280C HW2 Idea

Ching Wei Ho

May 11, 2018

1. We try to compute the conditional expectation $\mathbb{E}\left[f\left(X_{t}\right) \mid \mathscr{F}_{s}\right]$. Given any bounded continuous function f,

$$
\mathbb{E}\left[f\left(X_{t}\right) \mid \mathscr{F}_{s}\right]=\mathbb{E}\left[f\left(e^{-\lambda t}\left(B_{e^{2 \lambda t}}-B_{e^{2 \lambda s}}\right)\right)+e^{-\lambda t} B_{e^{e^{2 \lambda s}}} \mid \mathscr{F}_{s}\right] .
$$

By independent increments of Brownian motion, we have the above equation

$$
=\left.\frac{1}{\sqrt{2 \pi\left(e^{2 \lambda t}-e^{2 \lambda s}\right)}} \int f\left(e^{-\lambda t} u+e^{-\lambda(t-s)} x\right) e^{-\frac{x^{2}}{2\left(e^{2 \lambda t}-e^{2 \lambda s}\right)}} d u\right|_{x=X_{s}}
$$

After we do a substitution $y=e^{-\lambda t} u+e^{-\lambda(t-s)} x$, we get

$$
\mathbb{E}\left[f\left(X_{t}\right) \mid \mathscr{F}_{s}\right]=\left.\int f(y) \frac{1}{\sqrt{2 \pi\left(1-e^{-2 \lambda(s-t)}\right)}} \exp \left(-\frac{\left(y-e^{-\lambda(s-t)} x\right)^{2}}{2\left(1-e^{-2 \lambda(s-t)}\right)}\right) d y\right|_{x=X_{s}}
$$

This shows X_{t} is a Markov process and computed the Markov transition kernel

$$
Q_{s, t} f(x)=\int f(y) \frac{1}{\sqrt{2 \pi\left(1-e^{-2 \lambda(s-t)}\right)}} \exp \left(-\frac{\left(y-e^{-\lambda(s-t)} x\right)^{2}}{2\left(1-e^{-2 \lambda(s-t)}\right)}\right) d y
$$

or the $p(x, B)$ is given by

$$
p(x, B)=\int_{B} \frac{1}{\sqrt{2 \pi\left(1-e^{-2 \lambda(s-t)}\right)}} \exp \left(-\frac{\left(y-e^{-\lambda(s-t)} x\right)^{2}}{2\left(1-e^{-2 \lambda(s-t)}\right)}\right) d y
$$

Observe that it is indeed time homogeneuous.
2. Since if L is the largest zero of Brownian motion in $[0,1]$ and $L \leq t$, then it takes time longer than $1-t$ to reach another zero from L, in terms of the shift map θ_{t}, we have

$$
\mathbb{1}_{T_{0}>1-t} \circ \theta_{t}=\mathbb{1}_{L \leq t} .
$$

By Markov property,

$$
\mathbb{E}_{0}\left[\mathbb{1}_{L \leq t} \mid \mathscr{F}_{t}^{+}\right]=\mathbb{E}_{B_{t}}\left[\mathbb{1}_{T_{0}>1-t}\right]
$$

Taking expectation on both sides, we have

$$
\mathbb{P}(L \leq t)=\int \mathbb{E}_{y}\left[\mathbb{1}_{T_{0}>1-t}\right] p(t, 0, d y)=\int \mathbb{P}_{y}\left(T_{0}>1-t\right) p(t, 0, d y)
$$

The rest of the result follows from Example 8.4.2, page 374 of Durrett.
3. Since L is isolated from the right and almost surely zeros of B_{t} cannot be isloated, there must be zeros $z_{n} \uparrow L$. (Warning: almost surely there are zeros between z_{n}, otherwise the z_{n} is also isolated zero.) Since almost surely B_{t} cannot be constantly 0 in $\left[z_{n}, z_{n+1}\right]$, there must be $t_{k} \in\left[z_{n_{k}, z_{n_{k}+1}}\right]$ and $s_{m} \in\left[z_{n_{m}, z_{n_{m}+1}}\right]$ such that $B\left(t_{k}\right)<0$ and $B_{s_{m}}>0$.
4. To show that it is a martingale,

$$
\mathbb{E}\left[e^{i \lambda B_{t}} \mid \mathscr{F}_{s}\right]=e^{i \lambda B_{s}} \mathbb{E}\left[e^{i \lambda\left(B_{t}-B_{s}\right)} \mid \mathscr{F}_{s}\right] .
$$

However, how the conditional expectation becomes expectation, by independent increments of Brownian motions.There are independent X, Y which are $N(0, t-s)$ such that $\mathbb{E}\left[e^{i \lambda\left(B_{t}-B-s\right)}\right]=\mathbb{E}\left[e^{i \lambda X}\right] \mathbb{E}\left[e^{-\lambda Y}\right]$ which is a product of characteristic function and moment generating function of $N(0, t-s)$. It follows that

$$
\mathbb{E}\left[e^{i \lambda B_{t}} \mid \mathscr{F}_{s}\right]=e^{i \lambda B_{s}} \exp \left(-(t-s) \lambda^{2} / 2\right) \exp \left((t-s) \lambda^{2} / 2\right)=e^{i \lambda B_{s}} .
$$

If we assume $B_{0}=i$, since $e^{i \lambda B_{t}}$ is a martingale,

$$
\mathbb{E}\left[e^{i \lambda B_{t}}\right]=\mathbb{E}\left[e^{i \lambda B_{0}}\right]=e^{-\lambda}
$$

5. For $\mathbb{E}_{x}[\tau]$, the main observation is that

$$
\mathbb{E}_{x}\left[T_{R} \mid T_{R}<T_{0}\right]=\mathbb{E}_{x}\left[T \mid T_{R}<T_{0}\right]
$$

where $T=T_{R} \wedge T_{0}$ since $B_{t}^{2}-t$ is a martingale (and other technical assumptions are satisfied), the optional stopping theorem yields

$$
x^{2}=\mathbb{E}_{x}\left[B(\tau)^{2}-\tau\right]=R^{2}-\mathbb{E}_{x}[\tau]
$$

so $\mathbb{E}_{x}[\tau]=R^{2}-x^{2}$. For $\mathbb{E}_{x}\left[T_{R} \mid T_{R}<T_{0}\right]$, first, we can check that $B_{t}^{3}-3 t B_{t}$ is a martingale. Since $P_{x}\left(T_{R}<T_{0}\right)=x / R$ by theorem 8.5.3 Durrett, the optional stopping theorem (again technical assumptions are satisfied) yields

$$
x^{3}=\mathbb{E}_{x}\left[B(T)^{3}-3 T B(T)\right]=x\left(R^{2}-3 \mathbb{E}_{x}\left[T_{R} \mid T_{R}<T_{0}\right]\right) .
$$

Hence,

$$
\mathbb{E}_{x}\left[T_{R} \mid T_{R}<T_{0}\right]=\frac{1}{3}\left(R^{2}-x^{2}\right)
$$

