before (resp. after) processing one column. If the algorithm
makes a move in this column, then wtpD2q is obtained from increasing ith entry of wtpD1q
by 1.

Using Proposition 4.4 and Corollary 4.6, we can prove our main results. We start with
Theorem 1.4.

Proof of Theorem 1.4. We induct on n. The base case (n “ 1) is trivial. Let w “ pa, uq P Sn

with n ą 1. By our inductive hypothesis, the algorithm made regpuq K-ladder moves before
the last iteration. By Proposition 4.4, in the last iteration of the algorithm, it makes a
K-ladder move in column c if and only if c ą a and movecodepuqc ą 0. This is exactly
the number dapuq, which equals regpwq ´ regpuq by Proposition 3.2. Thus, the algorithm to

compute pP pwq makes regpwq K-ladder moves in total.
Let

IRpwq “ pM0, ¨ ¨ ¨ ,Mregpwqq, IRpuq “ pm0, ¨ ¨ ¨ , mregpuqq.

By Proposition 3.4, for i “ 0, ¨ ¨ ¨ , regpuq, we have Mi “ xa
1
ÝÑmi. When the algorithm makes

the ith K-ladder move, the bar has not reached row 1. Before the bar reaches row 1, the
algorithm ignores the first row of the diagram, which has a cells, and behaves as if computing
pP puq. Thus, the statement holds for i “ 0, 1, ¨ ¨ ¨ , regpuq by our inductive hypothesis.
For i “ regpuq ` 1, ¨ ¨ ¨ , regpwq, the ith K-ladder move happens when the bar is above row

1. Let D be the diagram right after the pi ´ 1qth K-ladder move and D1 be the diagram
right after the ith K-ladder move. By Corollary 4.6, xwtpD1q “ x1 ¨ xwtpDq, which concludes
the proof. �
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Proof of Theorem 1.2. By Theorem 1.4, the row weight of pP pwq is rajcodepwq. For the
column weight, we prove by induction on n. The base case n “ 1 is trivial. Now assume
n ą 1 and w “ pa, uq P Sn. Let D be the diagram we have right before the last iteration

of the algorithm computing pP pwq. It can be obtained by shifting pP puq downward by 1 and

append a left-justified cells in the first row. By our inductive hypothesis, pP puq has column
weight rajcodepu´1q. Now take c P rn ´ 1s and consider three cases:

‚ Suppose c ą a ` 1. Consider the last iteration of the algorithm. By Proposi-
tion 4.4, the algorithm makes movecodepuqc (resp. movecodepuqc´1) moves in column
c (resp. c ´ 1). Thus, column c loses maxpmovecodepuqc ´ 1, 0q cells and then gain

movecodepuqc´1 cells. By Proposition 4.3, pP pwq has

rajcodecpu
´1q ´ maxpmovecodepuqc ´ 1, 0q ` movecodepuqc´1 “ rajcodec´1pu

´1q

cells in column c. Finally, by Proposition 3.2, rajcodec´1pu
´1q is just rajcodecpw

´1q.
‚ Suppose c “ a ` 1. By Proposition 4.4, the algorithm makes movecodepuqc moves
in column c, and makes 0 moves in column c ´ 1 if it exists. Thus, column c loses

maxpmovecodepuqc ´ 1, 0q cells. By Proposition 4.3, pP pwq has

rajcodecpu
´1q ´ maxpmovecodepuqc ´ 1, 0q “ dapuq

cells in column c. Finally, by Proposition 3.2, dapuq is just rajcodecpw
´1q.

‚ Suppose c P ras. By Proposition 4.4, the algorithm makes 0 moves in column c, and

makes 0 moves in column c ´ 1 if it exists. Thus, pP pwq has rajcodepu´1qc ` 1 cells in
column c. Finally, by Proposition 3.2, rajcodepu´1qc ` 1 is just rajcodecpw

´1q. �

5. Proof of Proposition 4.4 and Corollary 4.6

Following §3, we derive a recursive way to compute movecodepwq.

Lemma 5.1. For w P Sn, we write w “ pa, uq. Then movecodepwq can be determined
starting from movecodepuq. First, insert a 0 between movecodepuqa and movecodepuqa`1.
Then start from the ath entry and increase each entry by 1 from right to left. Whenever we
change a 0 into a 1, we stop immediately. The resulting weak composition is movecodepwq.

Proof. Follows directly from the recursive constructions of Rothepwq and darkpRothepwqq. �

Example 5.2. Take w P S7 with one-line notation 4617352. We have w “ p3, uq where
u P S6 has one-line notation 516342. We have movecodepuq “ p0, 2, 1, 2q. Then we insert a 0
between movecodepuq3 and movecodepuq4, obtaining p0, 2, 1, 0, 2q. We then increases entries
by 1 from right to left, starting from the thrid entry. When we turn the 0 in the first entry
into 1, we stop, obtaining p1, 3, 2, 0, 2q.

Our proofs rely on a simple operator on diagrams. We may break the algorithm into a
sequence of this operator.

Definition 5.3. We define the operator Li,c on diagrams. Take diagram D and put a bar
above row i in D. We ignore everything above the bar, imagining row i is the top-most row.
Then we scan through cells in column c from top to bottom. Whenever we see a cell at which
we can perform a ladder move, we perform a regular ladder move. After going through this
column, if we made a move, turn the last move into a K-ladder move.
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With this notion, applying the algorithm on w P Sn can be rewritten as

pP pwq “ pL1,1 ¨ ¨ ¨L1,n´2q ¨ ¨ ¨ pLn´3,1Ln´3,2qpLn´2,1qp
ÐÝÝÝÝÝÝ
Rothepwqq (1)

In words, we iterate through i “ n ´ 2, ¨ ¨ ¨ , 2, 1. For each i, we iterate through c “ n ´ 1 ´
i, ¨ ¨ ¨ , 2, 1 and apply Li,c.

We start by observing a straightforward recursive property of this operator.

Remark 5.4. Fix i, c P Zą0 and let D be a diagram. Suppose pi, cq R D and pi, c ` 1q R D.

‚ Suppose pi ` 1, cq P D and pi ` 1, c ` 1q R D. Let D1 be the diagram obtained by
moving pi ` 1, cq to pi, c ` 1q in D. If Li`1,cpD

1q ‰ D1, we know Li,cpDq “ Li`1,cpD
1q.

Otherwise, Li,cpDq “ D1 \tpi`1, cqu. Informally, in this case, Li,c behaves as if Li`1,c

after the regular ladder move on pi ` 1, cq.
‚ Suppose pi ` 1, cq P D and pi ` 1, c ` 1q P D. Then intuitively, Li,c behaves as if row
i`1 is ignored: Let D1 be obtained from D by removing pi`1, cq and pi`1, c`1q. If
pi` 1, c` 1q R Li`1,cpD

1q, Li,cpDq “ Li`1,cpD
1q \ tpi ` 1, cq, pi` 1, c` 1qu. Otherwise,

Li,cpDq “ Li`1,cpD
1q \ tpi ` 1, cq, pi, c ` 1qu.

We are primarily interested in applying Li,c to a diagram in the following case.

Definition 5.5. We say the operator Li,c acts initially on D if D is fixed by Li`1,c.

Eventually, we will show all Li,c in our algorithm acts initially. We first derive a few
properties when Li,c acts initially on D.

Lemma 5.6. Suppose Li,c acts initially on D and Li,c moves at least one cell. We let
pr1, cq, ¨ ¨ ¨ , prk, cq be the cells moved where r1 ă ¨ ¨ ¨ ă rk. Let r0 “ i. Then we know the
cell prj, cq is moved to prj´1, c ` 1q for j P rks. Thus, wtpLi,cpDqq is obtained from wtpDq by
adding 1 to the ith entry.

Proof. If Li,c moves pr1, cq to pr1, c ` 1q for some r1 ą i, then Li`1,c will also move pr1, cq to
pr1, c ` 1q. This contradicts our assumption that Li,c acts initially on D. Thus, Li,c moves
pr1, cq to pi, c ` 1q.

For j ą 1, when prj , cq moves, prj´1, cq and prj´1, c` 1q must both be empty since the cell
in prj´1, cq just performed a ladder move. Therefore prj , cq must be moved to pr1, c ` 1q for
some r1 ě rj´1. However, r

1 ą rj´1 contradicts the assumption that Li,c acts initially on D,
so r1 “ rj´1. �

To better describe the effect of Li,c when it acts initially, we introduce the following notion.

Definition 5.7. The pi, cq-initial segment of a diagramD is the set of pr, cq such that pr1, cq P D

for all i ď r1 ď r.

This notion characterizes the destination of cells moved by Li,c when it acts initially.

Lemma 5.8. Suppose Li,c acts initially on D. Then it moves cells to the pi, c ` 1q-initial
segment of Li,cpDq.

Proof. Let pr1, cq, pr2, cq, . . . , prk, cq where r1 ă r2 ă ¨ ¨ ¨ ă rk be the cells of D moved by
Li,c. Let r0 “ i. By Lemma 5.6, for j P rks, prj, cq is moved to prj´1, c ` 1q. We show
prj´1, cq is in the pj, c ` 1q-initial segment of Li,cpDq by induction on j. For the base case,
pr0, c ` 1q “ pi, c ` 1q is clearly in the pj, c ` 1q-initial segment of Li,cpDq
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For j ą 1. assume prj´2, c` 1q is in the pi, c` 1q-initial segment of Li,cpDq. Since prj´1, cq
is moved to prj´2, c ` 1q, we know pr1, c ` 1q P Li,cpDq for any rj´2 ă r1 ă rj´1. Thus,
prj´1, c ` 1q is in the pi, c ` 1q-initial segment of Li,cpDq. �

We can also use “initial segment” to characterize what cells can be moved by Li,c when it
acts initially.

Lemma 5.9. Suppose Li,c acts initially onD. If pi, cq P D, then D is fixed by Li,c. Otherwise,
a cell pr, cq P D is moved by Li,c if and only if it is in the pi ` 1, cq-initial segment of D and
pr, c ` 1q R D.

Proof. The lemma is immediate when pi, cq P D. Otherwise, let pr1, cq, ¨ ¨ ¨ , prk, cq P D be
the cells moved by Li,c where r1 ă ¨ ¨ ¨ ă rk. Let r0 “ i. Clearly, prj, c ` 1q R D for each
j P rks. We prove prj , cq is in the pi ` 1, cq-initial segment of D by induction. First, by
Lemma 5.6, pr1, cq is moved to pr0, c ` 1q, so pr1, cq P D for r0 “ i ă r1 ă r1. In other words,
pr1, cq is in the pi ` 1, cq-initial segment of D. For j ą 1, by Lemma 5.6, prj, cq is moved to
prj´1, c ` 1q, so pr1, cq P D for rj´1 ă r1 ă rj . The inductive step is finished since prj´1, cq is
in the pi ` 1, cq-initial segment of D.

Now assume pr, cq is a cell in the pi` 1, cq-initial segment of D and pr, c` 1q R D. Assume
toward contradiction that pr, cq is not moved by Li,c. Take the smallest such r. Since Li,c

moves prj, cq to prj´1, cq, we know pr1, c ` 1q P D for any rj´1 ă r1 ă rj. Thus, we cannot
have rj´1 ă r ă rj for j P rks. Since pr, cq is not moved, we know r is not r1, ¨ ¨ ¨ , rk. Thus,
r ą rk. By the minimality of r, pr1, cq, pr1, c`1q P D for rk ă r1 ă r. Thus, Li,c moves prk, cq,
it can perform a ladder move at pr, cq. Contradiction. �

The following example is a demonstration of the previous two lemmas related to initial
segments.

Example 5.10. Let D be a diagram whose column 3 and 4 look like the picture on the left.
Notice that D will be fixed by L2,3. After applying L1,3, these two columns look like the
picture on the right:

3 4

L1,3

ÝÝÝÝÝÝÑ

3 4

We color the p2, 3q-initial segment of D and p1, 4q-initial segment of L1,3pDq. Notice that
L1,3 move cells to the p1, 4q-initial segment of L1,3pDq. Also notice that cells in column 3 is
moved if and only if it is in the p2, 3q-initial segment of D and has no cell on its right.

We also have the “converse statement” of Lemma 5.9.

Lemma 5.11. Suppose pi, cq R D. If Li,c only moves cells in the pi ` 1, cq-initial segment of
D, then it acts initially on D.

Proof. Suppose to the contrary that D is not fixed by Li`1,c. Let pr, cq be the first cell moved
by Li`1,c. Clearly, pr, cq is not in the pi` 1, cq-initial segment of D and it will also be moved
by Li,c. �
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We introduce more definitions that captures the structure of columns for intermediate
diagrams during our algorithm.

Definition 5.12. We say a diagram D is pi, cq-paired if the following are satisfied:

‚ Take any cell pR, cq P D with i ď R and pR, c ` 1q R D. There exists pr, c ` 1q P D

with i ď r ă R and pr, cq R D. Moreover, pr1, cq, pr1, c ` 1q P D for any r ă r1 ă R.
‚ Take any cell pr, c ` 1q P D with i ď r and pr, cq R D. There exists pR, cq P D with
r ă R and pR, c ` 1q R D. Moreover, pr1, cq, pr1, c ` 1q P D for any r ă r1 ă R.

Remark 5.13. Notice that if D is pi, cq-paired, then Li,c fixes D.

Example 5.14. Consider the following diagram D.

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8

Then D has the following properties: p1, 5q-paired, p1, 9q-paired, p4, 1q-paired, p6, 1q-paired.

We have the following lemma regarding this new notion.

Lemma 5.15. Let diagram D be p3, cq-paired and p2, c ` 1q R D. We consider the action
of L1,c`1L2,cL3,c´1 on D. Assume L3,c´1 and L2,c act initially. Let pr1, cq, ¨ ¨ ¨ , prm, cq be the
cells moved by L2,c with r1 ă ¨ ¨ ¨ ă rm and let r0 “ 2. We further assume L1,c`1 moves
pr1

1, c` 1q, ¨ ¨ ¨ , pr1
m, c` 1q with ri´1 ď r1

i ă ri. Then D1 “ L1,c`1L2,cL3,c´1pDq is p2, cq-paired.

Example 5.16. Consider the action of L1,c`1L2,cL3,c´1 on D whose column c and c ` 1 are
depicted in the left-most figure. We see D is p3, cq-paired. The action of L2,c and L1,c`1

satisfy the condition in Lemma 5.15: For instance, L2,c moves p5, cq to p2, c ` 1q and there
is a unique cell pr, c ` 1q moved by L1,c`1 with 2 ď r ă 5, namely p3, c ` 1q. Then by
the Lemma, we know L1,c`1L2,cL3,c´1pDq, whose column c and c ` 1 are depicted in the
right-most figure, is p2, cq-paired.

c
1
2
3

L3,c´1

ÝÝÝÝÑ

c
1
2
3

L2,c

ÝÝÑ

c
1
2
3

L1,c`1

ÝÝÝÝÑ

c
1
2
3
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Proof. Say pt, cq is the bottom-most cell in the p2, cq-initial segment of L3,c´1pDq. Since L3,c´1

acts initially on D, it will only move cells to the p2, cq-initial segment by Lemma 5.8. Since
L2,c acts initially on D, it will only move cells in the p2, cq-initial segment by Lemma 5.9.
Then by our assumption in the lemma, L1,c`1 also moves cells above row t. Thus, D and D1

agreed under row t in column c and c ` 1. Now we check D1 is p2, cq-paired.
Take pR, cq in D1 such that R ě 2 and pR, c ` 1q R D1. We find the r satisfying the

condition in the definition of p2, cq-paired by considering two cases.

‚ If R ą t, then pR, cq P D and pR, c ` 1q R D. Since D is p3, cq-paired, we can find
pr, c`1q P D such that 2 ď r ă R, pr, cq R D and pr1, cq, pr1, c`1q P D for r ă r1 ă R.
It remains to show r ą t. If not, pr, cq is in the p2, cq-initial segment of L3,c´1pDq,
then so is pR, cq, contradicting to R ą t.

‚ If R ď t, then pR, cq P L3,c´1pDq. If pR, c` 1q R L3,c´1pDq, by Lemma 5.9, L2,c moves
pR, cq. Since pR, cq is in D1, we know it is the last cell moved by L2,c, so R “ rm.
By Lemma 5.6, L2,c moves prm, cq to prm´1, c ` 1q. We have prm´1, cq R D1. By our
assumption on L1,c´1, it does not make a regular ladder move on cells between row
rm´1 and row rm. Thus, we may pick r “ rm´1.
Now assume pR, c ` 1q P L3,c´1pDq. Then, L1,c`1 moves pR, c ` 1q, so R “ r1

i for
some i P rm ´ 1s. We know L2,c moves pri, cq to pri´1, c ` 1q. By our assumption on
L1,c`1, ri´1 ă r1

i and L1,c`1 does not make a move between row ri´1 and r1
i. Thus, we

may pick r “ ri´1.

Take pr, c`1q in D1 such that r ě 2 and pr, cq R D1. We find the R satisfying the condition
in the definition of p2, cq-paired by considering two cases.

‚ If r ą t, then pr, c ` 1q P D and pr, cq R D. Moreover, since p2, c ` 1q R D, we
know r ě 3. By D is p3, cq-paired, we can find R ą r ą t such that pR, cq P D,
pR, c ` 1q R D and pr1, cq, pr1, c ` 1q P D for r ă r1 ă R.

‚ If r ď t, then pr, cq P L3,c´1pDq. We know L2,c performs a regular ladder move on
pr, cq, so r “ ri for some i P rm´ 1s. We know ri ă r1

i`1 ă ri`1 and pr1, cq, pr1, c` 1q P
L2,cL3,c´1pDq for ri ă r1 ă ri`1. If i ` 1 ă m, then L1,c`1 makes a regular ladder
move on pr1

i`1, c ` 1q. We have pr1
i`1, cq P D1 and pri`1, c ` 1q R D1. We may pick

R “ r1. If i ` 1 “ m, then L1,c`1 makes a K-ladder move on pr1
i`1, c ` 1q. We may

pick R “ ri`1. �

The last piece of our preparation work is the following observation.

Remark 5.17. Notice that Li,c and Li1,c1 commute if |c´c1| ą 1. Therefore, we know applying

L1,1L1,2 ¨ ¨ ¨L1,n´2 L2,1L2,2 ¨ ¨ ¨L2,n´3

is the same as applying

L1,1 L1,2L2,1 L1,3L2,2 ¨ ¨ ¨ L1,n´4L2,n´3 L1,n´2L2,n´3.

Moreover, each Li,c behaves the same in both expressions.

Now we embark on proving Proposition 4.4 and Corollary 4.6. We start by introducing
two claims which will imply Proposition 4.4 and Corollary 4.6 respectively. For a diagram
D, let DÓk be the diagram obtained by shifting all cells of D downward by k. We claim:

‚ Claim 1: Take N P Zą0 and w P SN . Consider

pL1,2L2,1q ¨ ¨ ¨ pL1,N´2L2,N´3qpL1,NL2,N´1qp pP pwqÓ2q. (2)
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Take any c P rN ´ 1s. Then L2,c and L1,c`1 moves the same number of cells. More
specifically, suppose L2,c moves a cell pr, cq to pr̂, c`1q. Then there exists a unique r1

such that r̂ ď r1 ă r and pr1, c ` 1q is moved by L1,c`1. In addition, after the action
of L1,c`1, the diagram is p2, cq-paired.

‚ Claim 2: Take N P Zą0 and w P SN . Consider

L1,1 ¨ ¨ ¨L1,N´1p pP pwqÓ1q.

Each L1,c acts initially.

We will inductively show both claims hold for allN . The induction is based on Lemma 5.18
and Lemma 5.19.

Lemma 5.18. Suppose Claim 1 and Claim 2 hold for N ď n, then Claim 2 holds for
N “ n ` 1.

Proof. Suppose w “ pb, uq P Sn`1. Let D be the diagram obtained by putting b left-justified

cells in the second row of pP puqÓ2. Then pP pwqÓ1 “ L2,1L2,2 ¨ ¨ ¨L2,n´1pDq and each L2,c acts

initially by Claim 2 for u. By Remark 5.17, we may write L1,1 ¨ ¨ ¨L1,N´1p pP pwqÓ1q as

L1,1 ¨ ¨ ¨L1,N´1 L2,1 ¨ ¨ ¨L2,n´1pDq “ pL1,2L2,1q ¨ ¨ ¨ pL1,N´2L2,N´3qpL1,NL2,N´1qpDq. (3)

Clearly, for c ď b, L1,c acts initially on pP pwqÓ1. Now take c ą b. We know the L1,c behaves
the same in both sides of (3). By Lemma 5.11, it is enough to show each L1,c on the right
hand side moves cells in the p2, cq-initial segment. Since L2,c´1 acts initially, by Lemma 5.8,
L2,c´1 move cells into the p2, cq-initial segment. Then by claim 1 of u, L1,c moves cells in the
p2, cq-initial segment. �

Lemma 5.19. Suppose Claim 1 holds for N ď n and Claim 2 holds for N ď n ` 1, then
Claim 1 holds for N “ n ` 1.

Proof. Since Claim 2 holds for N ď n ` 1, each L1,c and L2,c in (2) acts initially by Re-
mark 5.17. We prove Claim 1 by induction on c “ n, ¨ ¨ ¨ , 2, 1. The base case with c “ n is
trivial.

Suppose c P rn´1s. Let D1 be the diagram right before applying L2,c in (2). By our induc-
tive hypothesis for c` 1, D1 is p2, c` 1q-paired. Now apply L2,c to D1. Let pr1, cq, ¨ ¨ ¨ , prk, cq
be the cells moved by L2,c. Let r0 “ 2. For j P rks, by Lemma 5.6, prj, cq is moved to
prj´1, c ` 1q. By Lemma 5.8, prj´1, c ` 1q is in the p2, c ` 1q-initial segment of L2,cpDq. We
consider two cases.

‚ If prj´1, c ` 2q R D1, then prj´1, c ` 1q will be moved by L1,c`1 by Lemma 5.9. For
rj´1 ă r1 ă r, by D1 is p2, c ` 1q-paired, we know pr1, c ` 1q, pr1, c ` 2q P D1. By
Lemma 5.9, L1,c`1 will not move pr1, c ` 1q.

‚ Now assume prj´1, c`2q P D1. Since D1 is p2, c`1q-paired and prj´1, c`q R D1, we can
find R ą rj´1 such that pR, c ` 1q P D1, pR, c ` 2q R D and pr1, c ` 1q, pr1, c ` 2q P D1

for any rj´1 ă r1 ă R. We know prj, c ` 1q R D1, so R ă rj . For R ă r1 ă rj , since
pr1, c ` 1q P D1 and D1 is p2, c ` 1q-paired, we must have pr1, c ` 2q P D1. By 5.9,
pR, c ` 1q is the unique cell moved during L1,c`1 between row rj´1 and row rj .

Now we show L1,c`1 and L2,c move the same number of cells, we already know L1,c`1 makes
exactly one move between row rj´1 and row rj inclusively for j P rks. We just need to show
L1,c`1 does not move any pr, c ` 1q for any r ą rk. Notice that prk, c ` 1q R L2,cpD

1q, so
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pr, c` 1q is not in the p2, c` 1q-initial segment of L2,cpD
1q. By Lemma 5.9, pr, c` 1q will not

be moved.
It remains to check L1,c`1L2,cpD

1q is p2, cq-paired. Write w as pb, uq. Let D be the diagram

obtained by putting b left-justified cells in row 3 of pP puqÓ3. Then

pP pwqÓ2 “ L3,1L3,2 ¨ ¨ ¨L3,n´1pDq

By Remark 5.17,

pL1,2L2,1q ¨ ¨ ¨ pL1,n`1L2,nqp pP pwqÓ2q

“pL1,2L2,1q ¨ ¨ ¨ pL1,n`1L2,nqpL3,1L3,2 ¨ ¨ ¨L3,n´1qpDq

“pL1,2L2,1qpL1,3L2,2L3,1q ¨ ¨ ¨ pL1,n`1L2,nL3,n´1qpDq

If c ą b, then p3, cq R D. By claim 1 of u, after L2,c`1 the diagram is p3, cq-paired.
Therefore, by Lemma 5.15, after L1,c`1 the diagram is p2, cq-paired.

Now consider c ď b, so p3, cq P D. We consider three cases:

‚ Case 1: p3, cq is moved by L2,c and not the last cell moved by L2,c. Then L2,c performs
a regular ladder move on p3, cq moving it to p2, c`1q. Later, L1,c`1 will move p2, c`1q.
Since L1,c`1 and L2,c moves the same number of cells, we know L1,c`1 makes a regular
ladder move on p2, c ` 1q. By Remark 5.4, the action of L1,c`1L2,c is the same as
first moving p3, cq to p1, c ` 2q, and then perform L2,c`1L1,c`2. By Claim 1 of u, the
diagram after applying L1,c`1 is p3, cq-paired. Since p2, cq, p2, c ` 1q are not in the
diagram, it is p2, cq-paired.

‚ Case 2: p3, cq is the last cell moved by L2,c. Then L2,c performs a K-ladder move on
p3, cq moving it to p2, c ` 1q. Later, L1,c`1 will move p2, c ` 1q. Since L1,c`1 and L2,c

moves the same number of cells, we know L1,c`1 makes K-ladder move on p2, c ` 1q.
By Remark 5.4, the action of L1,c`1L2,c can be described as follows: Remove p3, cq,
perform L2,c`2L3,c, and then add cells p3, cq, p2, c ` 1q and p1, c ` 2q. By Claim 1 of
u, before adding those three cells, the diagram is p3, cq-paired. Thus, after adding
these three cells, the diagram is p2, cq-paired.

‚ If p3, cq is not moved by L2,c, then p3, c` 1q P D. By Remark 5.4, applying L1,c`1L2,c

is the same as applying L2,c`2L3,c while ignoring row 3. By Claim 1 of u, after the
action of L1,c`1, the diagram is p2, cq-paired. �

Lemma 5.20. Claim 1 and 2 hold for all N P Zą0.

Proof. The claims are obvious when N “ 1. Then we prove by induction onN . The inductive
step is given by Lemma 5.18 and Lemma 5.19. �

Corollary 5.21. In (1), each Li,c acts initially.

Proof. Suppose w P Sn and we prove the corollary by induction on n. Suppose w “ pb, uq.
Since the corollary holds for u, we know Li,c in (1) acts initially when i ą 2. Finally, each
L1,c acts initially by Claim 2. �

Now we may prove the main results of this subsection using the two claims.

Proof of Proposition 4.4. We induct on n. The base cases n “ 2 is trivial. Now suppose
n ą 2 and take v “ pa, wq P Sn. Let D be the diagram obtained by putting a left-justified

cells in row 1 of pP pwqÓ1. The last iteration to compute pP pvq is to apply L1,1 ¨ ¨ ¨L1,n´2L1,n´2

on D. For c P ras, since L1,c acts initially and p1, cq P D, L1,c does not move any cells.
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Now assume c ą a. We want to show L1,c moves exactly movecodepwqc cells. Let w “ pb, uq

and let D1 be the diagram obtained by putting b left-justified cells in the row 2 of pP puqÓ2.
Then,

L1,1 ¨ ¨ ¨L1,n´2L1,n´1pDq

“pL1,1 ¨ ¨ ¨L1,n´2L1,n´1qpL2,1 ¨ ¨ ¨L2,n´3L2,n´2qpD1q

“pL1,1qpL1,2L2,1q ¨ ¨ ¨ pL1,n´1L2,n´2qpD1q

For c ą b, by our induction hypothesis, applying L2,c moves exactly movecodepuqc cells.
Then by Claim 1, applying L1,c`1 to D also moves exactly movecodepuqc cells. Therefore
the number of cells moved by L1,c`1 is movecodepuqc “ movecodepwqc`1. Now clearly each
L2,c does not move any cells for c P rbs. We know L1,b`1 also moves no cells since the
p2, b ` 1q-initial segment is empty. Therefore L1,b`1 moves 0 “ movecodepwqb`1 cells.

Let c0 be the largest in rbs such that movecodepuqc0 “ 0. Say c0 “ 0 if no such c0 exists.
For c P rbs, by Lemma 5.1, we have

movecodepwqc “

#
movecodepuqc ` 1 if c ě c0.

movecodepuqc otherwise

We first inductively show that for c “ b, ¨ ¨ ¨ , c0 `1, there is no cell at p2, c`1q right before
the action of L1,c, so L1,c moves p2, cq. Moreover, L1,c moves movecodepwqc ą 2 cells, so the
move on p2, cq is a regular ladder move. For c “ b, we know p2, b ` 1q is always empty. For
c0 ă c ă b, we know L1,c`1 makes a regular ladder move on p2, c`1q, so p2, c`1q is empty right
before the action of L1,c. Now for c “ b, ¨ ¨ ¨ , c0`1, after L1,c moves p2, cq, it behaves as if L2,c

by Remark 5.4. Thus, the total number of cells moved is movecodepuqc ` 1 “ movecodepwqc.
Now consider L1,c0 when c0 ą 0. Right before its action, p2, c0`1q is empty. Thus, L1,c0 will

first move p2, c0q to p1, c0`1q. After that, the number of cells it moves ismovecodepuqc0, which
is zero. Thus, the move on p2, c0q is a K-ladder move. Also, L1,c0 moves 1 “ movecodepwqc0
cell.

Finally, we prove by induction that for c “ c0´1, ¨ ¨ ¨ , 1, right before the action of L1,c, the
diagram contains p2, cq and p2, c ` 1q. For the base case, right before the action of L1,c0´1,
we know p2, c0q is in the diagram. Now assume right before the action of L1,c, the diagram
contains p2, cq and p2, c ` 1q for some c ă c0. Then L1,c will not move p2, cq. After the
action of L1,c, we know p2, cq is still in the diagram. The inductive step is finished. Now
by Remark 5.4, the action of L1,c moves the same number of cells as L2,c on the diagram
without p2, cq and p2, c ` 1q. Thus, L1,c makes movecodepuqc “ movecodepwqc moves. �

Proof of Corollary 4.6. Implied by Corollary 5.21 and Lemma 5.6. �
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