MATH 180B Homework 1

January 11, 2019

Due Thursday January 17 11:59pm. Pleaes submit your homework in pdf format on Gradescope. Justify your answers to get full credits.

1. Roll an even dice and observe the number N on the uppermost face. Then toss a fair coin N times and observe X, the total number of heads that appear in N tosses.
(i) Write down the conditional probability mass function $p_{X \mid N}(\cdot \mid 3)$.
(ii) What is $\mathbb{P}(X=5)$?
(iii) What is $\mathbb{E}(X)$?
2. Suppose U and V are independent geometric random variables with parameter p. Let $Z=U+V$. Determine the conditional probability mass function of $p_{U \mid Z}(\cdot \mid n)$ of U given that $Z=n$.
3. Let X be a Poisson random variable with parameter λ. Calculate the conditional expectation of X given that X is odd.
4. Dice $\# 1$ is rolled a single time. Dice $\# 2$ is rolled repeatedly. The game stops at the first time that the sum of the two dices is 4 or 7 . What is the probability that the game stops with a sum of 4 ?
5. Let N be a Poisson random variable with parameter λ. Suppose ξ_{1}, ξ_{2}, \ldots is a sequence of i.i.d. random variables with mean μ and variance σ^{2}, independent of N. Let $S_{N}=\xi_{1}+\ldots \xi_{N}$. Determine the mean and variance of S_{N}.
6. Let X, Y be independent random variables, each having Exponential (λ) distribution. What is the conditional density function of X given that $Z=$ $X+Y=z ?$
7. Suppose the random variable U has uniform distribution on $[0,1]$. Then a second random variable T is chosen to have uniform distribution on $[0, U]$. Calculate $\mathbb{P}(T>1 / 2)$.
8. Let U be uniformly distributed on $[0, L]$, where L has Exponential (λ) distribution. Let $V=L-U$. What is the joint density function of U and V ?
