Homework 2 Math280C Spring 2018

Due Friday in class, April 27. Relevant sections in Durrett's textbook 8.2, 8.3 and 8.5. Justify all your answers.

1. (was Problem 5 HW1) Let $\left(X_{t}\right)_{t \in \mathbb{R}}$ be an Ornstein-Uhlenbeck process as above. Show that $\left(X_{t}\right)_{t \geq 0}$ is a Markov process and write down its Markov transition kernels.
2. (Do the calculus to derive the arcsine law) Let $B(t)$ be standard Brownian motion, $T_{0}=\inf \left\{s>0, B_{s}=0\right\}$ and $L=\sup \left\{t \leq 1: B_{t}=0\right\}$. Deduce from the Markov property that

$$
\mathbb{P}(L \leq t)=\int \mathbb{P}_{y}\left(T_{0}>1-t\right) p(t, 0, d y)
$$

where $p(t, x, \cdot)$ is the Markov transition kernel of Brownian motion. Determine the law of L explicitly.
3. Let L be as in Problem 2. Show that a.s. there exists times $t_{n}<s_{n}<L$ with $t_{n} \uparrow L$ such that $B\left(t_{n}\right)<0$ and $B\left(s_{n}\right)>0$ for all n.
4. Consider the 2-dimensional Brownian motion on $\mathbb{R}^{2}, B(t)=\left(B_{1}(t), B_{2}(t)\right)$, where B_{1}, B_{2} are two independent standard Brownian motions. We inerpret \mathbb{R}^{2} as the complex plane, that is identify $B(t)$ as $B_{1}(t)+i B_{2}(t)$. A complex valued process is called a martingale if both its real and imaginary parts are martingales.
(i) Show that for any $\lambda \in \mathbb{R},\left(e^{i \lambda B(t)}\right)_{t \geq 0}$ is a martingale.
(ii) Suppose $B(t)$ starts at i, that is $B_{1}(0)=0, B_{2}(0)=1$. Let T be the first time when $B(t)$ hits the real axis. Show that

$$
\mathbb{E}\left[e^{i \lambda B(T)}\right]=e^{-\lambda}
$$

(Note that this exactly tells you what is the ch.f. of $B(T)$, by the inversion formula we have that $B(T)$ has Cauchy distribution.)
5. Let T_{x} be the first hitting time of a point $x \in \mathbb{R}$. Let $R>0, \tau$ be the first hitting time of the set $\{-R, R\}$. Consider a Brownian motion started at $x \in(0, R)$. Calculate

$$
\mathbb{E}_{x}[\tau], \mathbb{E}_{x}\left[T_{R} \mid T_{R}<T_{0}\right]
$$

