Due Friday in class, Feb 16. Relevant sections in Durrett’s textbook 3.3, 3.4, 3.6 and 5.1. Justify all your answers.

Throughout this homework, Z denotes a random variable that has a standard normal distribution N(0,1).

1. Suppose \(X_1, X_2, \ldots \) are i.i.d. random variables such that \(\mathbb{E}[X_m] = 0 \) and \(\mathbb{E}[X_m^2] = \sigma^2 \) for all \(m \), where \(0 < \sigma^2 < \infty \). Show that

\[
\sum_{m=1}^{n} X_m / \left(\sum_{m=1}^{n} X_m^2 \right)^{1/2} \Rightarrow Z.
\]

2. For \(n \in \mathbb{N} \), suppose \(X_n \) has the binomial distribution with parameters \(n \) and \(p_n \). This means that \(X_n = \xi_{n,1} + \ldots + \xi_{n,n} \), where \(\xi_{n,j} \), \(1 \leq j \leq n \), are i.i.d. and \(\mathbb{P}(\xi_{n,i} = 1) = p_n \) and \(\mathbb{P}(\xi_{n,i} = 0) = 1 - p_n \).

(a) Show that if \(\lim_{n \to \infty} np_n(1 - p_n) = \infty \), then

\[
\frac{X_n - np_n}{\sqrt{np_n(1-p_n)}} \Rightarrow Z.
\]

(b) Show that if \(\lim_{n \to \infty} np_n(1 - p_n) = \lambda \in (0, \infty) \), then \(X_n \Rightarrow \text{Poisson}(\lambda) \).

3. Suppose \(X_1, X_2, \ldots \) are independent. Suppose \(\mathbb{P}(X_m = -m) = \mathbb{P}(X_m = m) = m^{-2}/2 \) for all \(m \geq 1 \) and \(\mathbb{P}(X_m = -1) = \mathbb{P}(X_m = 1) = (1-m^{-2})/2 \) for \(m \geq 2 \). Let \(S_n = X_1 + \ldots + X_n \).

Show that \(\text{var}(S_n)/n \to 2 \) but \(S_n/\sqrt{n} \nrightarrow Z \).

4. Suppose \(X \) and \(Y \) are random variables such that \(\mathbb{E}[X^2] < \infty \) and \(\mathbb{E}[Y^2] < \infty \), and suppose \(\mathcal{G} \) is a \(\sigma \)-field. Show that if \(\mathbb{E}[Y|\mathcal{G}] = X \) and \(\mathbb{E}[Y^2|\mathcal{G}] = X^2 \), then \(X = Y \) a.s.

5. If \(\mathcal{F}_1, \mathcal{F}_2, \) and \(\mathcal{G} \) are \(\sigma \)-fields, we say \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) are conditionally independent given \(\mathcal{G} \) if \(\mathbb{P}(A \cap B|\mathcal{G}) = \mathbb{P}(A|\mathcal{G})\mathbb{P}(B|\mathcal{G}) \) for all \(A \in \mathcal{F}_1 \) and \(B \in \mathcal{F}_2 \). Prove that if \(\mathbb{P}(A|\sigma(\mathcal{F}_2, \mathcal{G})) = \mathbb{P}(A|\mathcal{G}) \) for all \(A \in \mathcal{F}_1 \), where \(\sigma(\mathcal{F}_2, \mathcal{G}) \) denotes the \(\sigma \)-field generated by \(\mathcal{F}_2 \) and \(\mathcal{G} \), then \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) are conditionally independent given \(\mathcal{G} \).

6. Suppose \(f : \mathbb{R}^2 \to [0, \infty) \) is a measurable function, and \(X \) and \(Y \) are random variables with joint density \(f \). Let \(g(x) = \int_{\mathbb{R}} f(x, y) \, dy \), and for simplicity assume \(g(x) > 0 \) for all \(x \in \mathbb{R} \). Let \(h(x, y) = f(x, y)/g(x) \).

Now for \(\omega \in \Omega \) and \(B \in \mathcal{B}(\mathbb{R}) \), let

\[
Q(\omega, B) = \int_{B} h(X(\omega), y) \, dy.
\]
(a) Show that g is a density for X.

(b) Show that Q is a regular conditional distribution for Y given $\sigma(X)$.