Grothendieck-to-Lascoux expansions

Mark Shimozono (Virginia Tech) and Tianyi Yu (UCSD)

September, 2021

Outline

1. Introducing 8 polynomials

2. Several combinatorial formulas

3. The Grothendieck-to-Lascoux expansions

Operators

Define operators on $\mathbb{Z}[\beta][x_1, x_2, \dots, x_n]$:

$$\partial_{i}(f) = (x_{i} - x_{i+1})^{-1}(f - s_{i}f)$$

$$\pi_{i}(f) = \partial_{i}(x_{i}f)$$

$$\partial_{i}^{(\beta)}(f) = \partial_{i}(f + \beta x_{i+1}f)$$

$$\pi_{i}^{(\beta)}(f) = \partial_{i}^{(\beta)}(x_{i}f).$$

They satisfy the braid relations.

Lascoux polynomials and key polynomials

For weak composition α ,

$$\mathfrak{L}_{\alpha}^{(\beta)} := \begin{cases} x^{\alpha} & \text{if } \alpha \text{ is a partition} \\ \pi_{i}^{(\beta)} \mathfrak{L}_{s_{i}\alpha}^{(\beta)} & \text{if } \alpha_{i} < \alpha_{i+1}. \end{cases}$$

$$\kappa_{\alpha} := \begin{cases} x^{\alpha} & \text{if } \alpha \text{ is a partition} \\ \pi_{i}(\kappa_{s_{i}\alpha}) & \text{if } \alpha_{i} < \alpha_{i+1}. \end{cases}$$

Fact:
$$\kappa_{\alpha} = \mathfrak{L}_{\alpha}^{(\beta)}|_{\beta=0}$$
.

•
$$\mathfrak{L}_{210}^{(\beta)} = x_1^2 x_2$$

•
$$\mathfrak{L}_{120}^{(\beta)} = \pi_1^{(\beta)}(\mathfrak{L}_{210}^{(\beta)}) = x_1^2 x_2 + x_1 x_2^2 + \beta x_1^2 x_2^2$$

β-Grothendieck Polynomials and Schubert Polynomials

For $w \in S_{n+1}$,

$$\mathfrak{G}_{w}^{(\beta)} := \begin{cases} x_{1}^{n} x_{2}^{n-1} \cdots x_{n} & \text{if } w = (n+1, n, \dots, 1) \\ \partial_{i}^{(\beta)} (\mathfrak{G}_{ws_{i}}^{(\beta)}) & \text{if } ws_{i} > w. \end{cases}$$

$$\mathfrak{S}_{w} := \begin{cases} x_{1}^{n} x_{2}^{n-1} \cdots x_{n} & \text{if } w = (n+1, n, \dots, 1) \\ \partial_{i} (\mathfrak{S}_{ws_{i}}) & \text{if } ws_{i} > w. \end{cases}$$

Fact:
$$\mathfrak{S}_w = \mathfrak{G}_w^{(\beta)}|_{\beta=0}$$
.

•
$$\mathfrak{G}_{321}^{(\beta)} = x_1^2 x_2$$

•
$$\mathfrak{G}_{312}^{(\beta)} = \partial_2^{(\beta)} (\mathfrak{G}_{321}^{(\beta)}) = x_1^2$$

•
$$\mathfrak{G}_{132}^{(\beta)} = \partial_1^{(\beta)}(\mathfrak{G}_{312}^{(\beta)}) = x_1 + x_2 + \beta x_1 x_2$$

Symmetrization

For
$$w \in S_n$$
, let $\pi_w^{(\beta)} = \pi_{i_1}^{(\beta)} \cdots \pi_{i_k}^{(\beta)}$, where $s_{i_1} \cdots s_{i_k} = w$. Let $w_0 := (n, n-1, \dots, 1)$.

$$\pi_{w_0}^{(\beta)}(\mathfrak{L}_{\alpha}^{(\beta)}) = G_{\alpha^+}^{(\beta)}$$
 (Grass. Symm. Groth. polynomials)
 $\pi_{w_0}(\kappa_{\alpha}) = s_{\alpha^+}$ (Schur polynomials)
 $\pi_{w_0}^{(\beta)}(\mathfrak{G}_w^{(\beta)}) = G_w^{(\beta)}$ (Symm. Groth. polynomials)
 $\pi_{w_0}(\mathfrak{S}_w) = F_w$ (Stanley Symmetric Functions)

Fact: When α is weakly increasing,

$$\mathfrak{L}_{lpha}^{(eta)} = \mathcal{G}_{lpha^+}^{(eta)} \qquad ext{and} \qquad \kappa_{lpha} = \mathcal{S}_{lpha^+}$$

Quick review

polynomial	has eta	symmetric	index
$\mathfrak{L}_{lpha}^{(eta)}$	√	×	α
κ_{α}	×	×	α
$\mathfrak{G}_w^{(eta)}$	✓	×	W
\mathfrak{S}_w	×	×	W
$G_{\lambda}^{(eta)}$	✓	✓	λ
s_{λ}	×	✓	λ
$G_w^{(eta)}$	✓	√	W
F_w	×	✓	W

Quick review

Next, we connect these two diagrams.

Expansions

F_w into s_λ

In 1987, Edelman and Greene expanded F_w into s_λ .

\mathfrak{S}_w into κ_α

In 1995, Reiner and Shimozono expanded \mathfrak{S}_w into κ_α . This expansion was first stated by Lascoux and Schützenberger in 1989.

$$G_{w}^{(\beta)}$$
 into $G_{\lambda}^{(\beta)}$

In 2008, Buch, Kresch, Shimozono, Tamvakis, Yong expanded $G_w^{(\beta)}$ into $G_\lambda^{(\beta)}$.

$$\mathfrak{G}_{w}^{(\beta)}$$
 into $\mathfrak{L}_{\alpha}^{(\beta)}$

In 2021, Shimozono and Yu expanded $\mathfrak{G}_w^{(\beta)}$ into $\mathfrak{L}_\alpha^{(\beta)}$. This expansion was conjectured by Reiner and Yong.

Some tableaux formulas for $\mathfrak{L}_{\alpha}^{(\beta)}$

- When $\beta = 0$, reverse semistandard Young tableaux rule with key condition [Lascoux, Schützenberger 1980].
- When α is weakly increasing, reversed set-valued tableaux rule [Buch 2002].
- Reverse set-valued tableaux with key condition. Implicit in [Buciumas, Scrimshaw, Weber 2020]; rediscovered by [Shimozono,Y 2021]

Other combinatorial formulas for $\mathfrak{L}_{\alpha}^{(\beta)}$

- K-Kohnert diagrams. Conjectured [Ross, Yong 2015].
 Rectangle case proved [Pechenik, Scrimshaw 2019]
- Set-valued skyline fillings. Conjectured [Monical, 2017] proved [Buciumas, Scrimshaw, Weber 2020]
- Set-valued tableaux with K-crystal Lusztig involution and key condition. Conjectured [Pechenik, Scrimshaw 2020] proved [BSW]
- Set-valued tableaux with key condition. [Y (In preparation)]

Keys

A *key* is a reversed semistandard Young tableau (RSSYT) where each number in column j is also in column j-1. Keys are in bijection with weak compositions:

Let $\ker(\cdot)$ send a weak composition to its corresponding key. Its inverse is $\operatorname{wt}(\cdot)$.

Antirectification

The Knuth equivalence \equiv is an equivalence relation on words.

Fact: For each RSSYT T, exists unique T^{\searrow} of anti-normal shape such that

$$\operatorname{rev}(\operatorname{word}(T)) \equiv \operatorname{rev}(\operatorname{word}(T^{\searrow})).$$

They can be found by jeu-de-taquin (jdt).

Left keys

Let T be a normal RSSYT. Column j of $K_{-}(T)$ is the first column of $T_{< j}^{\searrow}$.

5	4	1	$\xrightarrow{\mathcal{K}_{-}}$	5	5	3
3	3			3	3	
2				2		

5	\rightarrow	5	
3		3	
2		2	

5	4	\rightarrow		4
3	3		5	3
2		•	3	2

Right keys

Let T be a normal RSSYT. Column j of $K_+(T)$ is the last column of $T_{>j}$.

5	4	1	$\xrightarrow{\mathcal{K}_{+}}$	4	4	1
3	3			3	1	
2				1		•

5	4	1	\rightarrow			4
3	3				5	3
2				3	2	1

$$\begin{array}{c|c}
4 & 1 \\
\hline
3 & 3 & 1
\end{array}$$

$$oxed{1}
ightarrow oxed{1}$$

RSSYT rule for κ_{α}

Theorem (Lascoux, Schützenberger, 1980)

$$\kappa_{\alpha} = \sum_{T} x^{\text{wt}(T)}$$

where T is a RSSYT whose shape is α^+ and $K_-(T) \leq \ker(\alpha)$.

Example $\kappa_{(1,0,2)}$

$$\kappa_{(1,0,2)} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_2 x_3 + x_1 x_3^2$$

Reversed set-valued tableaux (RSVT)

The following T is an example of a RSVT

54	4	1
3	321	
21		

Then wt(T) = (3, 2, 2, 2, 1), ex(T) = 4, and max(T) is

5	4	1
3	3	
2		•

RSVT rule for $G_{\lambda}^{(\beta)}$

Theorem (Buch 2002)

Let λ be a partition with at most n parts.

$$G_{\lambda}^{(\beta)} = \sum_{T} \beta^{\text{ex}(T)} x^{\text{wt}(T)}$$

where T is a RSVT with shape λ s.t. its entries are subsets of [n].

RSVT rule for $\mathfrak{L}_{\alpha}^{(\beta)}$

Theorem (Buciumas, Scrimshaw, Weber 2020; Shimozono, Y 2021)

$$\mathfrak{L}_{\alpha}^{(\beta)} = \sum_{T} \beta^{\mathrm{ex}(T)} x^{\mathrm{wt}(T)}$$

where T is a RSVT with shape α^+ s.t. $K_-(\max(T)) \le \ker(\alpha)$.

Example $\mathfrak{L}_{(1,0,2)}^{(eta)}$

$$\mathfrak{L}_{(1,0,2)}^{(\beta)} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_2 x_3 + x_1 x_3^2 + \beta (x_1^2 x_2^2 + 2x_1^2 x_2 x_3 + x_1 x_2^2 x_3 + x_1^2 x_3^2 + x_1 x_2 x_3^2) + \beta^2 (x_1^2 x_2^2 x_3 + x_1^2 x_2 x_3^2)$$

Compatible word rules

- Pipedream rules for \mathfrak{S}_w . Pipedreams are in bijection with compatible words. [Billey, Jockusch, Stanley 1993] [N. Bergeron, Billey 1993]
- Compatible word rule for $G_w^{(\beta)}$. [Fomin, Kirillov 1994]
- Compatible word rule for $\mathfrak{G}_w^{(\beta)}$ with a "bounded" condition. [Fomin, Kirillov 1994]

Compatible words

Definition (Billey, Jockusch, Stanley 1993)

A pair of words (a, i) with the same length is compatible if they satisfy

- i is weakly decreasing
- $i_j = i_{j+1}$ implies $a_j < a_{j+1}$.

A compatible pair (a, i) is bounded if $a_j \ge i_j$ for all j.

0-Hecke equivalence

 $\mathbb{Z}_{>0}^*$: Free monoid of words in alphabet $\mathbb{Z}_{>0}$ The 0-Hecke equivalence \equiv_H on $\mathbb{Z}_{>0}^*$ is generated by:

$$a(a+1)a \equiv_H (a+1)a(a+1)$$

 $aa \equiv_H a$
 $ab \equiv_H ba$ for $|a-b| \ge 2$.

 $\mathbb{Z}_{>0}^*$ acts on S_+ :

$$i \circ w = \begin{cases} s_i w & \text{if } \ell(s_i w) > \ell(w). \\ w & \text{otherwise.} \end{cases}$$

Let $[b]_H := b \circ \mathrm{id} \in S_+$.

Combinatorial formula for $\mathfrak{G}_{w}^{(\beta)}$ and $G_{w}^{(\beta)}$

Theorem (Fomin, Kirillov 1994)

$$\mathfrak{G}_{w}^{(\beta)}(x_{1},\ldots,x_{n}) = \sum_{\substack{(a,i) \ compatible \\ (a,i) \ bounded \\ [a]_{H}=w^{-1}}} x^{\operatorname{wt}(i)} \beta^{\ell(i)-\ell(w)},$$

$$G_{w}^{(\beta)}(x_{1},\ldots,x_{n}) = \sum_{\substack{(a,i) \ compatible \\ [a]_{H}=w^{-1} \\ \vdots \ c}} x^{\operatorname{wt}(i)} \beta^{\ell(i)-\ell(w)}.$$

Quick review

We have

- compatible word formulas for the top two.
- RSVT formulas for the bottom two.

Q: How to connect compatible pairs and RSVT?

A: Hecke insertion!

Hecke Insertion

Let $\mathcal C$ be the set of all compatible pairs. Let $\mathcal T$ be the set of all (P,Q) such that, P is decreasing, Q is a RSVT, and P,Q have the same shape.

Theorem (Buch, Kresch, Shimozono, Tamvakis, Yong 2008) Hecke insertion is a bijection from C to T. If we insert (a, i) and

get (P,Q), then

- $[a]_H = [\operatorname{word}(P)]_H$.
- $\operatorname{wt}(i) = \operatorname{wt}(Q)$.

Expand $G_w^{(\beta)}$ into $G_\lambda^{(\beta)}$

If we Hecke insert

$$C_w := \{(a, i) \in C : [a]_H = w, i \text{ only has numbers in } [n]\},$$

we get \mathcal{T}_w , which consists of $(P, Q) \in \mathcal{T}$ such that $[\operatorname{word}(P)]_H = w$ and Q has numbers in [n].

$$\begin{split} G_w^{(\beta)} &= \sum_{(a,i) \in \mathcal{C}_{w^{-1}}} x^{\operatorname{wt}(i)} \beta^{\ell(i) - \ell(w)} \\ &= \sum_{(P,Q) \in \mathcal{T}_{w^{-1}}} x^{\operatorname{wt}(Q)} \beta^{\operatorname{ex}(Q) + |\operatorname{shape}(Q)| - \ell(w)} \\ &= \sum_{P} \beta^{|\operatorname{shape}(P)| - \ell(w)} \sum_{Q} x^{\operatorname{wt}(Q)} \beta^{\operatorname{ex}(Q)} \\ &= \sum_{P} \beta^{|\operatorname{shape}(P)| - \ell(w)} G_{\operatorname{shape}(P)}^{(\beta)} \end{split}$$

Expand $\mathfrak{G}_{w}^{(\beta)}$ into $\mathfrak{L}_{\alpha}^{(\beta)}$

Define

$$C_w^B := \{(a, i) \in \mathcal{C} : [a]_H = w, \text{bounded}\}.$$

Recall

$$\mathfrak{G}_{w}^{(\beta)} = \sum_{(a,i) \in \mathcal{C}_{w-1}^{B}} x^{\operatorname{wt}(i)} \beta^{\ell(i) - \ell(w)}$$

If we Hecke insert C_w^B , we get T_w^B , which consists of $(P,Q) \in \mathcal{T}$ such that

- $[\operatorname{word}(P)]_H = w$.
- ????

How to describe the second condition?

Right keys of decreasing tableaux

We may anti-rectify a decreasing tableau using K-jeu-de-taquin (Kjdt) [Thomas, Yong 2009].

5	4	1	$]_{\rightarrow}$			4
3	2				5	3
2				3	2	1

Bad News: Anti-rectification is not unique!

Right keys of decreasing tableaux

Good News: [Shimozono, Y 2021] The rightmost column of all anti-rectifications must agree.

5	4	1	$\xrightarrow{\mathcal{K}_{+}}$	4	4	1
3	2			3	1	
2				1		

5	4	1	\rightarrow			4
3	2				5	3
2				3	2	1

4	1	\rightarrow		4
2			2	1

$$oxed{1}
ightarrow oxed{1}$$

Expand $\mathfrak{G}_{w}^{(\beta)}$ into $\mathfrak{L}_{\alpha}^{(\beta)}$

Recall that $C_w^B := \{(a, i) \in C : [a]_H = w, bounded\}.$

Define

$$\mathcal{T}_w^B := \{(P,Q) \in \mathcal{T} : [\operatorname{word}(P)]_H = w, K_+(P) \ge K_-(\max(Q))\}.$$

Theorem (Shimozono, Y 2021)

Hecke insertion restricts to a bijection from C_w^B to T_w^B .

$$\begin{split} \mathfrak{G}_{w}^{(\beta)} &= \sum_{(a,i) \in \mathcal{C}_{w-1}^{B}} x^{\operatorname{wt}(i)} \beta^{\ell(i) - \ell(w)} \\ &= \sum_{(P,Q) \in \mathcal{T}_{w-1}^{B}} x^{\operatorname{wt}(Q)} \beta^{\operatorname{ex}(Q) + |\operatorname{shape}(Q)| - \ell(w)} \\ &= \sum_{P} \beta^{|\operatorname{shape}(P)| - \ell(w)} \sum_{Q} x^{\operatorname{wt}(Q)} \beta^{\operatorname{ex}(Q)} \\ &= \sum_{P} \beta^{|\operatorname{shape}(P)| - \ell(w)} \mathfrak{L}_{K_{+}(P)}^{(\beta)} \end{split}$$

Expand $\mathfrak{G}_{w}^{(\beta)}$ into $\mathfrak{L}_{\alpha}^{(\beta)}$ example

Let w = 31524. Then P can be:

There right keys are:

Thus, we have $\mathfrak{G}_w^{(\beta)}=\mathfrak{L}_{301}^{(\beta)}+\mathfrak{L}_{202}^{(\beta)}+\beta\mathfrak{L}_{302}^{(\beta)}.$

Reiner-Yong conjecture

We have

$$\mathfrak{G}_{w}^{(\beta)} = \sum_{\substack{P \text{ decreasing} \\ [\text{word}(P)]_{H} = w^{-1}}} \beta^{|\text{shape}(P)| - \ell(w)} \mathfrak{L}_{K_{+}(P)}^{(\beta)}.$$

Reiner and Yong conjecture:

$$\mathfrak{G}_{w}^{(\beta)} = \sum_{\substack{P \text{ increasing} \\ [\text{word}(P)]_{H} = w}} \beta^{|\text{shape}(P)| - \ell(w)} \mathfrak{L}_{K_{-}(P)}^{(\beta)},$$

where $K_{-}(\cdot)$ of an increasing tableau is defined analogously.

From decreasing to increasing

Theorem (Shimozono, Y)

There is a bijection from decreasing tableaux to increasing tableaux: $P \rightarrow P^{\sharp}$.

It satisfies:

- $[word(P)]_H = [word(P^{\sharp})]_H^{-1}$
- $K_{+}(P) = K_{-}(P^{\sharp})$

Corollary

The Reiner-Yong conjecture is true.

Thanks for listening!!

 M. Shimozono, and T Yu. Grothendieck to Lascoux expansions. arXiv preprint arXiv:2106.13922 (2021).