Top degree components of Grothendieck and Lascoux polynomials

Jianping Pan (NCSU) and Tianyi Yu (UCSD)

January 31, 2023

Outline

1. Grothendieck polynomials. Bottom layer and top layer.
2. Lascoux polynomials. Bottom layer and top layer.
3. Span of the top layers. Connections to a q-analogue of Bell numbers.

Grothendieck polynomials

Define $\partial_{i}(f):=\frac{f-s_{i} f}{x_{i}-x_{i+1}}$, where s_{i} swaps x_{i} and x_{i+1}. For instance,

$$
\partial_{1}\left(x_{1}^{3} x_{3}\right)=\frac{x_{1}^{3} x_{3}-x_{2}^{3} x_{3}}{x_{1}-x_{2}}=x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{2}^{2} x_{3}
$$

Then for $w \in S_{n}$,

$$
\mathfrak{G}_{w}:= \begin{cases}x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1} & \text { if } w=[n, n-1, \ldots, 1] \\ \partial_{i}\left(\left(1+x_{i+1}\right) \mathfrak{G}_{w s_{i}}\right) & \text { if } w(i)<w(i+1)\end{cases}
$$

Grothendieck polynomials

$$
\begin{aligned}
\mathfrak{G}_{2143} & =x_{1}^{2} x_{2} x_{3} \\
& +x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3} \\
& +x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}
\end{aligned}
$$

- Inhomogeneous.
- Only have positive integer coefficients.

Schubert polynomials

$$
\begin{aligned}
\mathfrak{G}_{2143} & =x_{1}^{2} x_{2} x_{3} \\
& +x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3} \\
& +x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3} \quad \leftarrow \text { Schubert polynomial } \mathfrak{S}_{2143}
\end{aligned}
$$

What is the leading monomial of a Schubert polynomial \mathfrak{S}_{w} ?

Leading Monomial

Tail-Lex order: Compare monomials by first comparing the power of x_{n}, then x_{n-1}, x_{n-2}, \ldots.

$$
x_{1} x_{2}^{3} x_{3}^{2}>x_{1}^{4} x_{2} x_{3}^{2}
$$

The leading monomial of a polynomial is the largest monomial in it.

$$
\mathfrak{S}_{2143}=x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}
$$

What is the leading monomial of \mathfrak{S}_{w} ?

Inversion code

For $w \in S_{n}$, an inversion is (i, j) with $w(i)>w(j)$ and $i<j$. The inversion code of w, denoted as invcode (w), is a code where the $i^{\text {th }}$ entry is the number of inversions (i, j).
For instance, invcode $(21543)=(1,0,2,1,0)$.

Theorem (Billey-Jockusch-Stanley)
The leading monomial of \mathfrak{S}_{w} is $x^{\text {invcode }(w)}$.

Rothe diagrams

Construct the Rothe diagram $R D(21543)$.

The weight of a diagram is a sequence where the $i^{\text {th }}$ entry is the number of tiles on row $i . \operatorname{wt}(R D(21543))=(1,0,2,1,0)$.

Fact: $\operatorname{invcode}(w)=\mathrm{wt}(R D(w))$.

Top layer of Grothendieck polynomials

$$
\begin{aligned}
\mathfrak{G}_{2143} & =x_{1}^{2} x_{2} x_{3} \quad \leftarrow \widehat{\mathfrak{G}}_{2143} \\
& +x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3} \\
& +x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}
\end{aligned}
$$

How to compute their leading monomials?

rajcode

Definition (Pechenik-Speyer-Weigandt)

Take $w \in S_{n}$. For each i, find a longest increasing subsequence in w that starts at $w(i)$. Count how many numbers on the right of $w(i)$ are not involved.

- When $i=1,21543$. Three numbers not involved: 1,4,3.
- When $i=2,21543$. Two numbers not involved: 4,3.
- When $i=3,21543$. Two numbers not involved: 4,3.
- When $i=4$, 21543. One number not involved: 3.
- When $i=5,21543$. No numbers not involved.

$$
\text { rajcode }(21543)=(3,2,2,1,0)
$$

Leading monomial of $\widehat{\mathfrak{G}}_{w}$

Theorem (Pechenik-Speyer-Weigandt)

- The leading monomial of $\widehat{\mathfrak{G}}_{w}$ is $x^{\text {rajcode }(w)}$.
- Two permutations u and v have the same rajcode if and only if $\widehat{\mathfrak{G}}_{u}$ is a scalar multiple of $\widehat{\mathfrak{G}}_{v}$.

For example, $\widehat{\mathfrak{G}}_{21543}$ has leading monomial $x_{1}^{3} x_{2}^{2} x_{3}^{2} x_{4}$.

Lascoux polynomials

For weak compositions α,

$$
\begin{gathered}
\mathfrak{L}_{\alpha}:= \begin{cases}x^{\alpha} & \text { if } \alpha_{1} \geqslant \alpha_{2} \geqslant \ldots \\
\partial_{i}\left(x_{i}\left(1+x_{i+1}\right) \mathfrak{L}_{s_{i} \alpha}\right) & \text { if } \alpha_{i}<\alpha_{i+1} .\end{cases} \\
\mathfrak{G}_{w}:= \begin{cases}x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1} & \text { if } w=[n, n-1, \ldots, 1] \\
\partial_{i}\left(\left(1+x_{i+1}\right) \mathfrak{G}_{w s_{i}}\right) & \text { if } w(i)<w(i+1) .\end{cases}
\end{gathered}
$$

Theorem (Shimozono-Y)
For $w \in S_{n}, \mathfrak{G}_{w}$ expands positively into \mathfrak{L}_{α}.

$$
\mathfrak{G}_{2143}=\mathfrak{L}_{101}+\mathfrak{L}_{2}+\mathfrak{L}_{201}
$$

Key polynomials

$$
\begin{aligned}
\mathfrak{L}_{102} & =\left(x_{1}^{2} x_{2}^{2} x_{3}+x_{1}^{2} x_{2} x_{3}^{2}\right) \\
& +\left(x_{1}^{2} x_{2}^{2}+2 x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}^{2}+x_{1}^{2} x_{3}^{2}\right) \\
& +\left(x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}\right) \quad \leftarrow \kappa_{102}
\end{aligned}
$$

Theorem (Lascoux-Schützenberger)
The key polynomial κ_{α} has leading monomial x^{α}.

Top layer of Lascoux polynomials

$$
\begin{aligned}
\mathfrak{L}_{102} & =\left(x_{1}^{2} x_{2}^{2} x_{3}+x_{1}^{2} x_{2} x_{3}^{2}\right) \quad \leftarrow \widehat{\mathfrak{L}}_{102} \\
& +\left(x_{1}^{2} x_{2}^{2}+2 x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}^{2}+x_{1}^{2} x_{3}^{2}\right) \\
& +\left(x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}\right)
\end{aligned}
$$

Question: What is the leading monomial of $\widehat{\mathfrak{L}}_{\alpha}$?

Key diagram

The following is the key diagram of $(1,2,0,5,2)$.

$$
D((1,2,0,5,2))
$$

Dark clouds

- Iterate through each row from bottom to top.
- For each row, find the rightmost tile on this row with no dark clouds underneath.
- If such a tile exists, turn it into a dark cloud.

Snow

Fill spaces above each dark cloud by snowflakes

rajcode of a weak composition

$$
\operatorname{snow}(D((1,2,0,5,2)))
$$

Definition (Pan-Y)
The rajcode of a weak composition α is $\operatorname{wt}(\operatorname{snow}(D(\alpha)))$.
For instance, rajcode $((1,2,0,5,2))=(3,3,2,5,2)$

Top Lascoux polynomials

Theorem (Pan-Y)

- The leading monomial of $\widehat{\mathfrak{L}}_{\alpha}$ is $x^{\text {rajcode }(\alpha)}$.
- Two weak compositions α and γ have the same rajcode if and only if $\widehat{\mathfrak{L}}_{\alpha}$ is a scalar multiple of $\widehat{\mathfrak{L}}_{\gamma}$.

Theorem (Pechenik-Speyer-Weigandt)

- The leading monomial of $\widehat{\mathfrak{G}}_{w}$ is $x^{\text {rajcode }(w)}$.
- Two permutations u and v have the same rajcode if and only if $\widehat{\mathfrak{G}}_{u}$ is a scalar multiple of $\widehat{\mathfrak{G}}_{v}$.

Corollary (Pan-Y)
Let $\operatorname{raj}(\alpha)$ be the sum of entries in rajcode (α). Then $\widehat{\mathfrak{L}}_{\alpha}$ has degree raj (α).

Snow on Rothe diagrams

We can do the same construction on a Rothe diagram.

Theorem (Pan-Y)
The weight of $\operatorname{snow}(R D(w))$ is the same as rajcode(w) defined by Pechenik, Speyer and Weigandt.

Space spanned by $\widehat{\mathfrak{G}}_{w}$

Let \widehat{V}_{n} be the \mathbb{Q}-span of $\widehat{\mathfrak{G}}_{w}$ with $w \in S_{n}$.
Proposition (Pan-Y)
Let C_{n} be the set of weak compositions entry-wise at most
$(n-1, \cdots, 2,1,0)$. Then \widehat{V}_{n} is also the \mathbb{Q}-span of $\widehat{\mathfrak{Z}}_{\alpha}$ with $\alpha \in C_{n}$.

Questions:

- Can we find bases of $\widehat{V_{n}}$? A basis consisting of $\widehat{\mathfrak{G}}_{w}$ by [Pechenik-Speyer-Weigandt]
- What is the dimension of $\widehat{V_{n}}$? B_{n}, the $n^{\text {th }}$ Bell number by [Pechenik-Speyer-Weigandt]
- What is the Hilbert series of $\widehat{V_{n}}$?

Extracting a basis from a spanning set

Recall:

Theorem (Pan-Y)

- The leading monomial of $\widehat{\mathfrak{L}}_{\alpha}$ is $x^{\text {rajcode }(\alpha)}$.
- Two weak compositions α and γ have the same rajcode if and only if $\widehat{\mathfrak{L}}_{\alpha}$ is a scalar multiple of $\widehat{\mathfrak{L}}_{\gamma}$.

Partition the spanning set of $\widehat{V_{4}}$ into equivalence classes by rajcode:

$$
\begin{gathered}
\{0000\},\{1000\},\{0100,1100\}, \\
\{0010,1010,0110,1110\}, \\
\{2000\},\{0200\},\{1200,2200\}, \\
\{2100\},\{2010,2110\},\{3000\}, \\
\{0210,1210,2210\},\{3100\}, \\
\{3200\},\{3010,3110\},\{3210\} .
\end{gathered}
$$

Snowy weak compositions

Definition (Pan-Y)

A weak composition is snowy if its positive entries are distinct.

a snowy weak composition in C_{6}
Theorem (Pan-Y)
Each $\alpha \in C_{n}$ has the same rajcode as exactly one snowy weak composition in C_{n}.

Bases of $\widehat{V_{n}}$

Theorem (Pan-Y)
The space \widehat{V}_{n} has basis $\left\{\widehat{\mathfrak{L}}_{\alpha}: \alpha \in C_{n}\right.$ is snowy $\}$.

For instance, $\widehat{V_{3}}$ has basis
and $\widehat{V_{4}}$ has basis

$$
\begin{aligned}
& \left\{\widehat{\mathfrak{L}}_{0000}, \widehat{\mathfrak{L}}_{0100}, \widehat{\mathfrak{L}}_{0010}, \widehat{\mathfrak{L}}_{0200}, \widehat{\mathfrak{L}}_{0210}, \widehat{\mathfrak{Z}}_{0110},\right.
\end{aligned}
$$

$$
\begin{aligned}
& \widehat{\mathfrak{L}}_{2000}, \widehat{\mathfrak{L}}_{2100}, \widehat{\mathfrak{L}}_{2010}, \widehat{\mathfrak{L}} 2200, \widehat{\mathfrak{C}} 2210, \widehat{\mathfrak{S}} 2110, \\
& \left.\widehat{\mathfrak{L}}_{3000}, \widehat{\mathfrak{L}}_{3100}, \widehat{\mathfrak{L}}_{3010}, \widehat{\mathfrak{L}}_{3200}, \widehat{\mathfrak{L}}_{3210}, \widehat{\mathfrak{L}}_{31 \mathrm{Q}}\right\} .
\end{aligned}
$$

Hilbert series

Definition

Suppose A is a polynomial vector space with a basis \mathfrak{B} consisting of homogeneous polynomials. Then $\operatorname{Hilb}(A ; q):=\sum_{f \in \mathfrak{B}} q^{\operatorname{deg}(f)}$.

For instance, $\widehat{V_{3}}$ has basis

$$
\left\{\widehat{\mathfrak{L}}_{000}, \widehat{\mathfrak{L}}_{100}, \widehat{\mathfrak{L}}_{010}, \widehat{\mathfrak{L}}_{200}, \widehat{\mathfrak{L}}_{210}\right\}, \text { so }
$$

$$
\operatorname{Hilb}\left(\widehat{V_{3}} ; q\right)=q^{0}+q^{1}+q^{2}+q^{2}+q^{3} .
$$

In general,

$$
\operatorname{Hilb}\left(\widehat{V_{n}} ; q\right)=\sum_{\text {snowy } \alpha \in C_{n}} q^{\operatorname{raj}(\alpha)}
$$

where $\operatorname{raj}(\alpha)$ is the sum of rajcode (α).

q-analogue of Bell numbers

Define the polynomial $S_{n, k}(q)$ recursively:

$$
S_{n+1, k}(q)=q^{k-1} S_{n, k-1}(q)+[k]_{q} S_{n, k}(q)
$$

with base cases $S_{0, k}(q)=S_{0, k}$. It is called a q-analogue of $S_{n, k}$.

The q-analogue of B_{n} is $B_{n}(q):=\sum_{k=0}^{n} S_{n, k}(q)$.

Question: How to write $B_{n}(q)$ as a generating function?

Non-attacking rook diagrams

A non-attacking rook diagram is a diagram with at most one tile in each column or row.
Let Rook ${ }_{n}$ be the set of non-attacking rook diagrams within the staircase that has length $n-r$ in row r.

An element of Rook6

$B_{n}(q)$ via Rooks

Define the Northwest statistic NW(•) on Rook ${ }_{n}$.

$$
\operatorname{NW}(R)=10
$$

Theorem (Garsia-Remmel)

$$
\sum_{R \in \mathrm{Rook}_{n}} q^{\mathrm{NW}(R)}=\operatorname{rev}\left(B_{n}(q)\right)
$$

where $\operatorname{rev}(\cdot)$ means to reverse all the coefficients.

Bijection

There is a bijection between snowy weak compositions in C_{n} and Rook ${ }_{n}$.

Bijection

If $\alpha \mapsto R$, then $\operatorname{raj}(\alpha)=\operatorname{NW}(R)$.

Hilbert series of $\widehat{V_{n}}$

$\operatorname{Hilb}\left(\widehat{V_{n}} ; q\right)=\sum_{\substack{\alpha \in C_{n}, \alpha \text { is snowy }}} q^{\operatorname{raj}(\alpha)}=\sum_{R \in \operatorname{Rook}_{n}} q^{\mathrm{NW}(R)}=\operatorname{rev}\left(B_{n}(q)\right)$

Span of all top Lascoux polynomials

Let \widehat{V} be the span of all top Lascoux polynomials.
Theorem (Pan-Y)

- $\widehat{V_{1}} \subseteq \widehat{V_{2}} \subseteq \cdots \subseteq \widehat{V}$.
- $\widehat{V}=\bigcup_{n \geq 1} \widehat{V}_{n}$.
- \widehat{V} has basis $\left\{\widehat{\mathfrak{L}}_{\alpha}: \alpha\right.$ is snowy $\}$.
$-\operatorname{Hilb}(\widehat{V} ; q)=\lim _{n \rightarrow \infty} \operatorname{Hilb}\left(\widehat{V_{n}} ; q\right)=\prod_{m>0}\left(1+\frac{q^{m}}{1-q}\right)$

$$
\begin{gathered}
\widehat{\mathfrak{L}}_{(0,3,1,5)} \times \widehat{\mathfrak{L}}_{(2,4,0,0)} \\
=\widehat{\mathfrak{L}}_{(4,8,1,5)}+\widehat{\mathfrak{L}}_{(6,7,1,5)}+\widehat{\mathfrak{L}}_{(5,9,1,4)}+2 \widehat{\mathfrak{L}}_{(6,8,1,4)}+\widehat{\mathfrak{L}}_{(6,9,1,3)}+\widehat{\mathfrak{L}}_{(7,8,1,3)}
\end{gathered}
$$

Theorem (Y 2023+)
If α and β are snowy, then $\widehat{\mathfrak{L}}_{\alpha} \times \widehat{\mathfrak{L}}_{\beta}$ can be expanded into top Lascoux polynomials with positive coefficients.

Problem: Find a combinatorial formula for the coefficients.

Relations between $\widehat{\mathfrak{L}}_{\alpha}$ and the Schubert polynomials

Every $\widehat{\mathfrak{L}}_{\alpha}$ is a Schubert polynomial, after "reversal".

$$
\begin{aligned}
& \widehat{\mathfrak{L}}_{31524}=x^{(5,5,5,3,3)}+x^{(5,5,4,4,3)}+x^{(5,4,5,4,3)}+x^{(5,5,4,3,4)}+x^{(5,4,5,3,4)} \\
& \mathfrak{S}_{24153}=x^{(2,2,0,0,0)}+x^{(2,1,1,0,0)}+x^{(2,1,0,1,0)}+x^{(1,2,1,0,0)}+x^{(1,2,0,1,0)}
\end{aligned}
$$

A solution of this problem would solve the Schubert problem.

Thank you!

