Grothendieck-to-Lascoux expansions

Mark Shimozono (Virginia Tech) and Tianyi Yu (UCSD)

September, 2021

Outline

1. Introducing 8 polynomials
2. Several combinatorial formulas
3. The Grothendieck-to-Lascoux expansions

Operators

Define operators on $\mathbb{Z}[\beta]\left[x_{1}, x_{2}, \ldots, x_{n}\right]$:

$$
\begin{aligned}
\partial_{i}(f) & =\left(x_{i}-x_{i+1}\right)^{-1}\left(f-s_{i} f\right) \\
\pi_{i}(f) & =\partial_{i}\left(x_{i} f\right) \\
\partial_{i}^{(\beta)}(f) & =\partial_{i}\left(f+\beta x_{i+1} f\right) \\
\pi_{i}^{(\beta)}(f) & =\partial_{i}^{(\beta)}\left(x_{i} f\right) .
\end{aligned}
$$

They satisfy the braid relations.

Lascoux polynomials and key polynomials

For weak composition α,

$$
\begin{aligned}
\mathfrak{L}_{\alpha}^{(\beta)} & := \begin{cases}x^{\alpha} & \text { if } \alpha \text { is a partition } \\
\pi_{i}^{(\beta)} \mathfrak{L}_{s_{i} \alpha}^{(\beta)} & \text { if } \alpha_{i}<\alpha_{i+1} .\end{cases} \\
\kappa_{\alpha} & := \begin{cases}x^{\alpha} & \text { if } \alpha \text { is a partition } \\
\pi_{i}\left(\kappa_{s_{i} \alpha}\right) & \text { if } \alpha_{i}<\alpha_{i+1} .\end{cases}
\end{aligned}
$$

Fact: $\kappa_{\alpha}=\left.\mathfrak{L}_{\alpha}^{(\beta)}\right|_{\beta=0}$.

- $\mathfrak{L}_{210}^{(\beta)}=x_{1}^{2} x_{2}$
- $\mathfrak{L}_{120}^{(\beta)}=\pi_{1}^{(\beta)}\left(\mathfrak{L}_{210}^{(\beta)}\right)=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+\beta x_{1}^{2} x_{2}^{2}$

β-Grothendieck Polynomials and Schubert Polynomials

For $w \in S_{n+1}$,

$$
\begin{aligned}
\mathfrak{G}_{w}^{(\beta)} & := \begin{cases}x_{1}^{n} x_{2}^{n-1} \cdots x_{n} & \text { if } w=(n+1, n, \ldots, 1) \\
\partial_{i}^{(\beta)}\left(\mathfrak{G}_{w s_{i}}^{(\beta)}\right) & \text { if } w s_{i}>w .\end{cases} \\
\mathfrak{S}_{w} & := \begin{cases}x_{1}^{n} x_{2}^{n-1} \cdots x_{n} & \text { if } w=(n+1, n, \ldots, 1) \\
\partial_{i}\left(\mathfrak{S}_{w s_{i}}\right) & \text { if } w s_{i}>w .\end{cases}
\end{aligned}
$$

Fact: $\mathfrak{S}_{w}=\left.\mathfrak{G}_{w}^{(\beta)}\right|_{\beta=0}$.

- $\mathfrak{G}_{321}^{(\beta)}=x_{1}^{2} x_{2}$
- $\mathfrak{G}_{312}^{(\beta)}=\partial_{2}^{(\beta)}\left(\mathfrak{G}_{321}^{(\beta)}\right)=x_{1}^{2}$
- $\mathfrak{G}_{132}^{(\beta)}=\partial_{1}^{(\beta)}\left(\mathfrak{G}_{312}^{(\beta)}\right)=x_{1}+x_{2}+\beta x_{1} x_{2}$

Symmetrization

For $w \in S_{n}$, let $\pi_{w}^{(\beta)}=\pi_{i_{1}}^{(\beta)} \cdots \pi_{i_{k}}^{(\beta)}$, where $s_{i_{1}} \cdots s_{i_{k}}=w$.
Let $w_{0}:=(n, n-1, \ldots, 1)$.

$$
\begin{aligned}
\pi_{w_{0}}^{(\beta)}\left(\mathfrak{L}_{\alpha}^{(\beta)}\right) & =G_{\alpha^{+}}^{(\beta)} \\
\pi_{w_{0}}\left(\kappa_{\alpha}\right) & =s_{\alpha^{+}} \\
\pi_{w_{0}}^{(\beta)}\left(\mathfrak{G}_{w}^{(\beta)}\right) & =G_{w}^{(\beta)} \\
\pi_{w_{0}}\left(\mathfrak{S}_{w}\right) & =F_{w}
\end{aligned}
$$

(Grass. Symm. Groth. polynomials)
(Schur polynomials)
(Symm. Groth. polynomials)
(Stanley Symmetric Functions)
Fact: When α is weakly increasing,

$$
\mathfrak{L}_{\alpha}^{(\beta)}=G_{\alpha^{+}}^{(\beta)} \quad \text { and } \quad \kappa_{\alpha}=s_{\alpha^{+}}
$$

Quick review

polynomial	has β	symmetric	index
$\mathfrak{L}_{\alpha}^{(\beta)}$	\checkmark	\times	α
κ_{α}	\times	\times	α
$\mathfrak{G}_{w}^{(\beta)}$	\checkmark	\times	w
\mathfrak{S}_{w}	\times	\times	w
$G_{\lambda}^{(\beta)}$	\checkmark	\checkmark	λ
s_{λ}	\times	\checkmark	λ
$G_{w}^{(\beta)}$	\checkmark	\checkmark	w
F_{w}	\times	\checkmark	w

Quick review

$$
\mathfrak{G}_{w}^{(\beta)} \xrightarrow{\text { symmetrize }} G_{w}^{(\beta)}
$$

Next, we connect these two diagrams.

Expansions

F_{w} into s_{λ}

In 1987, Edelman and Greene expanded F_{w} into s_{λ}.

In 1995, Reiner and Shimozono expanded \mathfrak{S}_{w} into κ_{α}. This expansion was first stated by Lascoux and Schützenberger in 1989.

$G_{w}^{(\beta)}$ into $G_{\lambda}^{(\beta)}$

In 2008, Buch, Kresch, Shimozono, Tamvakis, Yong expanded $G_{w}^{(\beta)}$ into $G_{\lambda}^{(\beta)}$.

In 2021, Shimozono and Yu expanded $\mathfrak{G}_{w}^{(\beta)}$ into $\mathfrak{L}_{\alpha}^{(\beta)}$. This expansion was conjectured by Reiner and Yong.

Some tableaux formulas for $\mathfrak{L}_{\alpha}^{(\beta)}$

- When $\beta=0$, reverse semistandard Young tableaux rule with key condition [Lascoux, Schützenberger 1980].
- When α is weakly increasing, reversed set-valued tableaux rule [Buch 2002].
- Reverse set-valued tableaux with key condition. Implicit in [Buciumas, Scrimshaw, Weber 2020]; rediscovered by [Shimozono, Y 2021]

Other combinatorial formulas for $\mathfrak{L}_{\alpha}^{(\beta)}$

- K-Kohnert diagrams. Conjectured [Ross, Yong 2015]. Rectangle case proved [Pechenik, Scrimshaw 2019]
- Set-valued skyline fillings. Conjectured [Monical, 2017] proved [Buciumas, Scrimshaw, Weber 2020]
- Set-valued tableaux with K-crystal Lusztig involution and key condition. Conjectured [Pechenik, Scrimshaw 2020] proved [BSW]
- Set-valued tableaux with key condition. [Y (In preparation)]

Keys

A key is a reversed semistandard Young tableau (RSSYT) where each number in column j is also in column $j-1$. Keys are in bijection with weak compositions:

Let $\operatorname{key}(\cdot)$ send a weak composition to its corresponding key. Its inverse is $\mathrm{wt}(\cdot)$.

Antirectification

The Knuth equivalence \equiv is an equivalence relation on words.

Fact: For each RSSYT T, exists unique $T \searrow$ of anti-normal shape such that

$$
\operatorname{rev}(\operatorname{word}(T)) \equiv \operatorname{rev}\left(\operatorname{word}\left(T^{\searrow}\right)\right)
$$

They can be found by jeu-de-taquin (jdt).

Left keys

Let T be a normal RSSYT. Column j of $K_{-}(T)$ is the first column of $T_{\leq j}$.

5	4	1	K_{-}	5	5	3	
3	3			3	3		
2				2			

5
3
2
:---
$\mathbf{3}$
$\mathbf{2}$

5	4			
3	3			
2		\rightarrow	$\mathbf{5}$	3
:---	:---			
$\mathbf{3}$	2			

5	4	1
3	3	
2		

		4
	5	3
3	2	1

Right keys

Let T be a normal RSSYT. Column j of $K_{+}(T)$ is the last column of $T_{\geq j}$.

5	4	1				1
3	3					
2						

5	4	1	\rightarrow		4	
3	3			5	3	
2			3	2	1	

$1 \rightarrow \mathbf{1}$

RSSYT rule for κ_{α}

Theorem (Lascoux, Schützenberger, 1980)

$$
\kappa_{\alpha}=\sum_{T} x^{\mathrm{wt}(T)}
$$

where T is a RSSYT whose shape is α^{+}and $K_{-}(T) \leq \operatorname{key}(\alpha)$.

Example $\kappa_{(1,0,2)}$

$$
\kappa_{(1,0,2)}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}
$$

Reversed set-valued tableaux (RSVT)

The following T is an example of a RSVT

54	4	1
3	321	
21		

Then $\operatorname{wt}(T)=(3,2,2,2,1), \operatorname{ex}(T)=4$, and $\max (T)$ is

5	4	1
3	3	
2		

RSVT rule for $G_{\lambda}^{(\beta)}$

Theorem (Buch 2002)
Let λ be a partition with at most n parts.

$$
G_{\lambda}^{(\beta)}=\sum_{T} \beta^{\operatorname{ex}(T)} x^{\mathrm{wt}(T)}
$$

where T is a RSVT with shape λ s.t. its entries are subsets of $[n]$.

RSVT rule for $\mathfrak{L}^{(\beta)}$

Theorem (Buciumas, Scrimshaw, Weber 2020; Shimozono, Y 2021)

$$
\mathfrak{L}_{\alpha}^{(\beta)}=\sum_{T} \beta^{\operatorname{ex}(T)} \chi^{\mathrm{wt}(T)}
$$

where T is a RSVT with shape α^{+}s.t. $K_{-}(\max (T)) \leq \operatorname{key}(\alpha)$.

Example $\mathfrak{L}_{(1,0,2)}^{(\beta)}$

3 3	32	3 11	2 2	2
1	1	1	1	1
331	321	321	221	
1	1	1	1	
332	322			
1	1			
3321	3221			
1	1			

$$
\begin{aligned}
\mathfrak{L}_{(1,0,2)}^{(\beta)} & =x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{1} x_{3}^{2} \\
& +\beta\left(x_{1}^{2} x_{2}^{2}+2 x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1}^{2} x_{3}^{2}+x_{1} x_{2} x_{3}^{2}\right) \\
& +\beta^{2}\left(x_{1}^{2} x_{2}^{2} x_{3}+x_{1}^{2} x_{2} x_{3}^{2}\right)
\end{aligned}
$$

Compatible word rules

- Pipedream rules for \mathfrak{S}_{w}. Pipedreams are in bijection with compatible words. [Billey, Jockusch, Stanley 1993] [N. Bergeron, Billey 1993]
- Compatible word rule for $G_{w}^{(\beta)}$. [Fomin, Kirillov 1994]
- Compatible word rule for $\mathfrak{G}_{w}^{(\beta)}$ with a "bounded" condition. [Fomin, Kirillov 1994]

Compatible words

Definition (Billey, Jockusch, Stanley 1993)

A pair of words (a, i) with the same length is compatible if they satisfy

- i is weakly decreasing
- $i_{j}=i_{j+1}$ implies $a_{j}<a_{j+1}$.

A compatible pair (a, i) is bounded if $a_{j} \geq i_{j}$ for all j.

0-Hecke equivalence

$\mathbb{Z}_{>0}^{*}$: Free monoid of words in alphabet $\mathbb{Z}_{>0}$
The 0 -Hecke equivalence \equiv_{H} on $\mathbb{Z}_{>0}^{*}$ is generated by:

$$
\begin{aligned}
a(a+1) a & \equiv H(a+1) a(a+1) \\
a a & \equiv H \text { a } \\
a b & \equiv H \text { ba for }|a-b| \geq 2 .
\end{aligned}
$$

$\mathbb{Z}_{>0}^{*}$ acts on $S_{+}:$

$$
i \circ w= \begin{cases}s_{i} w & \text { if } \ell\left(s_{i} w\right)>\ell(w) \\ w & \text { otherwise }\end{cases}
$$

Let $[b]_{H}:=b \circ \mathrm{id} \in S_{+}$.

Combinatorial formula for $\mathfrak{G}_{w}^{(\beta)}$ and $G_{w}^{(\beta)}$

Theorem (Fomin, Kirillov 1994)

$$
\begin{aligned}
\mathfrak{G}_{w}^{(\beta)}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{\substack{(a, i) \text { compatible } \\
(a, i) \text { bounded } \\
[a]_{H}=w^{-1}}} x^{\mathrm{wt}(i)} \beta^{\ell(i)-\ell(w)}, \\
G_{w}^{(\beta)}\left(x_{1}, \ldots, x_{n}\right)= & \sum_{\substack{(a, i) \text { compatible } \\
[a]_{H}=w^{-1} \\
i_{j} \leq n}} x^{\mathrm{wt}(i)} \beta^{\ell(i)-\ell(w)} .
\end{aligned}
$$

Quick review

$$
\begin{aligned}
& \mathfrak{G}_{w}^{(\beta)} \stackrel{\text { symmetrize }}{ } \\
& \text { expand } G_{w}^{(\beta)} \\
& \mathfrak{L}_{\alpha}^{(\beta)} \xrightarrow[\text { symmetrize }]{ } \\
& \mathcal{L}_{\lambda}^{(\beta)} \text { expand }
\end{aligned}
$$

We have

- compatible word formulas for the top two.
- RSVT formulas for the bottom two.

Q: How to connect compatible pairs and RSVT?
A: Hecke insertion!

Hecke Insertion

Let \mathcal{C} be the set of all compatible pairs.
Let \mathcal{T} be the set of all (P, Q) such that, P is decreasing, Q is a RSVT, and P, Q have the same shape.

Theorem (Buch,Kresch,Shimozono,Tamvakis, Yong 2008) Hecke insertion is a bijection from \mathcal{C} to \mathcal{T}. If we insert (a, i) and get (P, Q), then

- $[a]_{H}=[\operatorname{word}(P)]_{H}$.
- $\mathrm{wt}(i)=\mathrm{wt}(Q)$.

Expand $G_{w}^{(\beta)}$ into $G_{\lambda}^{(\beta)}$

If we Hecke insert

$$
\mathcal{C}_{w}:=\left\{(a, i) \in \mathcal{C}:[a]_{H}=w, i \text { only has numbers in }[n]\right\},
$$

we get \mathcal{T}_{w}, which consists of $(P, Q) \in \mathcal{T}$ such that $[\operatorname{word}(P)]_{H}=w$ and Q has numbers in $[n]$.

$$
\begin{aligned}
G_{w}^{(\beta)} & =\sum_{(a, i) \in \mathcal{C}_{w-1}} x^{\mathrm{wt}(i)} \beta^{\ell(i)-\ell(w)} \\
& =\sum_{(P, Q) \in \mathcal{T}_{w^{-1}}} x^{\mathrm{wt}(Q)} \beta^{\operatorname{ex}(Q)+|\operatorname{shape}(Q)|-\ell(w)} \\
& =\sum_{P} \beta^{|\operatorname{shape}(P)|-\ell(w)} \sum_{Q} x^{\mathrm{wt}(Q)} \beta^{\operatorname{ex}(Q)} \\
& =\sum_{P} \beta^{|\operatorname{shape}(P)|-\ell(w)} G_{\text {shape }(P)}^{(\beta)}
\end{aligned}
$$

Expand $\mathfrak{G}_{w}^{(\beta)}$ into $\mathfrak{L}_{\alpha}^{(\beta)}$

Define

$$
\mathcal{C}_{w}^{B}:=\left\{(a, i) \in \mathcal{C}:[a]_{H}=w, \text { bounded }\right\}
$$

Recall

$$
\mathfrak{G}_{w}^{(\beta)}=\sum_{(\mathrm{a}, i) \in \mathcal{C}_{w-1}^{B}} x^{\mathrm{wt}(i)} \beta^{\ell(i)-\ell(w)}
$$

If we Hecke insert \mathcal{C}_{w}^{B}, we get \mathcal{T}_{w}^{B}, which consists of $(P, Q) \in \mathcal{T}$ such that

- $[\operatorname{word}(P)]_{H}=w$.
- ????

How to describe the second condition?

Right keys of decreasing tableaux

We may anti-rectify a decreasing tableau using K-jeu-de-taquin (Kjdt) [Thomas, Yong 2009].

Bad News: Anti-rectification is not unique!

Right keys of decreasing tableaux

Good News: [Shimozono, Y 2021] The rightmost column of all anti-rectifications must agree.

Expand $\mathfrak{G}_{w}^{(\beta)}$ into $\mathfrak{L}_{\alpha}^{(\beta)}$

Recall that $\mathcal{C}_{w}^{B}:=\left\{(a, i) \in \mathcal{C}:[a]_{H}=w\right.$, bounded $\}$.
Define
$\mathcal{T}_{w}^{B}:=\left\{(P, Q) \in \mathcal{T}:[\operatorname{word}(P)]_{H}=w, K_{+}(P) \geq K_{-}(\max (Q))\right\}$.
Theorem (Shimozono, Y 2021)
Hecke insertion restricts to a bijection from \mathcal{C}_{w}^{B} to \mathcal{T}_{w}^{B}.

$$
\begin{aligned}
\mathfrak{G}_{w}^{(\beta)} & =\sum_{(a, i) \in \mathcal{C}_{w^{-1}}^{B}} x^{\mathrm{wt}(i)} \beta^{\ell(i)-\ell(w)} \\
& =\sum_{(P, Q) \in \mathcal{T}_{w^{-1}}^{B}} x^{\mathrm{wt}(Q)} \beta^{\operatorname{ex}(Q)+|\operatorname{shape}(Q)|-\ell(w)} \\
& =\sum_{P} \beta^{|\operatorname{shape}(P)|-\ell(w)} \sum_{Q} x^{\mathrm{wt}(Q)} \beta^{\operatorname{ex}(Q)} \\
& =\sum_{P} \beta^{|\operatorname{shape}(P)|-\ell(w)} \mathfrak{L}_{K_{+}(P)}^{(\beta)}
\end{aligned}
$$

Expand $\mathfrak{G}_{w}^{(\beta)}$ into $\mathfrak{L}_{\alpha}^{(\beta)}$ example

Let $w=31524$. Then P can be:

4	3	1
2		

4	3
2	1

4	3	1
2	1	

There right keys are:

Thus, we have $\mathfrak{G}_{w}^{(\beta)}=\mathfrak{L}_{301}^{(\beta)}+\mathfrak{L}_{202}^{(\beta)}+\beta \mathfrak{L}_{302}^{(\beta)}$.

Reiner-Yong conjecture

We have

$$
\mathfrak{G}_{w}^{(\beta)}=\sum_{\substack{P \text { decreasing } \\[\operatorname{word}(P)]_{H}=w^{-1}}} \beta^{|\operatorname{shape}(P)|-\ell(w)} \mathfrak{L}_{K_{+}(P)}^{(\beta)}
$$

Reiner and Yong conjecture:

$$
\mathfrak{G}_{w}^{(\beta)}=\sum_{\substack{P \text { increasing } \\[\operatorname{word}(P)]_{H}=w}} \beta^{|\operatorname{shape}(P)|-\ell(w)} \mathfrak{L}_{K_{-}(P)}^{(\beta)},
$$

where $K_{-}(\cdot)$ of an increasing tableau is defined analogously.

From decreasing to increasing

Theorem (Shimozono, Y)
There is a bijection from decreasing tableaux to increasing tableaux: $P \rightarrow P^{\sharp}$.
It satisfies:

- $\left[\operatorname{word}^{(P)}\right]_{H}=\left[\operatorname{word}\left(P^{\sharp}\right)\right]_{H}^{-1}$
- $K_{+}(P)=K_{-}\left(P^{\sharp}\right)$

Corollary
The Reiner-Yong conjecture is true.

Thanks for listening!!

- M. Shimozono, and T Yu. Grothendieck to Lascoux expansions. arXiv preprint arXiv:2106.13922 (2021).

